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Nonlinear energy sinks (NESs) have been widely applied as passive control units in the field of vibration con-
trol. In this study, a grounded combined-stiffness NES is proposed, which consists of grounded linear stiffness
and grounded cubic stiffness. The vibration suppression performance of the model under different excitations
is investigated. First, the slow-varying equations of the system are derived using the complexification-averaging
method, followed by the derivation of the amplitude-frequency response equation. Next, the influence of system
parameters on vibration reduction performance under harmonic and impulsive excitations is analyzed. Finally, a
comparative analysis is conducted on the vibration reduction performance of the grounded linear stiffness NES,
grounded cubic stiffness NES, and grounded combined-stiffness NES after parameter optimization using the Grey
Wolf Optimizer (GWO) under random excitation. The results indicate that introducing grounded cubic stiffness
into the grounded linear stiffness NES can significantly enhance the system’s vibration reduction performance.
However, compared to the grounded cubic stiffness NES, the energy dissipation of the primary system in the
grounded combined-stiffness NES is more sensitive to variations in grounded linear stiffness.

1. INTRODUCTION

Vibration is widespread in mechanical equipment such as
machine tools, vehicles, and spacecraft. Prolonged external
vibrations can damage structures in engineering, potentially
leading to severe consequences. Traditional vibration reduc-
tion methods can be classified according to their control strate-
gies into passive control, semi-active control, active control,
and hybrid control.1 Nonlinear energy sinks (NES), known
for their high vibration energy dissipation efficiency, good ro-
bustness, and small mass,2, 3 have increasingly been applied in
vibration suppression for aerospace equipment.4

In NES, there exists a phenomenon known as Targeted En-
ergy Transfer (TET), which allows for efficient energy transfer
between the auxiliary structure and the primary structure.5, 6

Once TET occurs, energy is irreversibly transferred with mini-
mal or no return to the primary structure, significantly enhanc-
ing the system’s vibration suppression effect.7 Ding et al.8

summarized research on NES and discussed the current state of
various types. Mcfarland et al.9 experimentally validated the
presence of TET in grounded cubic NES. Sui et al.10 proposed
a grounded stiffness NES with an inerter and explored the
system’s dynamic characteristics using the complexification-
averaging method, finding that the introduction of an inerter
and grounded stiffness effectively improved the vibration re-
duction performance. Jiang et al.11 introduced a grounded
NES with both cubic stiffness and damping, studying the sys-
tem’s response under harmonic excitation and experimentally
confirming that grounded NES offers superior wideband char-
acteristics. Ahmadabadi and Khadem12 investigated the vibra-
tion suppression effects of grounded and ungrounded NES on
cantilever beam systems under impulsive excitation, discov-
ering that the optimized system achieved energy dissipation
of up to 89%, highlighting the importance of nonlinear nor-
mal modes in energy targeted transfer within continuous sys-

tems. Charlemagne et al.13 proposed a grounded cubic stiff-
ness NES and the slow invariant manifold and the strongly
modulated response (SMR) of the system are studied based on
the complexification-averaging method.

The existing reference has not thoroughly explored the
grounded combined stiffness NES, which is composed of
grounded linear and cubic stiffness. Therefore, this paper pro-
poses a grounded combined stiffness NES and provides an
in-depth analysis of the vibration reduction performance of
grounded linear stiffness NES, grounded cubic stiffness NES,
and grounded combined stiffness NES under different har-
monic, impulsive, and random excitations.

2. SYSTEM MODEL OF GROUNDED
STIFFNESS NES

The model of the grounded combined stiffness NES system
is shown in Figure 1. Here, m1 and m2 represent the masses
of the linear primary system and the additional structure, re-
spectively; K1 is the linear stiffness of the primary system; K2

denotes the cubic stiffness of the additional structure and the
grounded cubic stiffness; K3 and K4 are the grounded linear
stiffness and grounded cubic stiffness of the additional struc-
ture, respectively; c1 and c2 are the linear damping coefficients
of the primary system and additional structure, respectively; F
and ω represent the amplitude and frequency of the external
excitation.

The equation of the grounded combined stiffness NES sys-
tem can be expressed as:

m1Ẍ1 + C1Ẋ1 +K1X1+

K2 (X1 −X2)
3
+ C2

(
Ẋ1 − Ẋ2

)
= F cosωt

m2Ẍ2 +K2 (X2 −X1)
3
+

C2

(
Ẋ2 − Ẋ1

)
+K3X2 +K4X

3
2 = 0.

