
Diagnosing Belt Conveyor Idler Faults with STFT
and CNN
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Belt conveyors are widely used for transporting bulk commodities, and idlers are essential components prone to
frequent failures. The timely and accurate fault diagnosis of idlers is critical for ensuring the safe and efficient oper-
ation of belt conveyors. This paper proposes a method for diagnosing idler faults by combining Short-Time Fourier
Transform (STFT) and Convolutional Neural Networks (CNN). The STFT is used to convert one-dimensional
vibration signals into time-frequency representations, which are then processed by the CNN to classify the op-
erational state of idlers. The proposed method is tested on vibration signals collected under various working
conditions, including normal operation, bearing damage, and cylinder skin fracture. The CNN model, trained and
validated using MATLAB, achieves high diagnostic accuracy, demonstrating its effectiveness in identifying differ-
ent fault types. This approach enhances the reliability of belt conveyor systems by enabling prompt detection and
maintenance of idlers.

1. INTRODUCTION
Belt conveyors are widely used for transporting bulk com-

modities. Idlers, as essential and prevalent components on belt
conveyors, are prone to frequent failures. Timely diagnosis of
idler problems is crucial for the safe operation of belt convey-
ors. At present, neither human nor robotic examinations can
precisely identify idler faults immediately, which can lead to
significant damage and potential safety hazards such as fires.
Time-frequency analysis approaches like wavelet analysis, em-
pirical mode decomposition, and local mean decomposition
are commonly used in signal processing and feature extraction.
However, these techniques have limitations in breaking down
the initial signal. Short-Time Fourier Transform (STFT), in
contrast, can acquire both time-domain and frequency-domain
details simultaneously, providing a more accurate representa-
tion of the roller’s fault status information. Several studies
have demonstrated the effectiveness of combining STFT with
advanced models for fault diagnosis. For instance, Fu Zhong-
guang et al. used STFT with Mobile-VIT network models for
fault diagnosis in rotating machinery, while Long Jun et al. ap-
plied STFT in conjunction with Hilbert Huang transform for
wind turbine generator bearings. Deep CNNs, initially used in
image processing and voice recognition, have shown promis-
ing results in mechanical fault detection. Liu Huibin et al.
utilized CNNs for analyzing bearing faults, and Janssens et
al. employed FFT preprocessed signals with CNN for a vi-
bration signal feature extraction and diagnosis. In this paper,
we propose a method that combines STFT with CNN to di-
agnose idler faults. The STFT-derived time-frequency maps
are fed into a CNN model to detect normal operation, bear-
ing damage, and cylinder skin damage in idlers. The goal
of this method is to enhance the reliability and efficiency of
belt conveyor systems by enabling timely maintenance. Belt
conveyors are widely used for transporting bulk commodities.
Idlers are the essential and prevalent components on belt con-
veyors. Idler failures often happen during the operation of
belt conveyors. Delaying the diagnosis of idler problems will
severely limit the safe functioning of the idlers. At present,
neither human nor robotic examinations can precisely identify

idler faults immediately, resulting in harm to the belt conveyor
and may potentially create a fire.1, 2 Wavelet analysis, empir-
ical mode decomposition, and local mean decomposition are
commonly used in signal processing and feature extraction.
However, these techniques can only break down the initial
signal, whereas only STFT can acquire both the time-domain
and frequency-domain details of the roller vibration signal si-
multaneously, allowing for a more accurate representation of
the roller’s fault status information. Fu Zhongguang and col-
leagues utilized STFT and Mobile-VIT network models to ex-
tract features from time-frequency maps for fault diagnosis of
rotating machinery. Long Jun, Wu Jinqiang, Wang Chonghe,
and others extracted fault signals from a wind turbine genera-
tor bearing using Hilbert Huang transform analysis and short
time Fourier transform analysis. After a comparative examina-
tion, it was determined that the STFT analysis approach offers
excellent time-frequency resolution. Li Heng and colleagues
analysed vibration data from rolling bearings using STFT and
detected kinds of bearing problems using CNN fault diagnos-
tic models. We suggested a potent defect diagnostic approach
through ongoing enhancement.3

Deep convolutional networks are often used in image pro-
cessing and voice recognition. Recently, several academics
domestically and internationally have used convolutional net-
work technology to detect mechanical flaws. Liu Huibin et al.4

used convolutional neural networks and manual extraction to
analyze bearing faults from complex sources, demonstrating
the effective fault diagnosis capability of CNNs. Janssens et
al.5 preprocessed bearing signals with FFT and utilized CNN
to extract and diagnose vibration signal features for bearing
fault detection. Dong Xinmin et al.6 introduced a fault diagno-
sis model for rotating machinery based on vector spectrum and
L-M neural network, comparing the results with single channel
data diagnosis and achieving positive outcomes.

