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This paper aims at passive noise control for vibroacoustic problems, which are analyzed by finite and boundary
element techniques. The author distinguishes interior and exterior problems mainly because of the quantities used
as the objective function to assess the acoustic quality. For interior problems, it is common to use local quantities
such as the sound pressure at a field point or, in rare cases, energy density at a field point. The situation is different
for exterior problems where the radiated sound power accounts for a suitable and global quantity to assess the
emission from a vibrating structure. For most engineering purposes, the assessment requires frequency sweeps in
which the problem needs to be solved at many discrete frequencies. In vibroacoustic optimization and in sampling
based uncertainty quantification, it is very common that structural parameters are varied, while the acoustic field
remains the same throughout the entire process. We will review concepts and recent developments of efficient
frequency sweeps and repeated analysis with unmodified fluid domain. For many practical cases, the situation for
interior problems is rather simple to survey. Either the authors have applied a modal analysis and used a modal
superposition for the frequency sweep and repeated analysis, or the concept of unmodified acoustic transfer vectors
is applied. Both concepts are quite successful as long as certain conditions are fulfilled. For exterior problems, a
modal superposition is possible but, so far, only for a limited number of cases practically applicable as discussed
herein. The concept of using acoustic transfer vectors becomes inefficient since the evaluation of the radiated sound
power as an integral over a closed enveloping surface would require an excessively high amount of storage capacity.
Therefore, other concepts are being followed. For frequency sweeps, a number of methods are using a frequency
interpolation based on a limited number of discrete sample frequencies. Often, these techniques are used together
with Krylov–subspace model order reduction techniques. Further recently published approaches investigate low–
rank approximations, greedy algorithms, and deflated Krylov subspace techniques. A completely different kind of
approach is based on multi–fidelity models and Gaussian processes. The field of efficient repeated analysis shows
some interesting developments, which can be easily applied to sampling based uncertainty quantification but do
not seem to be easily and generally applied to optimization.

1. INTRODUCTION

The work discussed herein is essentially motivated by a con-
cluding sentence in the author’s review paper1 on structural
acoustic optimization, which was published more than two
decades ago: Koopmann and Fahnline2 emphasized that effi-
cient analysis techniques account for the basis of optimization.
Though regarding the entire analysis, fast solutions of the fluid
problem or even of the coupled problem involving radiation
into open space and considering frequency ranges are strongly
desired. Since the efficiency problem occurs in a very simi-
lar way for uncertainty quantification, the latter is addressed
herein as well.

The literature on efficient solution techniques for acoustic
and vibroacoustic problems is full of excellent books and pa-
pers that mainly focus on the solution of coupled and uncou-
pled boundary value problems formulated at one particular pre-
selected frequency, see for example a selection of books pub-
lished over the last four decades3–18 and a large variety of jour-
nal papers, see for example.19–41

The author is interested in clarifying that this paper does
not consider fast solution and efficient solution techniques of
the Helmholtz equation for a single frequency. Some of the

techniques which are referred herein are developed for single
frequencies though. When referring to such techniques, the
author will point out how the particular method can be effi-
ciently used in optimization and uncertainty quantification. In
contrast to efficient single frequency solutions, the number of
papers on efficient methods for frequency sweeps in acoustics
is most likely two orders of magnitude smaller whereas even
far fewer papers are dealing with efficient reanalysis. In ad-
dition to some own contributions, the author is aware of very
few such works on efficient reanalysis for fully coupled vibroa-
coustic systems.42, 43 Very often, however, the major problem
of efficient reanalysis is encountered for sound radiation into
open spaces and then, the bottleneck for efficient reanalysis
is identified as the repeated evaluation of the radiated sound
power.

This paper reviews concepts of dealing with acoustic and
vibroacoustic problems over frequency ranges and efficient
reanalysis. It is structured as follows: We will start with a
brief motivation explaining the problem because acoustic and
vibroacoustic problems often require solutions of large fre-
quency ranges, whereas in optimization and uncertainty quan-
tification, many solutions for varying parameters are required.
Thereafter, we will briefly review single frequency solutions

336 https://doi.org/10.20855/ijav.2024.29.32086 (pp. 336–355) International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024



S. Marburg: CONCEPTS FOR FREQUENCY SWEEPS AND EFFICIENT REPEATED ANALYSIS IN THE CONTEXT OF VIBROACOUSTIC. . .

using finite and/or boundary element methods. This is fol-
lowed by a discussion of objective functions. Solution con-
cepts for frequency sweeps and reanalysis will be presented
and discussed thereafter in Section 3. The paper will be com-
pleted by a short conclusion section.

2. PROBLEM DESCRIPTION

2.1. Prerequisites and Motivation
The analysis in this paper works in the frequency domain,

which means that harmonic problems in acoustics and vibroa-
coustics are considered. A harmonic time dependence of eiωt

or e−iωt, with t as time and ω as angular frequency, is assumed
throughout this and in all related work. The latter assumption
is used for the equations of this work. Mathematically, this
means that the acoustic problem is governed by the Helmholtz
equation whereas the elastic problem, which is usually de-
scribed by the Navier–Lame equation, is a bit more complex to
survey as specific structures, such as beams, plates, shells, etc.,
may result in different governing equations derived from the
Navier–Lame equation under specific assumptions. When us-
ing (linear) finite element methods for the structure, it is com-
mon to yield a system of equations for the structural vibrations
as:

Asus =
(
−ω2M s − iωDs +Ks

)
us = f s; (1)

where the column matrix us(ω) represents the time–harmonic
structural displacement vectors, f s(ω) the column matrix of
nodal forces of the finite element mesh, M s and Ks are known
as the static, i.e., frequency independent, mass and stiffness
matrices, respectively. Ds is the damping matrix often as-
sumed to be independent of frequency, which is a very strong
assumption that is often not fulfilled in applications. However,
this assumption is very commonly made since more precise
descriptions of D(ω) are seldom available. The dynamic stiff-
ness matrix of the structure As is often assumed as a quadratic
polynomial of frequency composed of M s, Ks and Ds. The
column matrix of the surface particle velocity of the structure
vs which denotes the normal component of the particle veloc-
ity vector of a surface node of the finite element mesh is related
to us as:

vs = −iωNus (2)

in which N is a matrix to map the displacement vectors in
us to yield the normal component of the particle velocity just
at the surface nodes. Note that the notation is only correct if
us contains only degrees of freedom of the wet surface, i.e.,
degrees of freedom with fluid contact. It is used for simplicity
though.

For the analysis of the source-free fluid, we assume either
a finite element or a boundary element discretization.44 The
finite element discretization may lead to a system of equations
as:

Afp =
(
−ω2M f − iωDf +Kf

)
p = Θfvs = f f . (3)

Very similar to Eq. (1), M f and Kf are the static fluid mass
and fluid stiffness matrices, respectively. Df is a kind of a
damping matrix. With p as the column matrix of the sound
pressure, Θf the boundary mass matrix of the fluid mesh to
map the particle velocity of the structure to the nodal forces f f

and the dynamic stiffness matrix of the fluid Af , we arrive to a

system of equations which looks the same as for the structure.
Some additional remarks about Df though: For many prac-
tical examples, it results either from an admittance boundary
condition45 or from the radiation condition.46 The admittance
condition can be formulated as:

vf(x⃗)− vs(x⃗) = Y (x⃗)p(x⃗) with (x⃗) ∈ Γf ; (4)

in which Γf represents the fluid boundary and the product of
the boundary admittance, and the sound pressure equals the
difference of the fluid particle velocity and that of the struc-
ture.47, 48 In the case of the full fluid-structure interaction, it
is reasonable to assume the admittance to be zero. A damp-
ing matrix resulting from the radiation condition can be static
when using a certain type of infinite elements, so-called con-
jugated infinite elements.49, 50 Other formulations fulfilling the
Sommerfeld radiation condition, e.g., unconjugated infinite el-
ements51 as well as local and non-local absorbing boundary
conditions,52, 53 usually result in an implicit frequency depen-
dence of the damping matrix Df . The same holds for perfectly
matched layers.54 When using a boundary element formulation
as described in,44, 55 we either yield the system as:

Afp = Hp = Gvs = f f ; (5)

or, for a non-vanishing boundary admittance:

Afp = (H −GY )p = Gvs = f f ; (6)

with G(ω) and H(ω) as the implicitly frequency depen-
dent system matrices of the boundary element formulation ,
whereas Y is a sparse matrix containing the boundary admit-
tance values. As such, this Y depends on the frequency if the
boundary admittance depends on the frequency.