(1)
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Figure 1. Grounded combined stiffness NES system model.

System 1 may be rescaled as follows:

ω2
0 =

K1

m1
, ελ1 =

C1

m1ω0
, ελ2 =

C2

m2ω0
,

εk2 =
l2K2

K1
, εk3 =

K3

K1
, εk4 =

l2K4

K1
,

τ = ωt,Ω =
ω

ω0
, εf =

F

lK1
; (2)

where τ represents non-dimensional time, l represents the
static deformation of the main system spring under the influ-
ence of gravity. 0 < ε ≪ 1 is a mall parameter that determines
the order of magnitude for damping, amplitude of the external
force, detuning, and mass of the attachment.14 Equation (1)
can be expressed in terms of the non-dimensional time scale τ :

ẍ1 + ελ1ẋ1 + x1+

ελ2 (ẋ1 − ẋ2) + εk2 (x1 − x2)
3
= εf cos(Ωτ)

ẍ2 + λ2 (ẋ2 − ẋ1)+

k2 (x2 − x1)
3
+ k3x2 + k4x

3
2 = 0.

(3)

3. ANALYSIS OF THE VIBRATION
REDUCTION PERFORMANCE OF
THE SYSTEM UNDER HARMONIC
EXCITATION

This section investigates the system’s amplitude-frequency
response. First, the following variables are introduced to per-
form a variable substitution in Equation (3).

u = x1 + εx2, v = x1 − x2. (4)

Equation (3) can be transformed into:

ü+ ελ1
u̇+εv̇
1+ε + u+εv

1+ε +

εk3
u−v
1+ε + εk4

(
u−v
1+ε

)3

= εf cos(Ωτ)

v̈ + ελ1
u̇+εv̇
1+ε + u+εv

1+ε + (1 + ε)λ2v̇ + (1 + ε)k2v
3−

εk3
u−v
1+ε − εk4

(
u−v
1+ε

)3

= εf cos(Ωτ).

(5)

According to Gendelman, Starosvetsky, Feldman15 and
Starosvetsky, Gendelman16 introduce the following complex
variables: {

φ1e
jΩτ = u̇+ jΩu

φ2e
jΩτ = v̇ + jΩv.

(6)

From Equation (6), the following relationship can be further
obtained:

ü = φ̇1e
jΩτ + jΩ

φ1e
jΩτ − φ̄1e

−jΩτ

2
,

v =
φ2e

jΩτ − φ̄2e
−jΩτ

2jΩ
, v̇ =

φ2e
jΩτ + φ̄2e

−jΩτ

2
. (7)

Substituting Equation (7) into Equation (5) and extracting
the coefficients of the slow-varying components, the slow-
varying equations of the system can be expressed as:

φ̇1 +
jΩ
2 φ1 +

ελ1

2(1+ε) (φ1 + εφ2)− j(φ1+εφ2)
2Ω(1+ε) −

εjk3(φ1−φ2)
2Ω(1+ε) − 3jεk4(|φ1−φ2|2(φ1−φ2))

8Ω3(1+ε)3 = εf
2

φ̇2 +
jΩ
2 φ2 +

ελ1

2(1+ε) (φ1 + εφ2)−
j(φ1+εφ2)
2Ω(1+ε) − 3j(1+ε)k2

8Ω3 φ2 |φ2|2 + (1+ε)λ2

2 φ2+

εjk3(φ1−φ2)
2Ω(1+ε) +

3jεk4(|φ1−φ2|2(φ1−φ2))
8Ω3(1+ε)3 = εf

2 .

(8)

To obtain the steady-state solution of the system, let φ̇1 =
φ̇2 = 0, after applying the Euler transformation to φ1 =
β1e

jγ1 , φ2 = β2e
jγ2 and substituting it into Equation (8), by

separating the real and imaginary parts, we have:

−4fε(1 + ε)3Ω3 + 3εk4β
3
1 sin (γ1)− 3ε sin (γ2) k4β

3
2+

3εk4β
2
1β2 (sin (2γ1 − γ2) + 2 sin (γ2))−

4ε(1 + ε)2Ω2β2 (− sin (γ2) (k3 − 1) + εΩλ1 cos (γ2))+

β1


4ε(1 + ε)2Ω3λ1 cos (γ1)+
4ε(1 + ε)2Ω2 sin (γ1) k3−

3εk4β
2
2 (−2 sin (γ1) + sin (γ1 − 2γ2))+

4(1 + ε)2Ω2
(
−
(
−1 + (1 + ε)Ω2

)
sin (γ1)+

)
 = 0

3εk4β
2
1β2 (cos (2γ1 − γ2) + 2 cos (γ2))+

3εk4β
3
2 cos (γ2) + 4ε(1 + ε)2Ω2 (k3 − 1)β2 cos (γ2)−

3εk4β
3
1 cos (γ1) + 4ε2(1 + ε)2Ω3λ1Ωsin (γ2)+

β1


−4ε(1 + ε)2Ω2k3 cos (γ1)−

3εk4β
2
2 (2 cos (γ1) + cos (γ1 − 2γ2))+

4(1 + ε)2Ω2
(
−1 + (1 + ε)Ω2

)
cos (γ1)+

4ε(1 + ε)2Ω3λ1 sin (γ1)

 = 0,



3εk4β
2
1β2 (sin (2γ1 − γ2) + 2 sin (γ2))+

4β1(1 + ε)2Ω2 (sin (γ1) + εΩλ1 cos (γ1))+
4(1 + ε)2Ω2β2

(
εk3 + ε− (1 + ε)Ω2

)
sin (γ2)+

4(1 + ε)2Ω3β2

(
ε2λ1 + (1 + ε)2λ2

)
cos (γ2)+

3β1ε
(
−2 sin (γ1) + k4β

2
2 sin (γ1 − 2γ2)

)
−

4β1ε(1 + ε)2Ω2k3 sin (γ1)− 3εk4β
3
1 sin (γ1)+

3 sin (γ2)
(
k2(1 + ε)4 + εk4

)
β3
2 − 4fε(1 + ε)3Ω3 = 0

3εk4β
3
1 cos (γ1) + 3εβ1k4β

2
2 cos (γ1 − 2γ2)−

3εk4β
2
1β2 (cos (2γ1 − γ2) + 2 cos (γ2))+

4β2(1 + ε)2Ω2
(
Ω2 + ε

(
−1 + Ω2

)
− εk3

)
cos (γ2)+

β1

(
4ε(1 + ε)2Ω2k3 cos (γ1) + 6ε cos (γ1)+
4(1 + ε)2Ω2 (− cos (γ1) + ελ1Ωsin (γ1))

)
+

β2

(
−3β2

2

(
k2(1 + ε)4 + εk4

)
cos (γ2)+

4(1 + ε)2Ω3
(
ε2λ1 + (1 + ε)2λ2

)
sin (γ2)

)
= 0.

(9)
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Figure 2. Comparison of the amplitude-frequency response of the system (ε = 0.1, λ1 = 0.05, k2 = 4/3, k4 = 4/3, f = 0.3).

(a) RMS under different grounded linear stiffness (b) RMS under different grounded cubic stiffness

(c) RMS under different cubic stiffness (d) RMS under different damping

Figure 3. RMS of the system with different parameters (ε = 0.1, λ1 = 0.05, k2 = 4/3, k4 = 4/3, f = 0.3).

220 International Journal of Acoustics and Vibration, Vol. 30, No. 2, 2025



J. Yao: RESEARCH ON VIBRATION SUPPRESSION OF GROUNDED STIFFNESS NONLINEAR ENERGY SINK

(a) GSK3 (b) GSK4 (c) GSK34

Figure 4. Comparison of different system models.

(a) GSK3

(b) GSK34

Figure 5. Energy dissipation ratio of the system under
different grounded linear stiffness (ε = 0.1, λ1 = 0.05,
λ2 = 0.2, k2 = 4/3, k4 = 4/3).

According to Sui, Shen, Wang17 the system amplitude can
be approximated as follows:x1(τ) ≈ 1

1+ε

(
β1

ω sin (Ωτ + γ1) + εβ2

ω sin (Ωτ + γ2)
)

x2(τ) ≈ 1
1+ε

(
β1

ω sin (Ωτ + γ1)− β2

ω sin (Ωτ + γ2)
)
.

(10)
Then the Root Mean Square (RMS) of the steady-state re-

sponse of the system can be expressed as:√
1

T

∫ T

0

[xi(τ)]
2
dτ. (11)

(a) GSK4

(b) GSK34

Figure 6. Energy dissipation ratio of the system under
different grounded cubic stiffness (ε = 0.1, λ1 = 0.05,
λ2 = 0.2, k2 = 4/3, k4 = 4/3).

The comparison between the analytical and numerical solu-
tions of the system’s amplitude-frequency response is shown
in Figure 2. We can observe that the numerical and analyti-
cal solutions fit well, confirming the accuracy of the analytical
solution.