This article suggests a technique for identifying the opera-
tional condition of idlers by combining STFT with CNN. The
STFT-derived time-frequency map is fed into the CNN model
to detect normal operation, bearing damage, and cylinder skin
damage in idlers.
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2. METHOD FOR COLLECTING VIBRATION
SIGNALS OF IDLERS

2.1. Vibration Signal Detection Method
Idlers play a significant function in belt conveyors and are

one of the important components for proper operation of con-
veyor belts.7 Under normal conditions, idlers may decrease
friction between the conveyor belt and the metal structure,
therefore avoiding wear and damage. Once the supporting
roller malfunctions, it will increase the friction between the
conveyor belt and the supporting roller frame, causing irregular
contact between the fault point and the bearing, generating ab-
normal vibration pulses, which are significantly different from
the vibration pulses during normal operation of the support-
ing roller. Therefore, it may be established that the supporting
roller has failed. In order to assure the accuracy and efficiency
of roller defect detection, a distributed optical fiber detection
approach is developed. The optical fiber is placed within the
channel steel on both sides of the belt conveyor via ties to de-
tect the operational condition of the roller.

When the roller on the belt conveyor fails, an aberrant sig-
nal will be presented, and the laser will create a sequence of
continuous coherent light. The abnormal signal is converted
into an optical pulse by an acousto-optic modulator (AOM).
An optical fiber amplifier (EDFA) then amplifies and processes
this signal, making it more comprehensive. The photoelectric
pulses are then progressively linked to the optical cable via
an isolator and a ringer. When the optical pulse signal flows
through the optical fiber. Rayleigh scattering is formed, and
the backscattered Rayleigh light returns to the ringer follow-
ing the original route of the optical fiber.8 The gathered signal
is denoised to verify its correctness of the aberrant signal. The
optical pulse signal is filtered and transformed to an electri-
cal signal using a photodetector. Real-time detection is then
performed utilizing a data acquisition card. Many duties are
performed on the computer, including display, processing, and
analysis, to enhance the accuracy and comprehensiveness of
fault signal processing.

The motivation behind this study is to address the limitations
of existing methods in diagnosing idler faults promptly and
accurately. The proposed approach leverages the strengths of
STFT in capturing detailed time-frequency information and the
capability of CNNs in feature extraction and classification.

More references are integrated to support the background
and existing methods:

• A dual-attention feature fusion network for imbalanced
fault diagnosis with two-stream hybrid generated data;9

• Few-shot Learning for Fault Diagnosis with a Dual Graph
Neural Network. IEEE Transactions on Industrial Infor-
matics;10

• Online Fault Diagnosis Method based on Transfer Convo-
lutional Neural Networks. IEEE Transactions on Instru-
mentation and Measurement.11

While STFT and CNN are existing methods, our approach
highlights specific innovations:

• Enhanced preprocessing of vibration signals using STFT
to create more accurate time-frequency representations;
and,

Figure 1. φ-OTDR principle discrete model.

• Integration of a robust CNN architecture optimized for
fault diagnosis in idlers, with improved parameter tuning
and validation.

The dataset used in this study is thoroughly described. Vibra-
tion signals were collected under various working conditions,
including normal operation, bearing damage, and cylinder skin
fracture. Ablation experiments were conducted to validate the
improved parts of the proposed method.

The vibration signals were collected using a distributed opti-
cal fiber detection approach. The dataset includes signals from
normal operation, bearing damage, and cylinder skin fracture
conditions. Ablation experiments were conducted to isolate
and test the impact of specific components of the proposed
method. The results highlight the improvements achieved by
the enhanced STFT preprocessing and the CNN model config-
uration.

