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To improve the fault diagnosis efficiency of rotating mechanisms such as rolling bearings, a rolling bearing fault
diagnosis technique based on time-shifted multi-scale attention entropy and sparrow search algorithm optimized
kernel-extreme learning machine (abbreviated as TSMATE-SSA-KELM) is proposed. Firstly, in the feature extrac-
tion part, to solve the issue of insufficient coarse-graining of multi-scale attention entropy (abbreviated as MATE),
time-shifted multi-scale attention entropy (abbreviated as TSMATE) is introduced to construct multi-dimensional
fault feature vectors. Secondly, the sparrow search algorithm (abbreviated as SSA), which has a fine optimization
ability and fast convergence speed, is introduced to optimize the regularization and kernel function parameters
of kernel-extreme learning machine (abbreviated as KELM), and the optimal SSA-KELM model is established.
Finally, an instance analysis on the Jiangnan University bearing dataset and the bearing dataset of Case Western
Reserve University (CWRU) is carried out, and the results show that the proposed technique can achieve 99.85%
and 100% accuracy compared with different features and models (MATE, SVM, ELM, etc.). It has potential
engineering applications with fast computation speed and high diagnostic efficiency.

1. INTRODUCTION

Rolling bearings are the critical rotating support component
in mechanical equipment. They are prone to failure under com-
plex and harsh working conditions and have become a weak
link to the healthy operation of mechanical equipment. Both
online monitoring and fault diagnosis are very important for
enhancing whole machine operation reliability and avoiding
significant economic property losses. With the continuous ad-
vancement of deep learning in bearing signal fault diagnosis,
an increasing number of algorithms have been applied to me-
chanical fault diagnosis. Zhao et al.1 proposes a generalized
graph convolutional auto-encoder algorithm, which can not
only extract sufficient generalized high-dimensional features
but also calculate classification loss. Zhu et al.2 presented a
multi-scale convolutional neural network (MSCNNN), which
resolves the smearing issue of classification features under
different working conditions and improves the performance
of diagnostic models. Li et al.3 proposed a novel matrix-
form classifier named LSISMM to obtain more comprehensive
fault information. Zhao et al.4 proposed a Model-Assisted
Multi-source Fusion Hypergraph Convolutional Neural Net-
work (MAMF-HGCN) to address the few-shot intelligent fault
diagnosis of EHA. Zhao5 proposed the adaptive activation
function is added into the 1-D convolutional neural network
(1dCNN) to enlarge the heterogeneous distance and narrow
the homogeneous distance of samples. Meimiao et al.6 pro-
pose to decompose the non-stationary signals of rolling bear-
ings with CEEMD method, perform T-distributed Stochastic
Neighbor Embedding (t-SNE) clustering visualization analy-

sis, and finally apply kernel extreme learning machine for di-
agnosis. These studies demonstrate the immense potential and
innovative directions of intelligent algorithms in the field of
mechanical fault diagnosis. Although the existing methods that
combine signal processing with intelligent algorithms have im-
proved diagnostic accuracy, there is still room for improvement
in terms of the automation level of feature extraction, the gen-
eralization ability of the models, and other aspects.

Feature extraction is the primary step for fault diagnosis,
and the key lies in extracting parameters that can character-
ize different failure modes.7 Due to the complex operating
environment, the vibration signal of mechanical equipment of-
ten presents a non-linear and non-stationary character. Thus,
traditional character parameters based on time-domain and
frequency-domain analysis may not be able to characterize
failure modes sensitively. With the deepening of the study
of feature extraction, parameters based on information entropy
have been proposed and gradually applied to fault diagnosis
and prediction. For example, sample entropy, approximate
entropy, fuzzy entropy, permutation entropy and so on.8–10

The calculation of the above information entropy is based on
phase space reconstruction with spatial distance calculation
and statistics, and with the increase in signal length, the cal-
culation efficiency will decrease dramatically.