To further analyze the influence of parameters on the RMS
of the system’s amplitude-frequency response. The RMS of
the system’s amplitude-frequency response under different pa-
rameters is shown in Figure 3.

It can be observed that the system’s RMS initially increases
and then decreases as the grounded linear stiffness increases,

International Journal of Acoustics and Vibration, Vol. 30, No. 2, 2025 221



J. Yao: RESEARCH ON VIBRATION SUPPRESSION OF GROUNDED STIFFNESS NONLINEAR ENERGY SINK

(a) GSK3 (b) GSK4 (c) GSK34

Figure 7. Energy dissipation ratio of the system under different cubic stiffness (ε = 0.1, λ1 = 0.05,
λ2 = 0.2, k2 = 4/3, k4 = 4/3).

while it gradually decreases with increasing grounded cubic
stiffness. As shown in Figure 3(b), introducing grounded
cubic stiffness into the grounded linear stiffness NES effec-
tively improves the system’s vibration reduction performance.
However, when k4 > 1.4 is reached, further increasing the
grounded linear stiffness does not significantly enhance the
system’s vibration reduction performance. Figure 3(c) in-
dicates that when the cubic stiffness is low, the system’s
amplitude-frequency response RMS is at its minimum, result-
ing in the best vibration reduction effect. The system can
also exhibit good vibration reduction performance when the
cubic stiffness is relatively low. Figure 3(d) shows that the
system’s amplitude-frequency response RMS increases with
increasing damping, but beyond a certain level of damping,
further increases will reduce the RMS. Therefore, to achieve
better vibration reduction performance, it is advisable to select
a larger grounded linear stiffness, a relatively larger grounded
cubic stiffness, a smaller cubic stiffness, and either low or high
damping when designing the system parameters.

4. ANALYSIS OF THE VIBRATION
REDUCTION PERFORMANCE
OF THE SYSTEM UNDER IMPULSIVE
EXCITATION

In this section, we investigate the vibration suppression ef-
fects of the system under impulsive excitation and compare the
vibration reduction performance of the grounded linear stiff-
ness NES, grounded cubic stiffness NES, and grounded com-
bined stiffness NES under different excitation amplitudes. For
ease of discussion, we refer to the grounded linear stiffness
NES, grounded cubic stiffness NES, and grounded combined
stiffness NES as GSK3, GSK4, and GSK34, respectively, in
the subsequent analysis. A comparison of the different system
models is shown in Fig. 4.

According to Chen, Zhang, Liu, and Ge,18 we introduce the
energy dissipation ratio η of the primary system.

η =
ELO − ENES

ELO
; (12)

where, ELO represents the energy of the primary system when
the NES is not connected, and ENES represents the energy
of the primary system after connecting the NES. The energy
dissipation ratios of the system under different grounded lin-

ear stiffness, grounded cubic stiffness, and cubic stiffness are
shown in Figures 5–7, respectively.

By comparing Figures 5(a) and 5(b), it can be observed that
introducing grounded cubic stiffness into GSK3 effectively im-
proves the vibration reduction performance of the system un-
der impulsive excitation. When A0 < 1.2 is reached, the en-
ergy dissipation ratios of both GSK3 and GSK34 systems ini-
tially decrease and then increase as the grounded linear stiff-
ness increases. However, when A0 ≥ 1.2 is reached, the
energy dissipation ratio of the GSK34 system with grounded
cubic stiffness is significantly higher than that of the GSK3
system. Therefore, incorporating grounded cubic stiffness into
the grounded linear stiffness NES can effectively enhance the
vibration reduction performance of the system under larger
impulsive excitations. Additionally, when the grounded lin-
ear stiffness is large, both GSK3 and GSK34 systems exhibit
higher energy dissipation ratios under different impulsive ex-
citation amplitudes, indicating better vibration reduction per-
formance at higher grounded linear stiffness.

From Figure 6, it can be seen that the energy dissipation ra-
tios of both GSK4 and GSK34 systems gradually increase with
the increase in grounded cubic stiffness. However, compared
to grounded cubic stiffness, the energy dissipation ratio of the
GSK34 system is more sensitive to changes in grounded linear
stiffness. Figure 7 indicates that the energy dissipation ratio of
GSK3 sharply decreases with increasing impulsive excitation
amplitude, ultimately stabilizing at around 15%. In contrast,
GSK34 and GSK4 maintain higher energy dissipation ratios
across different impulsive excitation amplitudes.