2.2. Base on Vibration Signal Conversion
Using φ-OTDR Technology

Backward Rayleigh scattering(φ-OTDR) phenomenon is a
refinement of the traditional Rayleigh scattering principle, uti-
lizing the φ-OTDR discrete model can intuitively describe the
above process, as shown in Fig. 3. Which can help readers
understand more clearly and intuitively that the working prin-
ciple of φ-OTDR is to treat the distributed optical fibers at each
roller in the belt conveyor roller group as a reflector whose re-
flectivity is related to the incident light wave. The H-length
optical fibers arranged on the belt conveyor frame are com-
posed of P -segments, with each segment having a length of
∆H = H/P . Distributed optical fiber φ-OTDR phenomenon
is due to the fact that a portion of the incident light is returned
to the fiber when it is transmitted to a small segment in the
fiber. After being reflected by the P -segment, the reflectiv-
ity of the above-mentioned mirrors is lower, and they are all
weaker mirrors.

As shown in Fig. 1, the d-th reflector in the figure is con-
sidered as the center of discretization in the ∆H fiber region.
This small segment of fiber ∆H contains N discretization cen-
ters. Therefore, multiple backward Rayleigh scattered light at
the Hn position on the distributed fiber will interfere, and the
superposition of light fields can be written as follows:

E⃗RB(Hn) = E0e
−α(n−1)∆H

N∑
i=1

ani e
jφn

i . (1)

In the above equation, E0 is the electric field of the incident
light, α is the attenuation coefficient of the optical fiber, ani
and φn

i is the amplitude and phase of the i-th discretization
center in Part n, respectively.

Due to the birefringence phenomenon generated by optical
fibers during transmission, the polarization state within a unit
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Figure 2. Time domain curve of Rayleigh scattering before and after fault.

length of ∆H gradually changes along the distributed fiber, re-
sulting in an elliptical shape of the detected backward Rayleigh
scattering light signal. As shown in Fig. 2, when there is little
external environmental interference, there will be significant
amplitude changes before and after the vibration at the fault
location. However, the amplitude before and after the vibra-
tion at the normal working position remains almost unchanged.
Therefore, the fault location can be located by subtracting the
Rayleigh scattering amplitude curve before and after the vibra-
tion.

3. METHOD FOR PROCESSING VIBRATION
SIGNALS OF IDLERS

Signal processing is crucial for detecting faults in the in-
termediate segment of the belt conveyor idler. The accuracy
of fault detection depends on the quality of signal processing.
This paper utilizes STFT and CNN to analyze vibration signals
from the idler under various working conditions, enhancing the
accuracy of detecting the idler’s operational state and provid-
ing a theoretical basis for fault detection in the intermediate
section of the belt conveyor idler.

3.1. STFT
STFT has been widely used in time-frequency analysis of

time-varying and non-stationary signals. It is a method of
converting one-dimensional fault vibration signals into two-
dimensional matrices that can be used for CNN processing.
It is a collection of time-domain and frequency-domain fea-
tures. STFT is the process of taking a certain length of a
time-domain signal as a window function, and further per-
forming FFT on the intercepted time-domain signal to obtain
the spectrum graph over a time period t. By sliding the win-
dow function over the detection time period, the set of each
spectrum segment can be obtained. Therefore, STFT is a two-
dimensional function of time and frequency,12 and the basic
calculation formula is as follows:

STFSf (t, f) =

∫ ∞

−∞
h(t)p(t− β)e−jωtdt. (2)

In the above equation, h(t) is the time-domain signal; P (t−β)
in order to β the time window centered on STFT is the mul-
tiplication of the vibration signal h(t) by a β Window func-
tion p(t − β). The area of the window function in the FFT
performed is a certain amount. In order to improve the time-
domain and frequency-domain resolution, this study selects the
Hamming window function.

Figure 3. Convolutional neural network structure.

3.2. CNN
CNN is a feedforward neural network widely used in im-

age and speech classification and recognition, which can effec-
tively handle fault diagnosis and achieve deep learning under
big data.13 Since LeNet-5 was proposed by Lecun et al.,14 the
structure of CNNs can be designed according to requirements,
mainly consisting of convolutional layers, pooling layers, and
fully connected layers, as shown in Fig. 3.