To overcome the shortcomings of the above techniques,
Yang11, 12 proposed a new tool for measuring signal complex-
ity — attention entropy. Unlike traditional entropy parameters,
which focus on the frequency distribution of the whole data in a
time series, the attention entropy only focuses on the frequency
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Figure 1. Flowchart of attention entropy.

distribution of the interval between the peak points of the se-
ries. Therefore, the attention entropy shows some advantages
including fewer hyper-parameters, shorter running time, and
strong robustness to the time series length. Considering that
attention entropy cannot measure signal complexity at multi-
ple scales, attention entropy and multiscale entropy are com-
bined, and multiscale attention entropy (MATE) is constructed.
Meanwhile, to solve the problem of signal information loss
for coarse-graining in multiscale entropy, the time-shift tech-
nique13 is introduced, and time-shift multiscale attention en-
tropy is proposed(abbreviated as TSMATE) to extract bearing
fault features effectively. By introducing the concept of time
shift, TSMATE avoids the coarse-graining process, enabling a
more flexible preservation of information within the original
time series. By performing translation operations on the time
series at different scales, TSMATE can more comprehensively
reveal the dynamic characteristics of the time series, thereby
enhancing the richness of fault information and making fault
features more pronounced. Additionally, TSMATE exhibits
good noise resistance and robustness.

The essence of fault diagnosis is a multi-classification prob-
lem for fault patterns. Huang14 proposed the Kernel Extreme
Learning Machine (KELM) in 2014; the single hidden layer
feed-forward neural network has some advantages, such as a
simple structure, fast operation speed, strong generalization
ability, etc. Liu15 demonstrated that when the sample size is
large, the accuracy of KELM and SVM models do not dif-
fer much; however, the calculation complexity of the KELM
model is much smaller. Research shows that the accuracy of
the KELM model depends on the selection of kernel param-
eters and regularization coefficients. Some optimization al-
gorithms are introduced for the selection of model parame-
ters, including particle swarm optimization,16, 18 firefly algo-

rithm17 and so on. In the study of the swarm intelligence
optimization algorithm, the sparrow search algorithm (SSA)
was proposed by Xue Jiankai19 in 2020. Compared with the
above methods, the SSA method has the advantages of high
search accuracy, fast convergence speed, good stability, and
robustness compared with traditional algorithms.20 Based on
this consideration, SSA is introduced in the optimization of
KELM model parameters and constructs the SSA-KELM fault
diagnosis model. The integration of SSA-KELM, where SSA
(Sparrow Search Algorithm) is utilized to optimize the regular-
ization and kernel function parameters of KELM (Kernel Ex-
treme Learning Machine), significantly enhances the perfor-
mance of KELM. This optimization enables KELM to better
adapt to diverse datasets and practical application scenarios.
By combining the global search capability of SSA with the
kernel method advantages of KELM, SSA-KELM maintains a
rapid training speed while also bolstering the model’s general-
ization ability. As a result, SSA-KELM becomes more robust
and reliable when dealing with complex and dynamic datasets,
offering a compelling solution for handling intricate machine
learning challenges.

In summary, leveraging the advantages of feature extrac-
tion through TSMATE and the optimized model of SSA-
KELM, we propose a bearing fault diagnosis technique
based on TSMATE-SSA-KELM. Above all, a fault diagno-
sis method based on TSMATE and SSA-KELM (abbreviated
as TSMATE-SSA-KELM) is proposed. Datasets from Jiang-
nan University and Case Western Reserve University (CWRU)
are used to analyze the influence of parameters and verify the
model’s effectiveness. The paper is organized as follows: Sec-
tion II proposed the feature extraction method based on TS-
MATE. In Section III, SSA is introduced into the parameter
optimization of KELM. The whole fault diagnosis procedure
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is discussed in Section IV and the technique is verified with
a bearing dataset in Section V. Finally, the conclusion of this
paper is given in Section VI.