For fully coupled vibroacoustic analysis, Eqs. (1) and (3)
must be coupled. The coupling conditions are given by the
continuity of the particle velocities of structure and fluid at the
interface and by balancing the momentum at the interface, of
course both formulated locally. The coupling conditions can be
formulated even for different meshes of structure and fluid.55, 56

Introducing the coupling matrices Csf and Cfs, the resulting
system of equations takes the form as:[

As Csf

Cfs Af

] [
us

p

]
=

[
f s

0

]
. (7)

There are several options for the solution of this system
of equations. While direct solvers are usually quite time-
consuming, there have been a number of approaches suggest-
ing modal superposition by using pure structural modes and
pure fluid modes,see for example.57 Originally, these authors
tried to do a modal analysis of the whole system58, but this
approach has hardly ever reached practical applications, al-
though implemented in commercial software packages. The
major problem has most likely been that the global system ma-
trix in Eq. (7) is asymmetric and may lead to complex modes
and eigenfrequencies even for the undamped system. An iter-
ative solution of Eq. (7) has hardly ever been popular since the
system is rather poorly conditioned.

In the context of frequency sweeps, reformulations based
on the Schur complement have become quite popular in recent
two decades. There are basically two options of formulations,
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one as the structural equation, i.e., the equation for the un-
known structural displacements, as:(

As −CsfA
−1
f Cfs

)
us = f s; (8)

and the other one as the fluid equation, i.e., equation for the
unknown sound pressure, as:(

Af −CfsA
−1
s Csf

)
p = −CfsA

−1
s f s. (9)

This paper is reviewing the variety of techniques which ba-
sically solve either Eqs. (7–9) or a combination of Eq. (1) with
either (3) or (6) to determine certain objective functions which
will be discussed in the subsequent section. While (7–9) con-
sider a full structure–fluid interaction, Eqs. (1) with either (3)
or (6) assume a one-way interaction only, i.e., we assume the
structure to vibrate in vacuo (1) to produce the boundary con-
ditions of the fluid which is analyzed using either (3) or (6). In
some cases, even (1) is omitted, and the boundary conditions
for the fluid are presumed.

It is worth mentioning that the literature of the recent three
decades is full of so-called Trefftz methods, see the original
work by Trefftz59 and two review papers.60, 61 As these meth-
ods are usually using wave-based basis functions, which im-
plicitly depend on frequency, they are often very efficient for
a single-frequency solution but are challenging for frequency
sweeps so far. The author is unaware of any special frequency
range solutions for Trefftz methods.

2.2. Objective Functions
The discussion about the objective function will be kept

short because most of it is only a repetition of former work
of the author, see, for example, the reviews.1, 62

2.2.1. Local quantities

Local quantities are quite popular objective functions for as-
sessing the acoustic quality of structures. In vehicle interior
noise problems, the sound pressure at one particular point –
very often the driver’s ear – is used for this ; for references
see.1, 62 It is another option to assess the acoustic performance
of a cavity based on energy density63–66, which is still a lo-
cal quantity. The total energy density has proven to be a more
robust measure than just sound pressure for weakly damped
cavities in which the sound fields exhibit clear nodal lines and
surfaces. While local quantities may be efficiently computed
and can be suited for cavity problems, they are hardly suited
for exterior problems.

It is a great advantage of these local quantities that they
can be easily and efficiently evaluated if the so-called acous-
tic transfer vectors or influence coefficients are known. The
determination of these influence coefficients, which have been
introduced several times67–71, can be understood as an adjoint
operator approach in which the influence coefficients account
for the sensitivity of the local quantity with respect to the par-
ticle velocity on the surface of the fluid. As such, the sound
pressure at a particular point x⃗ in the fluid domain can be writ-
ten as:

p(x⃗) = bT (x⃗)vs; (10)

i.e., the scalar product of two column matrices where the in-
fluence coefficients in b represent the solution of the (adjoint)

fluid boundary value problem, whereas the particle velocity
of the structure vs accounts for the solution of the structural
problem. Assuming that a structural model is hardly changing
its fluid surface in an optimization process, the fluid problem
needs to be solved only once; see more elaborate assumptions
in the author’s paper.72

A similar formulation to Eq. (10) can be achieved for the
local energy density.66 For this, we need the formulation for
the components of the particle velocity first, i.e.:

vj(x⃗) = bTj (x⃗)vs; (11)

with index j indicating the space direction as x, y or z. The
total energy density (as the sum of potential and kinetic energy
density) at point x⃗ is found as:

et(x⃗) =
1

2ρc2
|p(x⃗)|2 + ρ

4
|v⃗(x⃗)|2; (12)

where ρ is the fluid density and c is the speed of sound in the
fluid. Substituting for p(x⃗) and v⃗(x⃗) and omitting x⃗ depen-
dencies, yields:

et =
1

2ρc2

(
bTvs

)∗ (
bTvs

)
+

ρ

4

[(
bTx vs

)∗ (
bTx vs

)
+
(
bTy vs

)∗ (
bTy vs

)
+
(
bTz vs

)∗ (
bTz vs

)]
; (13)

which can be written as a quadratic form as:

et = vH
s Acvs with

Ac =
1

2ρc2
b∗bT +

ρ

4

(
b∗xb

T
x + b∗zb

T
z + b∗zb

T
z

)
. (14)

In the above equations, superscripts ∗ and H denote conjugate
complex and Hermitian, i.e., transposed conjugate complex,
matrix, respectively. It is interesting to see the total energy
density at one single point can be written as the sum of four
dyadic products of column matrices of influence coefficient,
also known as acoustic transfer vectors, in a more generalized
meaning. (Note that only b is usually called an acoustic trans-
fer vector.) It is obvious that the matrix Ac is a rank-four ma-
trix, i.e., it has only four non-zero eigenvalues.66

2.2.2. Global quantities

In their book, Koopmann and Fahnline2 suggest global
quantities only. They have been very clear about exterior prob-
lems in which they suggest assessing the acoustic quality only
based on the radiated sound power, which is evaluated as:

P (ω) =
1

2

∫
Γ

p(ω)v∗f (ω)dΓR; (15)

and which requires to evaluate the surface integral over an ar-
bitrary closed surface ΓR around the radiating structure. For
convenience, this closed surface is often chosen to be the sur-
face of the radiating structure such that ΓR = Γ. Evaluation of
this integral requires the knowledge of both boundary data, the
fluid particle velocity and the sound pressure over the entire
surface.
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For interior problems, Koopmann and Fahnline2 suggest en-
ergy quantities for assessment, too. They vote for potential,
kinetic, and – as their favorite – total acoustic energy within
the cavity. In acoustic optimization and uncertainty quantifica-
tion, the author is aware of only one optimization paper having
considered an objective function solving for the volume inte-
gral to determine the acoustic (potential) energy in a cavity.73