CNNs process vibration signals by taking the time-
frequency spectrum obtained from the STFT as the input signal
and outputting the type of roller fault as the CNN model. The
CNN diagnostic model divides the process of signal processing
into forward propagation and backward propagation.15

3.2.1. Forward propagation

The forward propagation process of CNNs includes convo-
lutional layers, pooling layers, and fully connected layers.16

Convolutional Layer: The convolutional layers extract fea-
tures from input signals by applying filters. Each filter slides
on the input and obtains corresponding feature maps. By stack-
ing multiple convolutional layers, the features in the CNN
model become more comprehensive. Finally, the convolutional
layer outputs a set of feature maps that represent the responses
of different features. These feature maps can be transmitted
to the pooling layer for further processing. The mathematical
expression for the convolution process is as follows:

W p
j = f

∑
i∈Hj

W p−i
i · qpij + kpj

 . (3)

In the above equation, W p
j is the j-th element of the p-th layer,

Hj is the j-th convolutional region of the p − 1 layer feature
map, W p−1

i is the element in it, qpij is the weight matrix corre-
sponding to the convolutional kernel, kpj is the bias term, f(·)
is the activation function, and by using the ReLU function, the
specific expression is:

f(x) = max(0, log(1 + ex))). (4)

Pooling Layer: Pooling layer is a commonly used layer in
CNN models, which can reduce the size and number of fea-
ture maps. It divides the input feature map into nonoverlap-
ping regions n × n, and performs aggregation operations on
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Figure 4. Fault diagnosis flowchart of convolutional neural network.

each region, such as taking the maximum, average, and ran-
dom values, to reduce the output image by n times. This can
reduce the size of the feature map while retaining key informa-
tion. The pooling layer improves computational efficiency by
reducing dimensions and enhances the model’s robustness to
translation and scaling changes. Finally, the pooling layer out-
puts feature maps that have undergone aggregation operations,
with smaller sizes and richer representation capabilities for use
by subsequent layers.

Fully Connected Layer: The input time-frequency image is
processed through convolutional and pooling layers, and then
reaches the fully connected layer for feature recognition. The
fully connected layer expands all input feature spectra into
one-dimensional feature vectors, and performs weighted sum-
mation and activation function processing on them:17

ym = f(lmxm−1 + km). (5)

In the above equation, m is the serial number of the network
layer, ym is the output of the fully connected layer, xm−1 is the
expanded one-dimensional feature vector, lm is the weight co-
efficient, and km is the bias term. f(·) is the activate function,
the Softmax function is usually used, which is an activation
function suitable for classification tasks.18, 19

3.2.2. Back Propagation

For specific diagnostic recognition, the training goal of the
CNN model is to minimize the loss function of the network,
so the loss function determines the diagnostic accuracy of the

CNN model. In this study, cross entropy is chosen as the loss
function, and the specific expression is as follows:

E = − 1

n

n∑
m=1

[ym ln tm + (1− ym) ln(1− tm)] . (6)

In the above equation, n is the number of samples for roller
failure, t is the predicted value, and y is the true value. Dur-
ing the training process, the first order partial derivative of the
above equation is applied to gradually update the parameters
of the CNN

l′ = l − η
∂E

∂l
; (7)

k′ = k − η
∂E

∂k
. (8)

In the above equations, l′ and k′ are the updated weights and
biases, l and k are the existing weights and biases, η is learn
rate parameters for neural networks. If η excessive values can
lead to local optima, if the value is too small, it will cause too
long of a training time.

3.3. Diagnosis Process for Intermediate
Section Roller Faults

The roller defect diagnosis approach utilizes STFT and
CNN models to combine signal preprocessing, feature extrac-
tion, and classification. Figure 4 illustrates the precise tech-
nique. The vibration signals of the roller acquired under vari-
ous operating situations are processed using STFT. The result-
ing spectrum is fed into a CNN model for training and testing.
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Figure 5. Amplitude time correspondence curve of idler under different working conditions.

Figure 6. Time frequency diagram of roller under different working conditions.

The training set’s spectrum is first fed into the CNN model,
and the network parameters of the CNN model are iteratively
updated. Once the CNN model achieves a certain level of ac-
curacy via continual refinement, it is used on the testing set to
get fault diagnostic findings for the roller.

4. SIGNAL PROCESSING

This section pertains to the real working conditions of the
intermediate section idler of a certain mining belt conveyor. It
is recommended to extract the vibration signals from both nor-
mal and faulty operation situations of the intermediate part of
the belt conveyor. Subsequently, STFT processing is used for
these retrieved signals to provide a response spectrum. The
frequency spectrum is used as input for the CNN model to de-
termine the operational condition of the idler.