To further analyze the vibration reduction performance of
different systems under impulsive excitation. According to
Yang, Wang, Zhang, and Shen,19 we introduce the difference in
energy dissipation ratios ηD, and ηD = ηGDK13−ηGDKj , j =
1, 3. The three-dimensional plots of the differences in energy
dissipation ratios among different systems as the system pa-
rameters vary are shown in Figure 8, while the proportions
ηD ≥ 0 of different systems are presented in Figure 9. For
clarity, in the following discussion, the difference in energy
dissipation ratios between the GSK34 and GSK3 systems at
different grounded linear stiffness values will be referred to
as GSK34-3-k3, and the difference between the GSK34 and
GSK4 systems at different grounded cubic stiffness values will
be referred to as GSK34-4-k4. Similarly, the other differences
can be denoted as GSK34-3-k2 and GSK34-4-k2.
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(a) GSK34-3-k3 (b) GSK34-4-k4

(c) GSK34-3-k2 (d) GSK34-4-k2

Figure 8. Energy dissipation ratio differences under different parameters.

Figure 9. Proportion of ηD ≥ 0 under different system.

From Figure 8(a), it can be observed that when the impul-
sive excitation amplitude is low (A0 < 3), at smaller grounded
linear stiffness (k3 < 0.8), the energy dissipation ratio of
GSK34 is much lower than that of GSK3. However, as the
grounded linear stiffness increases, the energy dissipation ra-
tio of GSK34 exceeds that of GSK3, reaching a peak difference
in energy dissipation ratios when k3 = 1. When the impulsive
excitation amplitude is high (A0 > 5.3), the energy dissipation

Table 1. Optimal system parameters under different
stochastic excitation.

System D λ2 k2 k3 k4 ES

GSK3 0.2 0.9987 0.4078 10 — 667.7786
GSK4 0.2 0.3795 5.6718 — 0.1063 678.7405

GSK34 0.2 0.9915 0.1588 9.7497 1.9528 660.8430
GSK3 0.5 1 0.1 9.9309 — 4176.1687
GSK4 0.5 0.5356 1.326 — 0.1 4813.0144

GSK34 0.5 1 0.1380 10 9.802 4132.7267
GSK3 1 1 0.1412 10 — 14028.7014
GSK4 1 0.9987 0.1 — 9.3131 19323.7121

GSK34 1 1 0.1889 10 0.7343 14004.7478

ratio of GSK34 is significantly greater than that of GSK3.
Figure 8(b) indicates that when 0.66 ≤ A0 ≤ 3.5, the en-

ergy dissipation ratio of GSK34 is significantly higher than
that of GSK4. At A0 < 0.66, the energy dissipation ratio of
GSK34 is much lower than that of GSK4, but increases with
the grounded linear stiffness. When A0 > 3.5, although the
energy dissipation ratio of GSK4 is higher than that of GSK34,
the difference between the two is not significant.

By examining Figure 8(c) and Figure 9, it can be seen that
the difference in energy dissipation ratios between GSK34 and
GSK3 is always greater than zero. As indicated in Figure 8(a)
and Figure 8(c), this is primarily because the energy dissipa-
tion ratio of the GSK3 system sharply decreases with increas-
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(a) Random excitation (b) Energy dissipation of the system

(c) Comparison of primary system energy PDF (d) Comparison of system time-history PDF.

Figure 10. D = 0.2.

ing impulsive excitation amplitude, while that of the GSK34
system remains at a higher level.

From Figure 8(d), it is noted that when 1.1 ≤ A0 ≤ 3.4,
the energy dissipation ratio of GSK34 is greater than that of
GSK4, suggesting that under relatively small impulsive exci-
tation amplitudes, GSK34 exhibits better vibration reduction
performance compared to GSK4. When A0 < 1.1, the energy
dissipation ratio of the GSK34 system is significantly lower
than that of GSK4, and as the cubic stiffness increases, the dif-
ference in energy dissipation ratios between the two gradually
increases. When A0 > 3.4, although the energy dissipation
ratio of the GSK4 system is higher than that of GSK34, the
difference remains negligible.

5. ANALYSIS OF THE VIBRATION
REDUCTION PERFORMANCE
OF THE SYSTEM UNDER RANDOM
EXCITATION

In complex operating conditions, the system is often sub-
jected to random excitation. In this section, we focus on the
vibration reduction performance of the system under random
excitation. When the system is subjected to random excitation,
the dimensionless differential equations of the system are as

follows: 
ẍ1 + ελ1ẋ1 + x1 + ελ2 (ẋ1 − ẋ2)+

εk2 (x1 − x2)
3
= Dζ(τ)

ẍ2 + λ2 (ẋ2 − ẋ1)+

k2 (x2 − x1)
3
+ k3x2 + k4x

3
2 = 0.