2. FEATURE EXTRACTION BASED ON
TIME-SHIFTED MULTI-SCALE
ATTENTION ENTROPY

2.1. Attention Entropy (ATE)

Attention entropy has the advantages of robustness to time
series length and no hyperparameters, etc. The flowchart of the
attention entropy is shown in Fig. 1, and the main steps can be
summarized as follows:

1. If each point in the time series is considered a system,
its state change can be regarded as an adjustment to the
environment. The peak points can effectively characterize
the changes in the upper and lower bounds of the local
state, so the local peak points are defined as key points.

2. Set as key points according to four different strategies,
{min-min}, {min-max}, {max-min}, and {max-max},
and calculate the number of interval points between
neighboring key points.

3. Calculating Shannon entropy of neighbouring key point
intervals, the specific formula is as follows.

H(x) = −
k∑

x=1

p(x) log2 p(x); (1)

where p(x) is the probability of x occurring and b is the
number of interval point species.

4. The mean value of Shannon’s entropy was defined by the
four different strategies, which are called attention en-
tropy.

2.2. Time-shifted Multiscale Attention to
Antropy (TSMATE)

Multiscale entropy was proposed by Costa et al.21 to mea-
sure signal complexity at multiscale metrics. In this paper,
multiscale entropy and attention entropy are combined, and a
time-shifted rule is introduced to propose the technique of TS-
MATE, which overcomes the problems of signal information
loss for coarse-graining in multiscale entropy. The specific cal-
culation process of TSMATE is as follows:

1. Splitting time-series signal with length N into k sub-
sequences as follows:

Y β
k =

{
xβ , xβ+k, xβ+2k, . . . , xβ+k[(N−β)/k]

}
; (2)

where x is the sample point of the original signal; k is the
number of segmentation subsequences; Y β

k is the first β
subsequence.

Figure 2. ELM network topology

2. Calculating the attention entropies of the time-series sig-
nals at all scales and define the mean of these attention
entropies at that scale K as the:

TSMA(k) =
1

k

k∑
β=1

ATE(Y β
k ); (3)

where ATE(Y β
k ) is the value of the entropy of attention

of Y β
k .

3. Calculating TSMA(K) for all K using Eq. (3) and use the
set of these values as TSMATE.

3. KELM MODEL OPTIMIZATION WITH
SPARROW SEARCH ALGORITHM

3.1. Theory of Sparrow Search Algorithm

Sparrow Search Algorithm (Sparrow Search Algorithm) ob-
tains the optimal solution by simulating the foraging and anti-
predation behaviors of sparrows, which has the advantages
of fast convergence speed and high stability.22 Let there are
N sparrows in the D-dimensional space, and the position of
the ith sparrow in the D-dimensional search space is Xid =

[Xi1, . . . , Xid, . . . , XiD], where i = 1, 2, ...., N . At each iter-
ation, the position distributions of the discoverer, the follower,
and the detector are updated according to Eqs. (4), (5), and (6):

Xt+1
ij =

{
Xt

ij exp
(

−i
α·itermax

)
, R2 < ST

Xt
ij +QL,R2 ≥ ST

; (4)

where: t is the number of iterations; itermax is the maxi-
mum number of iterations; α is a uniform random number
between (0,1]; Q is a random number obeying a normal dis-
tribution; L is a 1*dimensional matrix whose elements are all
1; R2 ∈ [0, 1] is the warning value, and R2 ∈ [0.5, 1] denotes
the safety value. When R2 < ST , no predator is detected, the
detector searches widely and guides the population to obtain
higher fitness; when R2 ≥ ST , the detector finds a predator
and releases a signal, the population immediately engages in
anti-predator behavior and moves closer to the safe zone. 2
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Figure 3. The flowchart of SSA-KELM.