4.1. Vibration Signal Based on STFT
Standardize the operational data of the roller collected from

scattered fibre optic sensors. Figure 5 displays the data for
the roller under normal operation, bearing damage, and cylin-
der skin fracture situations. The roller’s amplitude is minimal
under normal conditions but increases significantly with bear-
ing deterioration and cylinder skin fracture, showing more pro-
nounced shifts within the [0, 1] range. Further analysis of the
collected vibration signal is required.

Conduct STFT on the normalized data acquired. Figure 6
displays the time-frequency distribution of the STFT under
various operating circumstances of the supporting roller. The

supporting roller operates under varying circumstances, lead-
ing to fluctuations in time-frequency information. When an-
alyzing the time-frequency signals of the belt conveyor sup-
porting roller under normal operation, bearing damage, and
cylinder skin fracture conditions, it is evident that the vibra-
tion signal frequency of the supporting roller is minimal dur-
ing normal operation, with an amplitude below 0.059 mm. If
the roller malfunctions because of the cylinder skin breaking,
the vibration signal frequency distribution of the problematic
roller during operation ranges from 0 to 500 Hz. At 100 Hz, the
frequency energy peaks with a maximum amplitude of around
0.18 mm. If the roller fails because of a bearing failure, the
vibration signal frequency appears dispersed, with the highest
frequency usually centred around 100 Hz, and the greatest am-
plitude reaching around 0.27 mm.

4.2. Fault Identification Based on
Convolutional Neural Networks

The experimental results demonstrate the high accuracy of
the proposed method in diagnosing idler faults. The CNN
model trained with STFT-processed signals achieved a diag-
nostic accuracy of 99.6% with MATLAB. The robustness of
the model was further validated through tests at different belt
speeds, confirming its effectiveness across various working
conditions. The parameter configurations of the convolutional
layer, pooling layer, and fully connected layer are crucial for
the accuracy of CNN diagnostic models. In the following sec-
tion, we develop a CNN model in MATLAB software for de-
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Table 1. Structural parameters of CNNs.

Model Input Pooling Convolutional Pooling Convolutional Pooling Fully connected Output
parameter layer layer layer layer layer layer layer layer

Number of feature maps 1 1 32 32 64 64 1 1
Feature map size 64×64 32×32 32×32 16×16 16×16 8×8 2048 1

fect detection of the middle section roller of a belt conveyor,
using the parameters specified in Table 1.

The STFT-processed vibration signal spectrum serves as the
input for an 8-layer CNN for processing. This article’s CNN
model directly invokes the image datastore function provided
by MATLAB programme. The dataset is imported into the
function, and then the training and testing sets for the roller’s
operating conditions are separated. There are 1000 samples in
all, with 750 in the training set and the remaining in the testing
set. The training samples are randomly selected to acquire the
training data. The CNN model in the training network goes
through four rounds of iteration with a validation frequency of
30 iterations. Training stops when the maximum number of
rounds is reached to calculate the accuracy and loss values for
the training and validation sets, as seen in Figs. 7 and 8 below.

The dataset in this article contains three distinct kinds of
roller operating circumstances, each consisting of 1000 sam-
ples, totaling 3000 samples. A training set consisting of 2250
samples and a testing set of 750 samples were established, and
the training procedure included “packet capturing”. Following
each training session, the outcomes were implemented on the
test dataset. A comparison was made between the diagnosed
roller operating circumstances and the actual operating condi-
tions to determine the accuracy and loss values of the CNN
model. Figure 7 illustrates a significant improvement in accu-
racy for both the training and validation sets over the first two
rounds of iterations, surpassing 95% accuracy. The training set
converged after 20 rounds, but the validation set stabilized af-
ter 30 iterations. With each cycle, the training and validation
sets steadily approached their peak accuracy. Figure 8 shows
that the loss values for both the training and validation sets
were about 2.5 at the start of the cycle. After the first iteration,
the training set’s loss values dropped to around 0.2, while the
validation set’s loss values declined to about 0.8. After 30 it-
erations of the CNN model, the loss values for the validation
set reduced to around 0.1. As the iterations grew, the loss val-
ues of the training and validation sets steadily approached the
minimum. The CNN model described in this paper achieves a
recognition accuracy of 99.6% for three kinds of roller opera-
tion states, enhancing the efficiency of roller operation condi-
tions, particularly in roller fault diagnostics.