However, a recent paper on non–negative surface contributions
has dealt with this issue and has even provided ideas for effi-
cient estimations of the acoustic energy in cavities.74

2.2.3. Integration over large frequency range

It is commonly accepted – at least in engineering – that
single-frequency solutions are hardly useful at all. Such single-
frequency solutions in optimization may just favor a very sin-
gular parameter set, which is hardly of any practical use. Nev-
ertheless, there are papers in structural-acoustic optimization
which focus on single-frequency or narrow-band optimization,
see, for example.75, 76

For an objective function F suggested in the majority of pa-
pers on optimization in structural acoustics, we adopt the for-
mulation of1:

F =

ωmax∫
ωmin

Φ {Q(ω)} dω . (16)

Therein, the quantity Q represents the above-discussed local or
global quantity. Hence, in the case of a local quantity, it can be
sound pressure, sound pressure level, total energy density, to-
tal energy density level, etc. In the case of a global quantity, Q
may stand for acoustic energy, acoustic energy level, radiated
sound power, radiated sound power level, etc. It is the major
point here that the evaluated quantity needs to be summed up
over a certain frequency range. This can require many evalua-
tions, in particular if large peaks are to be considered, see also
discussions on this in.62, 77–80

The literature on structural-acoustic optimization and vi-
broacoustic uncertainty quantification shows many examples
with very different numbers of discrete frequency evaluations
to determine the integral in Eq. (16). According to the au-
thor’s experience, the number of discrete frequency evaluations
varies in the range of 102 . . . 103 with outliers to both sides.

2.3. Repeated Computations For Parameter
Variations

In both structural-acoustic or vibroacoustic optimization and
uncertainty quantification, it is very common that the same
problem is solved very often with just different parameter
sets. Depending on the optimization algorithm or the sampling
method in uncertainty quantification, these repetitions can be
required between 101 and 106 times. In optimization, meth-
ods based on genetic algorithms and simulated annealing re-
quire the most repetitions, whereas gradient-based algorithms
are usually quite economical, in particular if they apply an ef-
ficient evaluation of their gradient information. It is similar
for uncertainty quantification if it is based on non-intrusive
methods. Advanced stochastic approximation schemes, such
as sparse polynomial chaos approximations, have turned out
to be very economical, whereas a Monte Carlo approximation

parameter
control

structural
vibration

acoustic
fluid

objective
function

vf = vs

~~σ · ~n = −p~n

ordinary analysis, solving bvp

frequency loop

feedback loop for parameter adjustments

1

Figure 1. Flowchart of the problem analyzed in this paper: A common vi-
broacoustic boundary value problem (bvp) encompasses a single solution of a
somehow coupled structural-acoustic (vibroacoustic) problem as shown in the
green box. In practice, the solution is usually required for a frequency range,
which is indicated as the frequency loop in blue. Optimization and uncertainty
quantification require yet another feedback loop shown in red. This feedback
loop is referred to as reanalysis if the same fluid problem is solved repeatedly
just with changing boundary conditions.

usually requires quite many function evaluations, which is due
to their low convergence rate.

As mentioned above, there are many applications in struc-
tural acoustics where the parameters of a structure are varied
and adjusted in an optimization or uncertainty quantification
process, but the fluid domain remains either completely un-
modified or experiences just very little modifications that can
be neglected. In such cases, the solution of the fluid problem
can be understood as a problem with many load cases, i.e.,
many right-hand sides.

Within the problem description, we can conclude that the
efficient single-frequency solution of an acoustic or a vibroa-
coustic boundary value problem is only one part of the solu-
tion when designing quiet structures. We further need to take
into account that the solution is required for many frequen-
cies, which accounts for an inner loop in optimization and un-
certainty quantification, where the parameter adjustments are
required, as shown in Fig. 1. Just two realistic scenario estima-
tions for engineering design:

1. Assume a problem with 100 frequencies and a quick con-
vergence of an optimization after 100 function evalua-
tions: this will require 104 solutions of the vibroacoustic
problem at a single frequency.

2. Assume a problem with 580 frequencies81 and between
1000 and 5000 function evaluations: this will require a
number of single frequency solutions of order 106.

The author has experienced even cases in which the opti-
mizer had required a number of function evaluations of order
105 for a problem with approximately 102 frequencies. Given
that a single frequency solution may take one minute, it is un-
realistic to run the simulation 106 . . . 107 times as the com-
putation will take some years. Therefore, concepts have been
developed to make this process much more efficient. In par-
ticular, efficient solutions for the frequency loop have experi-
enced a strong revival over the recent decade. It is the aim of
this paper to review concepts for efficient solutions of both the
frequency loop and the feedback loop for control of the design
variables.

A hot topic for repeated analysis combined with frequency
sweeps is known as multi-dimensional (or multi-variate) para-
metric model order reduction. While first interesting contribu-
tions on this are already known,82–86 as wider exploration on
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this with application to industrial examples and many parame-
ters is still left and certainly a valuable task for the future.

3. METHODS FOR EFFICIENT FREQUENCY
LOOPS AND REPEATED ANALYSIS

3.1. Modal Analysis and Mode
Superposition

3.1.1. Mode superposition for interior problems

It is common practice for the simulation of structural vibra-
tions and interior acoustic problems to do a modal analysis first
and continuing with a frequency sweep based on modal su-
perposition.87 This concept can also be applied to reanalysis
for vibroacoustic optimization and uncertainty quantification .
According to the literature search of the author, Pal and Hagi-
wara88 have been the first to apply this concept to vibroacous-
tic optimization. They are reporting to have calculated acoustic
modes first and then used them repeatedly in each optimization
step, even for fully coupled structural–acoustic analysis.

While the concept of modal superposition with storage of
fluid modes for the entire optimization or uncertainty quan-
tification process seems reasonable at first glance, the author
is not clear about the availability of this option in commer-
cial software packages. Furthermore, modal superposition us-
ing acoustic modes of the undamped case – usually assuming
rigid boundary conditions at all surfaces – may become ineffi-
cient if certain boundaries include absorption. The reason for
this inefficiency is that in the case of impedance/admittance
boundary conditions, the modes of the undamped case are in-
correct and do not correctly reconstruct the actual sound field.
Even considering impedance/admittance boundary conditions
for solving the eigenvalue problem, the convergence of the
reconstructed solution by superimposing the complex modes
may be slow.45 Not to speak about the problem that boundary
conditions are often frequency dependent, see for example.89

But even for this, there are options to apply modal superposi-
tion and modal reduction if the admittance condition (or other
damping terms) is approximated in a polynomial such as sug-
gested in.47, 90

Even the Schur complement Eqs. (8,9) may offer options
for a modal reduction. Matrix A−1

f in Eq. (8) may be re-
constructed using eigenvalues and eigenvectors of the matrix
polynomial on the left-hand side of Eq. (3). Similarly, matrix
A−1

s in Eq. (9) may be reconstructed using eigenvalues and
eigenvectors of the matrix polynomial on the left-hand side of
Eq. (1). The latter approach has been reported in.56 Alterna-
tively, a Cholesky decomposition has been used at this point.91