Xt+1
id ={

Qexp
(

xwt
d−Xt

id

i2

)
, i > n

2

xbt+1
d + 1

D

∑D
j=1 (rand{−1, 1} ·

∣∣Xt
id − xbt+1

d

∣∣, i ≤ n
2

;

(5)

where xwt
d is the worst position of the sparrow in d-dimension

for the tth iteration; xbt+1
d is the optimal position of the spar-

row in d-dimension for the (t + 1)th iteration. When i > n
2 ,

the ith follower searches near the current optimal position xb.

xt+1
id =

{
xxt

d + β(xt
id − xbtd), fi ̸= fg

xt
id +K

xt
id−xwt

d

|fi−fw|+ε , fi = fg
; (6)

where: β and K are step control parameters: β is a random
number with mean 0 variance; K ∈ [−1, 1] is the moving
direction of the sparrow; ε is a very small number to avoid
the denominator being 0; fi, fg,w are the current individual
sparrow, the optimal and the worst fitness values, respectively.
When fi ̸= g , the sparrow is at the edge of the population and
is highly vulnerable to predator attacks; when fi = fg , the
sparrow realizes the danger and approaches other sparrows to
adjust its search strategy.

3.2. Theory of KELM
3.2.1. Extreme Learning Machine (ELM)

The ELM algorithm is derived from a single hidden layer
feedforward neural network, the network topology is shown

in Fig. 2, with xi and yi denoting the inputs and outputs of
the structural network. The number of neurons in the input,
hidden, and output layers are n, l, and m, respectively. bi is
the threshold value of the neurons in the hidden layer, and the
weights of the connections between the input and hidden lay-
ers correspond to ωi and βi. The input and output layers are
represented by xi and yi.23

Suppose that for a training set (xi, ti), where xi ∈ Rn, ti ∈
Rm, and T are the desired outputs with sample size Q, and
denoting the hidden layer neuron activation function by g(x),
the output expression:

Q∑
i=1

βigi
(
ωixj + bi

)
= yi, j = 1, 2 . . . , Q. (7)

When the feedforward neural network approximates Q sam-
ples with zero error,

∑Q
j=1 ∥ti − yi∥ = 0, simplification

yields: Hβ = T ; where: H is denoted as the hidden layer
output matrix and the detailed expression is:

H (ω1, ω2, · · ·ωl, b1, b2, · · · , bl, x1, x2, · · · , xl) =g(ω1x1 + b1) · · · g(ωlx1 + bl)
...

. . .
...

g(ω1xQ + b1) · · · g(ωlxQ + bl)

 . (8)

Calculate the least squares solution of minβ ∥Hβ − T∥ to ob-
tain the optimal link weights β:

β=H+T; (9)
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Figure 4. The flowchart of fault diagnosis based on TSMATE-SSA-KELM.

HHT often exhibits non-singularity when solving the pseudo-
inverse matrix H+ = HT (HHT )

−1. A penalty coefficient C
is introduced to deviate the eigenroots of HHT from the zero
value, where 1 is the diagonal matrix, and the final weights of
the solution are found:

β = HT

(
1

C
+HHT

)−1

T. (10)

The output model of ELM is obtained:

f (xi) = h (xi)β = h(xi)H
T

(
1

C
+HHT

)−1

T ; (11)

where h (xi) is the implicit layer output and xi is the ith sam-
ple of Q.

3.2.2. Kernel Extreme Learning Machine (KELM)

Because ELM randomly sets the hidden layer threshold and
weights easily lead to unstable prediction results,24 to improve
the generalization ability of the ELM model, the RBF kernel
function is introduced on its basis to map the input samples
to the high-dimensional feature space, and at the same time
to solve the problem of the low-dimensional linear indivisibil-
ity. The kernel matrix is used to replace the random matrix of
ELM:

HHT = ΩELM =

K(x1, x1) · · · K(x1, xQ)
...

. . .
...

K(xQ, x1) · · · K(xQ, xQ)

 . (12)

The losses and weights of KELM are calculated from
Eqs. (10), (11) and (12) as follows:

f(xi) =


K(x, x1)

·
·
·

K(x, xQ)


T

(
1

C
+ΩELM )

−1

; (13)

Table 1. Description of experimental JN dataset.