4.3. Robustness Verification
The CNN model’s accuracy in recognizing the roller’s oper-

ating conditions is evaluated using the frequency spectrum of
vibration signals from the central region of the belt conveyor
roller under various working situations. The acquired data per-
tains to the belt conveyor operating speed of 4 m/s. In the new
dataset, belt speeds of 3 m/s and 5 m/s are included to test
the detection method’s universality in real working conditions
and task demands. At belt speeds of 3 m/s and 5 m/s, there are
1000 samples for each condition, totaling 6000 samples. These
samples are divided into 10 groups. The remaining parameter
values are identical to those of 4 m/s. Figure 9 displays a com-
parison of CNN accuracy in detecting the operational condition
of the roller at three different belt speeds.

The CNN diagnostic model derived from the background of

a belt conveyor at a speed of 4 m/s is specifically effective in
accurately detecting the operating status of the idlers at that
speed, but is not suitable for recognizing the idlers’ operat-
ing status at different belt speeds. The CNN diagnostic model
being examined lacks universality. It is essential to create a
comprehensive dataset that contains the idlers’ operating status
characteristics at various belt speeds of the conveyor belt. This
data should be promptly fed into the CNN model to expand
the dataset, enabling the model to recognize idlers’ operating
status in a wider range of working conditions.

The vibration signals were collected over a period of time
and the CNN model was enhanced to assess the operational
condition of the idlers at belt speeds of 3 m/s, 4 m/s, and
5 m/s. 9000 samples were designated as validation datasets,
and network parameters were trained and used on the test set.
Figure 10 demonstrates the updated CNN model’s precision
in recognizing the idlers’ functioning state in various working
situations.

The CNN model’s training and testing sets have been en-
hanced by collecting vibration signals at various belt speeds
and idler working circumstances, as shown in Fig. 10. The
model efficiently detects the idlers’ working conditions in belt
conveyors at various belt speeds, demonstrating that the CNN
model is a dataset-driven recognition approach. Greater data
collection leads to more comprehensive identification patterns
and, thus, increased diagnosis accuracy. This research solely
examined the impact of typical belt speeds of belt conveyors
on the working conditions of idlers in the CNN model, ow-
ing to financial constraints and location limits. Future research
will analyze how elements like average transportation volume
and noise from belt conveyors affect the working conditions of
idlers.

5. CONCLUSIONS

This study presents a novel approach for diagnosing belt
conveyor idler faults by combining STFT and CNN. The
method effectively processed vibration signals and accurately
classified the operational states of idlers, contributing to the
reliability and efficiency of belt conveyor systems. Future re-
search will focus on expanding the dataset and further improv-
ing the model’s robustness. The paper suggests a technique
for assessing the operational condition of the intermediate sec-
tion idler of a belt conveyor using STFT and CNN. This in-
volved: 1) preprocessing the vibration signals from the mid-
dle section of the belt conveyor’s idler operation; 2) extracting
and classifying numerous features including normal idler oper-
ation, damaged idler bearings, and broken idler cylinder skin to
achieve precise idler fault diagnosis; and, 3) using distributed
fibre optic vibration signals, the vibration signal characteris-
tics of the intermediate section roller of a specific mining belt
conveyor. All of these were collected and examined under var-
ious operating conditions. These characteristics were then an-
alyzed using STFT to determine the frequency spectrum of the
roller under different working conditions. A CNN model was
constructed using MATLAB software, and the network model
parameters were adjusted based on real on-site circumstances.
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Figure 7. Accuracy test results for training and validation sets.

Figure 8. Test results of loss values for training and validation sets.

Next, the acquired spectrum was fed into the CNN model to de-
termine the operational condition of the rollers. Optimization
of the CNN model network parameters was utilized to prop-
erly identify the operational condition of the rollers. This study
reached the following conclusions:

• Analyzing the roller’s vibration signal using STFT may
provide the spectrum, allowing for an accurate assessment
of the roller’s operational status. By feeding the spectrum
into the CNN model and iteratively optimizing the net-
work parameters, improved recognition outcomes may be
obtained.

• The CNN diagnostic model in this article enhances the
accuracy of detecting the roller’s operating state in the
MATLAB programme as the number of repetitions rose.
During the second iteration, the CNN model achieved
its highest accuracy, which peaked around the maximum
value. By the fourth iteration, the diagnostic accuracy
reached a maximum of 99.6%. During on-site verifica-
tion, the CNN diagnostic model had an accuracy of 96.5%
and an error rate of 3.1%. Thus, the CNN model main-
tained a high level of accuracy.
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