3.1.2. Mode superposition for exterior problems

Modal analysis and modal superposition of frequency-
independent modes, as known from structural analysis and
interior acoustic problems, are rather uncommon for exterior
problems of acoustics. The main reason for this consists in the
problem that the analytical equations of acoustics result in a
continuous spectrum with certain (additional) discrete eigen-
values for unbounded problems.92 However, the eigenvalues
of a discretized model in an unbounded domain are entirely
discrete.45, 46 The author has investigated the idea of modal re-
duction by investigating the number of modes necessary to de-

termine the radiated sound power in 2d by using finite and con-
jugated Astley-Leis infinite elements.46 It turned out that for
certain problems, the number of modes for reconstructing the
radiated sound power is rather small,93 see also.94 However,
even though it is a priori unknown which modes contribute the
most to the radiated sound power, it can be an option to store
only the components of the modes on the structure–fluid in-
terface. According to,93 the radiated sound power is evaluated
as:

P = ℜ

1

2

N∑
j=1

yT
jΓ

f f

αj + ikβj
xT
jΓf

∗
f

 with f f = Θvs;

(17)
in which xT

jΓ
and yT

jΓ
are the surface components of the N

right and left eigenvectors of the arising state space problem,
respectively. The nodal forces f f result from the distribution of
the particle velocity of the radiating structure whereas αj and
βj represent the eigenpairs resulting as diagonal terms when
the modal matrices are applied to diagonalize the state space
matrices. It has been interesting to see that for the evaluation
of the radiated sound power, only the eigenvector components
on this interface are required to evaluate the radiated sound
power. As such, it may be an option to store these small parts of
the eigenvectors and keep them in memory for both frequency
sweep and repeated analysis. In this sense, modal superposi-
tion of a complete set of frequency-independent modes for the
radiation problem has been applied to structural-acoustic opti-
mization in.81

There are papers (of the author) on modes of the fully cou-
pled problem95, 96 in which the formulation of Eq. (9) has been
used and a Taylor expansion allowing to formulate a polyno-
mial eigenvalue problem. It has been developed into a matrix
polynomial of sixth and eighth order for which the polyno-
mial eigenvalue problem is linearized and solved. For the so-
lution of the eigenvalue problem in comparison with the exam-
ple in,95 see also.97 In,96 a structure-preserving Arnoldi-based
model order reduction technique is used to apply this method
to a larger structure and in frequency sweep with modal super-
position. It clearly shows how the modal superposition accel-
erates the frequency sweep in comparison to solve the problem
at each single frequency.

Evaluation of frequency-independent modes diagonalizing
the system matrices accounts for a hot topic of research.98, 99

3.1.3. Using radiation modes

Further, in the context of modal analysis, it is necessary to
discuss frequency-dependent acoustic radiation modes.100–105

Acoustic radiation modes suffer from the feature that they de-
pend on frequency. An interesting feature of acoustic radiation
modes is that they can be grouped for certain radiator types.
This grouping may allow a mapping to certain other radiator
geometries provided these are not too different compared to
the original geometries.106, 107 As they are usually converging
quickly, meaning that only a few of them are required to re-
construct the radiated sound power, they can be considered an
alternative to the acoustic transfer vectors. However, the num-
ber of required acoustic radiation modes depends very much
on the specific problem to be solved. The author is aware of
only a few papers utilizing acoustic radiation modes in an op-
timization process108–111 and in uncertainty quantification.112
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The thesis by Kessels109 who required 180 radiation modes per
frequency to reconstruct the radiated sound power of a mag-
netic resonance image scanner, whereas the paper by Zhang et
al.111 apply to above-mentioned mapped radiation modes for
optimization. The advantage of these radiation modes is that –
similar to the acoustic transfer vectors – they represent the so-
lution of the fluid domain, which does not change their shape
and the eigenvalues during the optimization process. The dis-
advantage is that they depend on frequency but decay quickly,
especially at low frequencies. The frequency dependence re-
quires to store a couple of these modes for each frequency.

3.1.4. Recent developments in solution of non-linear
eigenvalue problems and potential application
in modal reduction

While the above discussed normal and radiation modes have
the advantage that they diagonalize the system matrix, it could
be an option to use normal modes from a non-linear eigenvalue
problem for modal reduction. The author is unaware of having
seen such a method in the past but has successfully tested this
for a simple cavity. In such a case, the modes will reduce the
system size but do not diagonalize the system matrices.

The numerical solution of the non-linear eigenvalue prob-
lem for exterior acoustic problems has been a hot research
topic in recent years, even though early approaches reach back
more than three decades.113 The major problem with this is the
implicit frequency dependence of the system matrices for the
boundary element method and most of the approaches of finite
element analysis for unbounded domains. It has been men-
tioned above that conjugated Astley-Leis infinite elements al-
low for the formulation and solution of a quadratic eigenvalue
problem.46, 105 A series expansion of the implicit frequency de-
pendent part on the left-hand side of Eq. (9) results in a higher
order polynomial eigenvalue problem which can be linearized
and solved in a traditional way, see Peters et al.95, 96 In both
methods, the eigenvectors diagonalize the state-space system
matrices. This is not necessarily the case when contour integral
methods are applied. Examples for determination of modes by
solution of the non-linear eigenvalue problem are found in pa-
pers114–117 for pure acoustic problems and for fully coupled
systems in.91, 97, 118–122 Chebyshev approximation has been ap-
plied to the pure exterior acoustic problem (with a structural
vibration as excitation) in.123 In all of these papers, the fluid
is discretized with boundary elements, whereas in the coupled
analysis, the structure is meshed by finite elements.

The literature knows solutions of the acoustic eigenvalue
problem using finite element approaches for the fluid as well.
Hohage and Nannen et al., see for example,124, 125 have devel-
oped a different type of infinite element approach to determine
eigenvectors and eigenvalues of unbounded acoustic domains.
Araujo-Cabarcas et al.126 have presented an approach for the
Dirichlet–to–Neumann map as absorbing conditions. Kim et
al.127, 128 have shown an approach for using perfectly matched
layers to achieve full absorption at the boundary of the physical
domain.

3.2. Acoustic Transfer Vectors
As mentioned in the context of Eq. (10), acoustic transfer

vectors may account for a very efficient tool to decouple the
acoustic solution from a repeated structural analysis. There

are many practical cases in which plate and shell thicknesses,
spring stiffnesses, non-structural masses, thin beam parame-
ters, or even small shell geometry modifications show hardly
any effect on the fluid domain. Basically, acoustic transfer vec-
tors are computed for each frequency point. This results in one
complex value per surface node and per frequency.

Assuming N surface nodes and M frequencies, we end up
with storage requirements of N×M complex values. With the
assumption of 104 surface nodes and 100 frequencies, the stor-
age requirements of approximately 16 Megabytes are rather
moderate. Even the (extreme) case of N = 105 and M = 103

resulting in 1.6 Gigabyte storage requirements could be han-
dled easily today. However, there are contributions in litera-
ture where authors aimed at storage reduction.129 That paper
applied acoustic transfer vectors to an exterior problem and
achieved data reduction using a proper orthogonal decomposi-
tion. It is worth mentioning that modal acoustic transfer vec-
tors were proposed for the fully coupled problem of a vehi-
cle body.130 Therein, the authors claimed to be more efficient
than using ordinary acoustic transfer vectors, which is quite
likely. However, the authors did not provide a convergence
study based on accuracy.