Fault type
Sampling Numbers of Label

length Sampling data Type
Inner ring failure(IRF) 3072 100 1

Outer ring failure(ORF) 3072 100 2
Rolling element failure(REF) 3072 100 3

Normal(N) 3072 100 4

Γ =

(
1

C
+ΩELM

)−1

y. (14)

The expression for the Gaussian kernel function chosen in this
paper is as follows:

K(x, xi) = e−
∥x−xi∥2

2σ2 . (15)

3.3. Flow of SSA Optimized KELM

The KELM neural network training process is based on a
certain degree of randomness, which leads to the need for more
hidden layer neurons in the computation, which in turn will in-
crease the amount of computation and make the kernel limit
learning machine consume more computing time in the testing
process. In this paper, the regularization coefficients and kernel
parameters of the kernel limit learning machine are optimized
using the sparrow search algorithm, and the diagnostic model
for bearing fault types is constructed after the optimal param-
eters are finally determined. The flowchart of SSA-KELM is
shown in Fig. 3.

4. FAULT DIAGNOSIS MODEL BASED ON
TSMATE-SSA-KELM

To improve the accuracy of rolling bearing fault diagnosis, a
fault diagnosis technique based on TSMATE-SSA-KELM was
proposed and the basic flowchart is shown in Fig. 4 below.

The technique mainly included the following steps:
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(a) Normal condition (b) Inner ring fault

(c) Outer ring fault (d) Rolling element fault

Figure 5. Time domain waveforms for different conditions of rolling bearings.

Figure 6. CWRU bearing data test bench.

1. Vibration signal acquisition. Monitoring and collecting
vibration signals of rolling bearings under different con-
ditions as a fault diagnosis dataset.

2. Fault feature extracting based on TSMATE. In turn, Di is
subjected to multi-scale analysis for Each group of sam-
ples. The attention entropy at different scales is calcu-
lated to extract multi-dimension TSMATE feature vec-

tors, which are used to represent different conditions of
rolling bearings. In this paper, the maximum analytical
scale is set as scale = 20 to get abundant information of
signal.

3. SSA is introduced to optimize parameters C and γ

of KELM and establish an SSA-KELM fault diagnosis
model. Samples are divided into training and testing sets.

4. Sample testing and comparative analysis. Diagnosis on
the testing set. The model’s accuracy is tested, and differ-
ent features and models are imported for comparison to
verify the method’s superiority.

5. INSTANCE ANALYSIS

5.1. Introduction of Experimental Data
The experimental data was obtained from Jiangnan Univer-

sity, which was abbreviated as the JN dataset.25 The data
sampling frequency was 50 kHz, and the rotational speed was
600 r/min. The dataset was divided by 3072 sampling points as
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(a) Normal condition (b) Inner ring fault condition

(c) Outer ring fault condition (d) Rolling element fault condition

Figure 7. Distribution of MATE features under different scale factor and signal length.

Table 2. Description of experimental CWRU dataset.

Fault type Sampling length Numbers of Sampling Data Label Type Data
Inner ring failure (IRF) 1024 100 1 105.mat

Outer ring failure (ORF) 1024 100 2 130.mat
Rolling element failure (REF) 1024 100 3 118.mat

Normal(N) 1024 100 4 97.mat

the window width, and four groups of samples with different
fault conditions were obtained, including normal (100 groups),
inner ring faults (100 groups), outer ring faults (100 groups),
and rolling element faults (100 groups). The time-domain
waveforms of the four conditions are shown in Fig. 5. The sig-
nals show different time-domain amplitude, impact frequency,
and distribution characters.

More experimental data was obtained from Case West-
ern Reserve University, which is abbreviated as the CWRU
dataset.25 The drive end SKF6205-2RS type deep groove ball
bearing was selected as the research object. When the motor
speed was 1797 r/min, the sampling frequency of the vibration
signal was 12 KHz. Faults include inner ring, outer ring, and

rolling body of the bearing respectively. As shown in Fig. 6, it
is the test bench of this data.

5.2. Feature Extraction Based TSMATE
Extracting features for each group of samples based on TS-

MATE technique and fault feature vectors with the structure of
400× 20 is extracted.

