
1. INTRODUCTION

High-frequency vibration in complex engineering struc-

tures is challenging problem. Attempts to describe all of the

details of real structures fail for many reasons. First, the exis-

tence of many inherently uncontrolled factors plays an essen-

tial role. In structural dynamics, uncertainties arise from stiff-

ness, mass and damping fluctuations caused by variations in

material properties as well as by variations resulting from

manufacturing and assembly. The boundary conditions for

each structural member also are not known precisely since

the high frequency dynamic properties of joints between

structural members are especially uncertain. Second, the es-

sential heterogeneity and presence of secondary systems have

to be taken into account. Third, the interpretation of the solu-

tion of an “exact” boundary-value problem presents great dif-

ficulty. The field of vibration of a complex structure (for in-

stance, under a broad-band excitation) is a very complicated

function of time and spatial coordinates because a great many

modes are excited in the structure. Hence, new approaches

are needed for an adequate modelling of structures at high

frequencies since with the conventional methods, results be-

come unreliable and can hardly be interpreted.

There exist a great number of approaches, among which

the Statistical Energy Analysis1 is the more celebrated one.

However, it belongs to a class of discrete approaches, in which

field is averaged within each structural member. Thus this

approach is not applicable to problems of wave propagation.

An alternative is the so-called continuous approach, the ap-

proach of high-frequency structural dynamics2,3 being utilised

in the present paper. The basic substantiation for this ap-

proach is that the structures at high frequencies behave like a

mechanical system with a continuous spectrum of natural

frequencies.4 This result naturally leads to the representation

of complex structures in the form of an elastic carrier struc-

ture, in which the primary structure is modelled with oscilla-

tors attached to it. The oscillators are introduced into the

model to describe numerous secondary systems which com-

prise the major portion of the structural members of a unit. A

number of investigations have been concerned with such a

representation. One pioneering work5 dealt with a one-di-

mensional representation, whilst other papers6,7 were devoted

to the three-dimensional analysis of isotropic and anisotropic

carrier media, respectively.

The present paper is devoted to the problem of propaga-

tion of high frequency vibration in such structures, which al-

lows the application of one-dimensional models.8 It is shown

that closed-form solutions are obtained for a rather general

case of a structure with varying cross-sectional area, nonlin-

ear energy absorption and secondary systems. The vibration

field is shown to have an upper limit which does not depend

on the intensity of external excitation.
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A one-dimensional wave-guide based on a Cosserat-type primary structure with secondary substructures of

oscillator-type attached is developed. Propagating longitudinal waves are studied under simplifying assumptions:

e.g., straight axis, frictionally damped principal rod-structure with variable cross-section, unloaded mantle, i.e.,

excitation is solely concentrated at the foundation of the building model, etc. Using harmonic linearisation, the

resulting integral equation is solved by taking the logarithmic derivative and filtering out negligible contribu-

tions. The main results, crucial in tall building acoustics, are critical frequencies and the separation for spatially

increasing or decreasing amplitude frequency response functions, and the input-independent upper limit for the

strain amplitude. Two main counteracting effects on the propagating wave are identified: energy absorption (due

to friction in the primary structure and due to energy absorption in local resonance of the secondary systems)

and amplification by decreasing cross-sectional area.
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