The evaluation and storage of acoustic transfer vectors prior
to a vibroacoustic optimization process of vehicle panels has
originally been proposed and repeatedly applied by the au-
thor,69, 72, 131–135 see also.1, 62 In these works, the author called
them influence coefficients, whereas the term acoustic trans-
fer vectors in this context has most likely been coined with the
patent application.70

It has been shown above that these transfer vectors can also
be used to determine energy density quantities. For the local
total energy density in a cavity, four of this generalized acous-
tic transfer vectors are required to be stored for each frequency.
This means the storage costs compared to storing them just for
the sound pressure – or the potential energy density, which is
basically the sound pressure squared – is four times as high,
but, essentially, it remains in the same order of magnitude and
should be easily affordable for an optimization process or an
uncertainty quantification.

We can even go further and check the use of acoustic trans-
fer vectors for evaluation of the total acoustic energy in the
cavity as suggested by Koopmann and Fahnline in their book.2

In a recent paper,74 it has been shown that the total acoustic
energy within two different cavities can be well approximated
by evaluating the total energy density at 19 and 36 points. It
is worth mentioning that this test cannot be considered a full
convergence study but is a first indication that the total acoustic
energy can be well approximated by the total energy density at
a very limited number of field points. Hence, it seems that 102

transfer vectors per frequency may do well. Again, assuming
102 frequencies and a surface mesh of 104 nodes, a storage of
1.6 Gigabytes is required for this data, which represents the
full solution of the acoustic field.

It would be interesting whether this concept can be applied
to exterior problems in acoustics too. As explained above, the
assessment for exterior problems is usually based on the radi-
ated sound power, which is determined as the surface integral
over the product of sound pressure and the particle velocity in
the normal direction to the chosen surface. Acoustic transfer
vectors , as introduced in Eqs. (10) and (11), would require an
enveloping surface around the radiating body. In most cases,
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the author would expect a similarly detailed mesh for the enve-
lope as for the radiator itself. Thus, assuming 102 frequencies
and two meshes of 104 nodes each will result in 1010 com-
plex numbers to be stored, i.e., 160 Gigabytes. While even
160 Gigabyte storage may not be prohibitive anymore, the 104

nodes on the enveloping surface will require as many acoustic
transfer vectors for each frequency, i.e., the (adjoint) acoustic
problem needs to be solved 106 times prior to the optimization
or uncertainty analysis. Although these 104 solutions are us-
ing the same system matrix and would result in 104 right-hand
sides, this still sounds unreasonable and is discouraged here.
Other concepts will most likely make more sense, although the
author is unaware of any convergence analysis for this prob-
lem.

3.3. Frequency Approximation Techniques

There seems to be a strong desire for efficient frequency
sweeps for numerical methods not easily allowing to describe
the frequency dependence of matrices As, Af and thus the sys-
tem matrix of the coupled system in Eq. (7) just in terms of a
quadratic or even a linear matrix polynomial in the frequency.
Well-known examples, as already mentioned above, are (most
of) the boundary element methods but also many popular fi-
nite element methods for unbounded domains. With respect to
BEM, this problem has been discussed in two recent review pa-
pers, cf.136, 137 Another nice review paper on frequency sweeps
in a finite element context has been published by Hetmaniuk et
al.138 It mainly refers to the model order reduction techniques
in combination with Padé approximation and proposes inter-
esting model order reduction techniques. Many of the tech-
niques reviewed in this section are understood as model order
reduction techniques in which the solution is determined at cer-
tain key frequencies (snapshots) and approximated in between.
Some of the methods require the solution of the original sys-
tem of equations at these key frequencies and reduce the sys-
tem first and then determine the solution for the reduced order
model.

There are a number of different categories of approaches to
frequency approximation. The author is trying to set up a cou-
ple of specific categories even though the mapping does not
always seem to be unique. Overall, it is obvious that there are
numerous concepts. The author is unaware that any of them
has already been applied in a commercial tool. Reasons for that
might be that some of them require too much manual control
of parameters. There are a few tailored solutions though.139

3.3.1. Matrix polynomial formulation with approxima-
tion

In finite element analysis, it is very common to assume the
matrices, i.e., stiffness, damping, and mass matrices, respec-
tively, in the formulations (1) and (3) to be independent of fre-
quency. While this is convenient to analyze, it often contra-
dicts reality. The author has come across this for purely struc-
tural problems when determining stiffness and damping pa-
rameters at different temperatures.140 Frequency dependence
of the boundary admittance is generally accepted, see for ex-
ample.141–143 A nice example of the problem with frequency-
dependent damping and frequency approximation combined
with model order reduction has been presented by Xie et al.144

Things are different in the boundary element method. As
Green’s function contains the frequency in the exponent of the
exponential function, it cannot be easily used as an explicit
factor for the system matrices as known from the finite ele-
ment method. There are workarounds, however. In the 1980s
and 1990s, a method called the dual reciprocity145 and another
method named the particular integral146 have proposed tech-
niques allowing for the formulating of frequency-independent
mass matrices. (As a side remark, the author believes that both
methods are identical, at least with respect to the formulation
of mass matrices for elastic and acoustic problems.) These
first papers have been focusing on elastic145, 146 and acoustic147

eigenvalue analysis.
The very interesting paper by Chen et al.90 has suggested a

boundary element method utilizing particular integrals and ad-
mittance boundary conditions. As the authors have been aware
of the frequency dependence of the boundary admittance, they
have suggested the use of a piecewise linear approximation of
the frequency dependence of the boundary admittance. Such
a behavior would result in a complex mass matrix to host the
linear frequency-dependent contribution. There has not been
presented an example in90 for such an admittance behavior.
Actually, the author has investigated such an example in his
paper47 because the admittance determined by measurements
of the reverberation time in a vehicle cabin have strongly sug-
gested this behavior being linearly dependent on the frequency,
see also.69 The hardly visible conference papers by the au-
thor have investigated the accuracy of the particular integral
method148 and mode superposition techniques.149 While these
techniques seem to be an interesting alternative to standard
boundary element formulations, the author has encountered se-
rious problems when applying the particular integral method to
high frequencies. However, the most serious problem with the
particular integral method and the dual reciprocity method is
that they are restricted to cavity problems. The author is un-
aware of any serious application to acoustic radiation or scat-
tering into open domains.

3.3.2. Interpolation of (mostly) boundary element
system matrices

Approaches of this category have been the first to be pub-
lished for efficient frequency sweeps in addition to modal su-
perposition. All of these approaches somehow deal with the
e±ikr term in the Green’s function. (In 2d, the oscillating term
in the Green’s function stems from the Hankel function.) In,150

the authors introduce a conjugate complex test function for the
matrix entries and interpolate linearly between two preselected
frequencies, for which they have determined the matrices be-
fore. The Green’s function has been developed in a Taylor
series at the Chebyshev points in a certain frequency inter-
val.151 Another paper152 has proposed a separation between
the frequency-dependent and the frequency-independent, i.e.,
singular, part of the Green’s function. The formulation looks
very much like a regularization formulation which it actu-
ally is since the frequency-dependent part does not require
to deal with singularities, and the singular part is frequency-
independent.

The concept of a Taylor series for the Green’s function or
its oscillating term has been proposed several times over the
recent three decades.153–159 Usually, these approaches arrive at
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matrix polynomials of different order to approximate the ac-
tual boundary element system matrices. At a side note, the
suggestion of156 to apply a one-point integration rule for all
non-singular integrals is clearly discouraged, cf.160

It is a common feature of all of these approaches that they
may be efficient for the matrix setup but they require to solve
the system of equations at each discrete frequency. Therefore,
this approach is quite unpopular for large-scale systems. The
memory required to store the polynomial coefficient matrices
is the bottleneck of using a Taylor expansion or any other in-
terpolation technique for boundary element formulations. That
is why it is crucial to combine those techniques with model or-
der reduction techniques. The basis for these techniques how-
ever needs to be constructed before the interpolation, such that
upon constructing each of these coefficient matrices the reduc-
tion may occur. This is in particular relevant for the boundary
elements and not so much for finite elements as the latter result
in sparse matrices, see, for example, the discussion in.86

It is yet another problem of the matrix interpolation schemes
that they usually require access to the code, as most of these
techniques are intrusive and cannot be easily adopted into ex-
isting commercial or open code. Even software companies
would need to change their existing code and maybe restruc-
ture it to allow for the application of these methods.