To analyze the superiority for time-shifted rule for TSMATE
technique under different signal length and analytical scale, the
MATE technique was introduced for comparison with different
signal length and analytical scale, the fault features under the
four conditions are shown in Fig. 7 and Fig. 8. It is clear that
the distribution of MATE features is relatively fluctuating com-
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(a) Normal condition (b) Inner ring fault condition

(c) Outer ring fault condition (d) Rolling element fault condition

Figure 8. Distribution of TSMATE features under different scale factor and signal length.

pared with TSMATE features. Taking the curve with length of
N = 3072 as an example, the peak-to-peak value which re-
flects the fluctuation magnitude of MATE curve on the four
conditions reaches 0.62587, 0.72526, 0.84429, 0.50396 re-
spectively, while value of TSMATE curve is 0.23989, 0.34159,
0.42558, 0.18831, indicating the TSMATE features has good
robustness to scale factors and signal length.

Keeping the multi-scale analysis part consistent, different
fault feature extraction techniques are introduced for compar-
ison including multi-scale permutation entropy (MPE), multi-
scale sample entropy (MSE), and multi-scale attention entropy
(MATE). The features on any three scales including scale 1,
scale 7 and scale 11 are selected for contrast in Fig. 9. TS-
MATE features have the lightest aliasing phenomena, which
indicates that the feature vectors can distinguish different fail-
ure conditions.

In addition, Table 3 shows the running time of MPE, MSE,
MATE, and TSMATE to compare the operation efficiency of
the proposed method. TSMATE and MATE have a greater
computing speed than the other two techniques. The introduc-
tion of the time-shifting rule takes more time for the TSMATE
technique than for MATE. Above all, the proposed TSMATE

Table 3. Compaison with the running time for different
feature extraction tecniques.

Feature extraction techniques Data length Runing time/s
MPE 400*3072 36.73
MSE 400*3072 64.10

MATE 400*3072 12.42
TSMATE 400*3072 36.81

technique is efficient and stable.

5.3. Diagnosis Based on SSA-KLEM
Dividing the obtained features matrix into training and test-

ing samples according to the ratio of 7:3. SSA was introduced
to optimize the regularization coefficient C and kernel function
parameter γ for KELM model. The parameters of the SSA al-
gorithm are set as follows: the number of sparrow populations
was set as 20, the maximum iterations number was set as 100,
the range of C was set as [0.1, 50] and γ is set as [0.1, 10]. The
optimized SSA-KELM model is obtained while the parameters
are optimized as C = 49.52, γ = 1.87.

Fig. 10 shows the confusion matrix of the testing samples
before and after optimization. The proposed TSMATE-SSA-
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(a) Multi-scale arrangement entropy (b) Multi-scale sample entropy

(c) Multi-scale attention to entropy (d) Time-shifted multiscale attention to entropy

Figure 9. Distribution of different multi-scale entropy measures.

KELM reached an accuracy of 100% from 98.33% on account
of the introduction of the SSA algorithm.

To compare the effectiveness of different optimization algo-
rithms on KELM, this paper optimizes KELM separately using
Whale Optimization Algorithm (WOA), Particle Swarm Opti-
mization (PSO), and Firefly Algorithm (FA), and obtains their
convergence curves. As shown in Fig. 11, among the four dif-
ferent algorithms, SSA exhibits the fastest convergence capa-
bility and can reach the minimum value quickly, indicating that
SSA optimization has the best convergence effect.

To avoid the influence on sample division and the random-
ness of diagnosis results, 10-CV was introduced for sample
division, and the diagnosis process is repeated 100 times. The
accuracy of the two models is shown in Fig. 12, with the mean
values of the two datasets reaching 99.85% and 100% respec-
tively. Obviously, the proposed model has lower error and
higher accuracy.

5.4. Comparative Analysis

To verify the effectiveness and superiority of the technique
proposed in the paper, comparative analyses are carried out in
terms of feature selection and diagnosis model respectively.