; (13)

where, D represents the noise intensity, and ζ(τ) denotes
Gaussian white noise. Since the system parameters are quite
sensitive under random excitation, this paper employs the Grey
wolf optimizer (GWO) algorithm to optimize the system pa-
rameters under such conditions. The grey wolf algorithm is an
intelligent optimization technique that simulates the social hi-
erarchy and hunting behavior of four types of grey wolves.20

In this study, the area of the primary system’s energy under
random excitation is used as the objective function, which is
optimized using the GWO to minimize this energy area.

The system parameters are set as ε = 0.01, λ1 = 0.05,
with the range for the parameters to be optimized set as λ2 ∈
[0.01, 1], k2 ∈ [1, 10], k3 ∈ [1, 10], k4 ∈ [1, 10]. The maxi-
mum number of iterations is set to 100, and the wolf popula-
tion size is set to 30. The optimal parameters for the system un-
der different excitations are shown in Table 1. The optimized
probability density curves of the primary system’s energy and
displacement under various random excitations, along with the
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(a) Random excitation (b) Energy dissipation of the system

(c) Comparison of primary system energy PDF (d) Comparison of system time-history PDF

Figure 11. D = 0.5.

random excitations themselves, are illustrated in Figures 10–
12. Notably, under the same noise intensity D, the random ex-
citations experienced by different systems are the same, while
the random excitations vary under different noise intensities.

The system parameters are listed in Table 1. After optimiza-
tion, the energy dissipation and the probability density function
(PDF) of the system are shown in Figures 10–12.

From Figure 10, it can be observed that when the primary
system’s energy is relatively low, the probability density of the
GSK34 system is the highest, indicating that under smaller ran-
dom excitations, the probability of the GSK34 system having
low energy (E1 < 0.01) is maximized, resulting in the best vi-
bration reduction performance. However, the probability den-
sity of the GSK3 system is generally similar to that of GSK34,
suggesting that under smaller random excitations, the differ-
ence in vibration reduction performance between GSK3 and
GSK34 is minimal. The peak probability density of GSK4 is
lower than that of both GSK3 and GSK34. Additionally, the
peak probability density shifts to the right, indicating that un-
der smaller random excitations, the probability of the GSK4
system having low energy is higher, leading to better vibration
reduction performance.

From Figures 11 and 12, it can be observed that, similar to
the case under low-intensity random excitations, the vibration

reduction performance of the optimized GSK4 system is in-
ferior to that of the GSK3 and GSK34 systems. Moreover, as
the amplitude of the random excitation D increases, the perfor-
mance gap between GSK4 and the other two systems becomes
more pronounced. Additionally, although GSK34 exhibits a
higher probability density than GSK3 when the primary sys-
tem’s energy is low, the difference between them is not signif-
icant. These results suggest that while introducing grounded
cubic stiffness into the grounded linear stiffness NES can im-
prove the vibration reduction performance under random exci-
tation, the improvement is relatively limited.

6. CONCLUSIONS

This study investigated the vibration reduction performance
of grounded linear stiffness NES, grounded cubic stiffness
NES, and grounded combined stiffness NES under different
types of excitation. The findings are summarized as follows:

Under harmonic excitation, better vibration reduction per-
formance can be achieved by selecting a larger grounded linear
stiffness, a relatively larger grounded cubic stiffness, a smaller
cubic stiffness coefficient, and either a smaller or larger damp-
ing value during system parameter design.

Under impulsive excitation, introducing grounded cubic
stiffness into the grounded linear stiffness NES can effectively
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(a) Random excitation (b) Energy dissipation of the system
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Figure 12. D = 1.

improve the system’s vibration reduction performance. How-
ever, compared to the grounded cubic stiffness NES, the energy
dissipation ratio of the main system in the grounded combined
stiffness NES was more sensitive to variations in grounded lin-
ear stiffness. Therefore, relatively small grounded linear stiff-
ness values should be avoided during parameter design to en-
sure effective vibration reduction.

combined stiffness NES exhibited the best vibration reduc-
tion performance, followed by the grounded linear stiffness
NES, while the grounded cubic stiffness NES showed the poor-
est performance. Although incorporating grounded cubic stiff-
ness into the grounded linear stiffness NES can improve the
system’s performance under random excitation, the improve-
ment is not substantial.
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