The Taylor series approach for the non-linear frequency de-
pendence of the damping parameter arising from viscoelas-
tic material behavior has been combined with a second-order
Arnoldi reduction scheme by Xie et al.144 The paper by Xie
et al.161 proposes a model order reduction technique for large-
scale systems. It includes a Taylor series approach in the vicin-
ity of the (high) frequency under consideration. The technique
has been extended to fully coupled vibroacoustic problems
in162 and the two-dimensional case in.163

The recent work by Chen et al.164 is utilizing a Taylor ex-
pansion for the oscillating part of the system and then applying
a second-order Arnoldi scheme to reduce the size of the system
matrices, which results as a second-order matrix polynomial.
This approach has similarities with.96

The Taylor series expansion presented by Yoon165 for a finite
element model, including options for porous material, will be
discussed later in Section 3.3.7. It uses preselected frequency
intervals as well.

A different approach which is also based on a Taylor se-
ries of the matrix entries at a certain discrete key frequency
has been presented by Raveendra in.166 Therein, however, the
author transfers the perturbation from the key frequency to the
right-hand side so that a certain frequency sweep in the vicinity
of the key frequency can be achieved by solving the same sys-
tem of equations with a number of different right-hand sides.
A similar but much more sophisticated approach based on fi-
nite elements only has been presented by Hetmaniuk et al.167

Again, matrix entries are approximated by using a Taylor se-
ries of higher order this time. The frequency interpolation
between the key frequencies is carried out in a piecewise in-
terpolation. The work presented there is shown for a finite
element formulation with frequency-dependent parts such as
perfectly matched layers, absorbing boundary conditions, and
frequency-dependent admittance boundary conditions.

3.3.3. Padé approximation schemes

The oldest paper on frequency approximation of acoustic
problems based on Padé approximation deals with a boundary
element formulation by Coyette et al.168 Actually, it is yet an
approximation technique for the boundary element matrices as
discussed in the previous subsection. Interestingly, the prob-
lem has been formulated on behalf of an implicit differentia-
tion scheme of the system of equations. With that, derivatives
of up to the 30th order with respect to frequency have been re-
quired and determined by using a symbolic differentiation of
the computer code, apparently very similar to what automatic
differentiation is doing nowadays. The usage of Padé approxi-
mation is usually aiming at approximation of transfer functions
on behalf of a rational function, allowing for excellent approx-
imations of resonances.

Overall, the author is aware of only a few more papers on
boundary elements and Padé approximation though. A second
paper169 uses a similar approach for the thin body boundary el-
ement method, which is often referred as the indirect boundary
element method. Note that there are several indirect bound-
ary element approaches, see, for example, the discussion in.136

The paper169 adds a model order reduction technique to avoid
solving the large system of equations though. A rather recent
paper170 revisits Padé approximation but shows applications
for the Burton and Miller method171 and in optimization. The
authors of that paper determine the derivatives with respect to
frequency directly at the kernel, i.e., the Green’s function. Sim-
ilarly to the methods discussed in the previous subsection, they
solve the whole system of equations for each frequency step.

On the finite element side, the paper by Djellouli et al.172 has
modeled an exterior acoustic problem with finite elements and
an absorbing boundary condition. These authors have com-
pared a matrix Taylor approximation, Padé approximation, and
a much older method proposed by Wynn.173 Interestingly, the
latter two methods clearly outperform the former, while the
older method is performing quite well even for wide frequency
ranges. It is just that the newer Padé approximation seems to
be more efficient for large-scale models. The follow-up pa-
per174 develops this approach further into a frequency sweep
based on several key frequencies.

In the late 1990s, Malhotra and Pinsky presented an effi-
cient technique in which they combine model order reduction
and frequency interpolation.175 This technique, applied to a
finite element model with absorbing boundary conditions, is
referred to as Padé–via–Lanczos approximation and has been
applied and developed further over the recent two decades, see
for example.176–181 This technique has proven to be very ef-
ficient if the solution in a small region has been looked for.
Baumgart et al.182 have applied this technique to the efficient
evaluation of the radiated sound power over frequency ranges.
According to,167 the matrix Padé–via–Lanczos scheme178–180

is only valid for a frequency-independent right-hand side.
A similar technique is using an Arnoldi method for model

reduction and is thus called Padé–via–Arnoldi approximation,
see in particular the work by Puri and Morrey.183–185 It is ap-
plied to the structural-acoustic problem of a vehicle body with
its cavity. Both are discretized using finite elements, and the
method is basically applied to Eq. (7). While183 presents the
method,184 applies it in an optimization. The third paper185

compares a one-sided Arnoldi reduction scheme with a two-
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sided and concludes the latter is the most favorable one. A
technique looking similar to a Padé–via–Arnoldi scheme has
been investigated with respect to an error estimation by Au-
mann and Müller.186 The work of Xie et al.187, 188 may also be
considered as Padé–via–Arnoldi approximation, although later
discussed in the context of proper orthogonal decomposition.

The paper189 applies Padé approximation to a finite element
model surrounded by a perfectly matched layer. The authors
apply a multipoint approximation over a frequency range for
which they use Chebyshev points as the key frequencies.

A poroelastic problem coupled with acoustics is considered
by Rumpler et al.190 Therein, the system of equations of the
elastic part is reduced using the modes which are solution of
the purely elastic eigenvalue problem. Thereafter, a Padé ap-
proximation is applied to carry out the frequency sweep ef-
ficiently. The same authors have published another paper on
Padé approximation, this time for a bivariate case, i.e., for a pa-
rameter sweep in two directions.82 Besides the frequency, the
flow resistivity is understood as a second free parameter that
is scanned over a certain interval. For Padé approximation, it
can be useful to know eigenfrequencies in advance as they can
account for the key frequencies of the series development.191

The same lead author, Rumpler together with Aumann83

took up a technique from electromagnetics. It is called the
Well-Conditioned Asymptotic Waveform Evaluation and can
be categorized as a Padé approximation scheme too. The
multi-parameter version, briefly called MWCAWE,83 has been
developed to allow for frequency sweeps together with sweeps
over other parameters. Similar to the application of the greedy
reduced basis algorithms84, which will be discussed below, ap-
plications have been limited to two parameters so far. It is
assumed that this method can be extended to efficient sweeps
over more than two parameters in the future.

3.3.4. Proper orthogonal decomposition

Proper orthogonal decomposition is known as a powerful
tool for model order reduction to approximate time-dependent
problems.192 Substituting the frequency for time allows for
application of this method for frequency sweeps. Usually, it
requires a number of so-called snapshots and allows thereafter
to reconstruct the solution between these snapshots by inter-
polation. This concept has been applied to boundary element
models by snapshots at certain frequencies in.193 While these
authors report a successful application of proper orthogonal
decomposition applied to a number snapshots similar to,192 the
author of this manuscript (together with co-authors) has inves-
tigated such techniques to substitute for the techniques pre-
sented in95, 96 and found it unconvincing. In particular, the ac-
curacy and reliability to generalize this technique had turned
out to be insufficient at that time. This may have been due
to sharp resonance peaks, which may be challenging to recon-
struct using proper orthogonal decomposition.