5.4.1. Comparation of feature selection

Keeping the SSA-KELM model consistent, different fault
features were extracted and fed into the model for training
and testing including MPE, MSE, MATE, (CMATE, Compos-
ite multiscale attention entropy), (RCMATE, Fine composite
multiscale attention entropy). The diagnosis results are shown
in Fig. 13. It is apparent that the TSMATE-SSA-KELM model
has the best effect, and the accuracy reaches 100%, mainly be-
cause the method is independent of the signal length and has
good robustness.

5.4.2. Comparison of diagnostic models

Taking TSMATE as the fault features, typical supervised
learning methods including DT (Decision Tree), KELM
(Kernel-Extreme Learning Machine) and SVM (Support Vec-
tor Machine) were introduced for model comparison. Critical
parameters of the three models are also optimized with SSA
algorithm. The default values of parameters were set first;
for the SVM model, the kernel function parameter is set as
50, and the penalty factor was set as 0.5. The key parame-
ter was set as num split = 10 for the DT model, the kernel
function parameter was set as 2 and the penalty factor was set
as 4 for the KELM model. The average value of accuracy for
one hundred times is shown in Fig. 14. The three supervised
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(a) TSMATE-KELM model

(b) TSMATE-SSA-KELM model

Figure 10. Confusion matrix of different models.

learning methods all have good classification accuracy, and the
accuracy is improved after optimization with SSA. Compara-
tively, the KELM model has a superior performance with an
optimized accuracy of 99.85%. According to Table 4, it can
be found that compared with other models, TSMATE-SSA-
KELM has the smallest average error rate and the average F1
value is the closest to 1. However, in terms of consumption
time, TSMATE-SSA-KELM is slightly longer than other mod-
els, but overall, the efficiency of this model is still very high.

It has been proved that the advantages of the proposed
TSMATE-SSA-KELM method lie in its high accuracy of fault
diagnosis for mechanical bearings, small error, relatively stable
diagnosis results, short time consumption and high efficiency.

6. CONCLUSION

A rolling bearing fault diagnosis technique based on
TSMATE-SSA-KELM is proposed. The validity and superi-
ority are verified with the Jiangnan University dataset. The ex-
perimental results show that the proposed technique has poten-
tial engineering applications with fast computation speed and

Figure 11. Convergence curves of different optimization
algorithms.

Table 4. Comparison of errors and efficiency among various
models.

Models Average Error /% Average F1 Time /s
KELM 1.29 0.979 48.01

DT 3.63 0.953 42.94
SSA-DT 2.18 0.980 60.85

SVM 5.5 0.932 53.72
SSA-SVM 3.02 0.961 76.88

WOA-KELM 2.76 0.974 78.61
PSO-KELM 1.31 0.974 62.17
SSA-KELM 0.15 0.991 64.03

high diagnostic efficiency. The following three conclusions are
obtained.

1. Aiming at the information loss issue of the MATE tech-
nique, the time-shifting rule is introduced in the TSMATE
method. After comparison, TSMATE is basically unaf-
fected by the signal length and has good robustness.

2. Comparing the distribution graph with different multi-
scale entropy, the proposed TSMATE technique is effi-
cient and stable.

3. The optimization of KELM using the SSA algorithm can
avoid the blindness of parameter selection, thus improv-
ing fault diagnosis accuracy. The KELM model performs
better under minor sample conditions than similar super-
vised learning methods. The proposed method is higher
than the conventional multiscale entropy.

4. The proposal of the TSMATE-SSA-KELM algorithm
brings a new combination of algorithms to the field of
machine learning. The effectiveness of the method in
the field of fault diagnosis has been proven through JN
dataset and CWRU dataset. It demonstrates the feasibil-
ity and effectiveness of combining different optimization
algorithms with machine learning models to enhance per-
formance. This combination not only enriches the ma-
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(a) JN Dataset

(b) CWRU Dataset

Figure 12. The accuracy of diagnosis results obtained by 100
times.

chine learning algorithm library but also provides inspi-
ration for future algorithmic innovations. However, the
training time of the model in this paper is relatively long,
so the next step of the research is to shorten the training
time of the model while ensuring the accuracy and robust-
ness.
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