An apparently more sophisticated technique based on proper
orthogonal decomposition has been proposed by Negri et al.85

They denoted their method as a matrix discrete empirical in-
terpolation method and referred to it as MDEIM. It is a kind
of parametric model order reduction scheme, which, in a first
application, applied to the frequency as parameter and in a sec-
ond application, to the frequency together with four geometry
parameters in a shape optimization of a two-dimensional horn.

A substantial piece of work on frequency sweeps based
on approaches utilizing proper orthogonal decomposition for
boundary element techniques is found in papers by Pana-
giotopoulos et al.86, 194, 195 and by Xie et al.162, 163, 187, 188 The
papers86, 187 start from very similar ideas. They are using a
combination of proper orthogonal decomposition and Krylov
subspaces. They employ user-defined fixed sampling in the
frequency domain, but instead of sampling the solution vectors
of the systems, they sample the Krylov subspaces of a user-
defined dimension that would lead to their iterative solution.
Therefore, it is understood as recycling the Krylov vectors of
a number of sampled systems to find the solution for the non-
sampled systems. Thus, this method is referred to as a com-
bination of proper orthogonal decomposition and Krylov sub-
space recycling. The advantage of this approach in comparison
to traditional proper orthogonal decomposition is the definition
of an error estimator and the decreased sampling requirements.
Both papers differ with respect to the actual Krylov subspace,
which in86 is based on the actual system of equations and in187

on the inverted system. Further differences are found for the
treatment of irregular frequencies which is, however, of sec-
ondary importance at this point. A follow-up paper of187 deals
with coupled vibroacoustic problems188, whereas the follow-
up paper of86 automates the above procedure with an auto-
matic Krylov recycling algorithm, which makes the sampling
and the dimension of the subspaces to construct the reduction
basis adaptive.194 It is somehow equivalent to what will be
discussed in the context of the greedy algorithms84, 196, not re-
quiring a pre-selection of the sampling points where the full
system needs to be solved. Again, Krylov subspaces are sam-
pled. The advantage of the automated Krylov recycling algo-
rithm is the significantly reduced sampling that is required. So,
fewer full-order boundary element systems are required to be
assembled and solved to construct the reduced basis. A sec-
ond follow-up paper195 extends the two earlier ones86, 194 for
the multi-parameter case. It provides examples for source po-
sition, shape, and impedance parametrization. It is worth men-
tioning that the method developed in86 has been applied in the
code OpenBEM197 by Paltorp et al.198

3.3.5. Greedy algorithms

Other than most proper orthogonal decomposition tech-
niques and similar to the work of Panagiotopoulos,194, 195 a
greedy algorithm based on Chebyshev approximation as pre-
sented in84, 196 does not require predefined frequency positions
for its snapshots. After an initially defined snapshot, all other
frequency supports are automatically chosen until a certain
threshold of the residual is achieved. The examples presented
in196 for just a frequency sweep of simple acoustic problems
and in84 for a fully coupled vibroacoustic problem with two
parameter sweeps, i.e., for the frequency and the Young’s mod-
ulus, still remain simple academic examples. However, the
method has the potential to become one of the most popular
techniques, in particular for frequency sweeps, as it can be
automatically used in (almost) arbitrary cases. The method’s
main drawback becomes apparent when the setup of the system
matrices is quite time-consuming, as it happens for large-scale
boundary element techniques. The cases in84, 196 have shown
relatively moderate model sizes for the boundary element part
of the vibroacoustic examples. For them, the system matrices
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are ease to be either store or reconstructed in the iterations.

3.3.6. Low-rank scheme

The low-rank approximation proposed in199 presents an it-
eration scheme for frequency sweeps such that simultaneously
solutions at many frequency points are evaluated. The low-
rank scheme benefits from the fact that the information content
in a frequency sweep is usually lower than the many solution
vectors at all frequencies. The low-rank scheme is based on a
polynomial frequency approximation of the boundary element
equations and on low-rank factorizations of intermediate ma-
trices. Combining both concepts enables efficient evaluations
of matrix vector products and their incorporation into iterative
solvers such as the solvers tested therein, i.e., BiCGstab200 and
GMRes,201 see also.202 While the results of the paper199 can
be considered as a proof of concept, it is questionable whether
this method will prove to be as efficient as other techniques
presented in the previous and subsequent sections and subsec-
tions.

3.3.7. Other frequency approximation and interpola-
tion methods

There are some papers on this topic which seem to be a
bit more challenging to categorize, at least to categorize them
within the categories used for this work.

The earlier mentioned paper by Yoon165 is proposing a Tay-
lor series in terms of the frequency around a certain center fre-
quency. The approximate solution is then yielded by superim-
posing Ritz vectors weighted by the powers of the frequency
difference. The motivation for development of this method has
arisen from frequency-dependent models for porous material
and the Sommerfeld radiation condition.

The interesting work by Liang et al.91 uses finite elements
for the structure and boundary elements (with a Nyström) dis-
cretization (utilizing a fast multipole technique) for the fluid,
thus making it a coupled system as given in Eq. (7). They fur-
ther apply the Schur complement as shown in Eq. (9) and apply
the solution of the eigenvalue problem and a frequency sweep
to that formulation. The authors suggest Cauchy interpolation
to search for complex eigenvalues and Chebyshev interpolation
for the frequency sweep with purely real frequency values. The
paper by Liang et al.91 is further interesting since it provides
some practically relevant suggestions about sampling points,
solvers, and, in particular, relevant from the author’s point of
view, a useful scaling of the system matrix in Eq. (7).

In,203 the authors propose a matrix-free approach for model
order reduction. Basically, this approach is approximating
transfer functions as it is known from the Padé–via–Lanczos
and the Padé–via–Arnoldi techniques which had been used in
the context of finite element techniques. Here, the authors ap-
ply a technique similar to fast boundary element techniques,
such as the approach using hierarchical matrices and the fast
multipole method.

There are a couple of other techniques for frequency sweeps.
Finite element solutions with perfectly matched layers may be
accelerated if the frequency-dependent absorption function is
frozen to a specific, piecewise constant value.204 Interestingly,
the authors describe that they have tried several polynomial
frequency approximations , but none of them seems to perform

better than the frozen frequency value in the absorption func-
tion. Recent work on new absorbing functions has the commu-
nity expected more approaches using perfectly matched layers
for efficient frequency sweeps.205, 206

3.3.8. Comparison of Model Order Reduction Tech-
niques Combined with Frequency Sweeps

In particular, the approaches based on the boundary ele-
ment method for a discrete frequency step show some simi-
larities. These solution methods use the information content of
the problem. In several cases, this is approximated by the basis
of a recycled Krylov subspace. This is, apparently, similar to
how the low-rank scheme works, similar to the greedy algo-
rithm, which is also based on a low-rank approximation, simi-
lar to the basis of a proper orthogonal decomposition, and also
similar to a reduced modal basis. Essentially, it seems as if all
the methods are looking for a reduced basis to reconstruct the
spatial and the frequency variation of vibroacoustic – mostly
– coupled displacement/pressure fields. It is worth mention-
ing here that the fast boundary element methods, e.g., the fast
multipole method, see for example207 and the approaches mak-
ing use of hierarchical matrices,208 also rely on the information
content of the boundary element system matrices and allow for
sparse representations.

In their paper,209 Aumann and Werner have presented a
very valuable (and unfortunately often neglected) comparison
between different model order reduction schemes combined
with frequency sweeps applied to different problems of acous-
tics, vibrations, and vibroacoustics. The authors have tried to
achieve a similarly efficient implementation of these methods
to allow for a fair comparison. In addition, they provide a link
to their codes and data. However, discussing the results in de-
tail would go beyond the scope of this paper. Furthermore, it
has been impossible for these authors to consider a large part
of the techniques discussed here. While there are already quite
many methods available, this is an emerging field with many
new publications every year.

3.4. Krylov Subspace Recycling with
Deflation

Krylov subspace recycling techniques have already been
discussed in the context of frequency sweeps using proper
orthogonal decomposition. Apparently, the work by Pana-
giotopoulos et al.86, 194, 195 has mainly been inspired by a paper
by Keuchel et al.210 It was the idea of these authors that the
iterative solver could benefit from a previous solution in a fre-
quency sweep if the frequency point of the previous problem is
not too far away from the current one. The results have shown
an improvement, which has been moderate, however. It has
been much better than what the author has managed some two
decades ago when he expected an improved convergence of the
initial solution guess for the iterative solver in the context of
his paper202, but this was not the case. However, it seems to be
much more sensible to use Krylov subspace recycling instead
of relying on a very good initial guess, at least when using
either the GMRes algorithm201 or the generalized conjugate
residual with inner orthogonalization and/or Deflated Restart,
see210 and references therein.

It has been the idea of Panagiotopoulos et al.211, 212 that a
deflated Krylov subspace can be used efficiently for solutions
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over a large frequency range. This deflated subspace would be
yielded in an offline computation prior to a frequency sweep.
It is considering the solution of the entire problem for a couple
of master frequencies. Actually, the idea is rather similar to the
methods discussed in the previous two subsections. They both
focus on the information content and argue that the information
content is not that much different between different frequency
solutions. Here, the iterative solution for a frequency incre-
ment benefits substantially from previous evaluations. As the
previous alias offline computations are distributed over the en-
tire frequency range, it is expected (and shown in the papers)
that very fast solutions can be achieved even in the gaps in be-
tween. These gap solutions are then called online solutions,
which refer to the solutions to provide a (virtually) continuous
frequency response curve for the entire frequency range. An
interesting extension of211 has been shown in212 with its com-
bination with conventional preconditioners. The authors show
that a conventional preconditioner constructed for the solution
at a single frequency can be quite efficient over a certain fre-
quency range.

Other than in the techniques discussed in the previous sec-
tion, Krylov Subspace Recycling with Deflation is not a fre-
quency approximation technique but solves the (discretized)
problem, i.e., the system of equations, with an arbitrary accu-
racy based on the demanded residual of the iterative solver. It
is rather likely that the techniques can also be efficiently ap-
plied to the problem of reanalysis. It is just that the author is
unaware of any work published on this subject.

3.5. Low- and High-Fidelity Models Utilizing
Gauss Processes

A completely different concept for frequency sweeps (and
actually for optimization purposes, too) consists in the use of
multi-fidelity models. A multi-fidelity model allows the com-
bination of multiple models with differing fidelity levels. Typ-
ically, it consists of a low-fidelity and a high-fidelity model.
Further fidelity levels may be used, but they are not that com-
mon.

Low-fidelity models are attributed to low computational
costs and decreased accuracy, whereas high-fidelity models
achieve predictions with higher accuracy for the burden of high
expenses. Analytical or numerical models at small scale can
be regarded as low-fidelity models. Highly resolved numeri-
cal models or cumbersome physical experiments can be con-
sidered to be high-fidelity models. As such, the advantages
of both fidelity levels, namely, fast evaluations and high accu-
racy, are merged in a multi-fidelity model. The correspondence
between the different fidelity models is arranged by using a
technique based on the idea that the frequency dependence ac-
counts for a Gaussian process. It allows to substitute a complex
model by an efficient surrogate model.213, 214

Multi-fidelity models have been used to efficiently solve par-
tial differential equations.215, 216 Beyond Gaussian processes,
artificial neural networks have been implemented in multi-
fidelity schemes for parameter-dependent outputs217 and, more
than two decades ago, in a multi-level scheme for vibroacous-
tic optimization of a vehicle hat-shelf.133

According to the author’s knowledge, the first application
of Gaussian processes to frequency sweeps in computational
acoustics has been published by Gurbuz et al.214 Therein, a

multi-fidelity model has been developed based on boundary
element simulations of two different meshes. A coarse and
a fine boundary element mesh accounted for the low-fidelity
and high-fidelity models, respectively. The Gaussian process
model has been trained using frequency responses of the two
fidelity models. Although the frequency responses between
low-fidelity and high-fidelity models have differed by more
than five decibels, only a few computations of the high-fidelity
model (in combination with more computations of the low-
fidelity model) have been required to precisely predict the fre-
quency response curve of the high-fidelity model in much de-
tail.

The author believes that this approach will lead to a new
family of efficient methods for frequency sweeps and maybe
even for efficient repeated analysis.

3.6. Efficient Reanalysis
Efficient reanalysis methods account for an important ingre-

dient to uncertainty quantification and optimization in situa-
tions where parameter modifications change the vibration of
a structure but hardly change the fluid’s domain and proper-
ties. Only the boundary (or the interface) conditions of the
fluid are modified, and thus, it seems unnecessary to solve the
same problem on and on.

Previous subsections discussed traditional methods for effi-
cient reanalysis. There are methods to efficiently reconstruct
the (frequency-dependent) inverted system matrix based on
eigenvectors and eigenvalues, including the well-known ra-
diation modes. Further, local quantities can easily make use
of previously evaluated and stored acoustic transfer vectors.
However, all these traditional methods come with some short-
comings, which is the reason why additional methods are re-
quired in this context.

The literature rarely addresses efficient reanalysis. The au-
thor is aware of a few papers addressing the problem of analy-
sis with many right-hand sides in a single computational step.
The approach of Meerbergen and Bai218 is using recycled Ritz
vectors and the Lanczos method for efficiently solving the
frequency sweep with many right-hand sides. Similarly, the
work219 has presented a combination of a frequency sweep
comparable to the one suggested in138 and many different ex-
citation cases at once.

As mentioned above, Krylov subspace recycling with de-
flation could account for another technique being suitable for
efficient reanalysis techniques as they enable the user to make
use of a predetermined Krylov subspace, allowing for a very
fast solution of the arising systems of equations.211, 212 Appli-
cation to parameter dependencies beyond frequency is still to
be found in the literature.

The recent paper122 addresses the problem of many right-
hand sides for boundary element matrices with Toeplitz struc-
ture. A different approach has been presented in220, where the
authors try to store data of the inverse system matrix for a fast
multipole boundary element algorithm. They could show that
such a technique is well suited as a preconditioner for solv-
ing the frequency-dependent system efficiently but might not
be that well suited for an efficient reanalysis. A parametric
model order reduction scheme, i.e., a greedy algorithm for two
parameters, combined with many right-hand sides, has been
presented by Jelich et al.84
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Overall, the techniques of efficient reanalysis seem to fo-
cus on problems with many right-hand sides. Such problems
occur, especially in uncertainty quantification. In optimiza-
tion, efficient techniques for many right-hand sides may be
useful if a new parameter set requires many function evalua-
tions at once. Among other situations, such a problem may
be encountered if gradient information is purely determined
based on global finite difference techniques1, 72 or for meth-
ods using quite a number of function evaluations within a sin-
gle optimization step. One group of such optimization meth-
ods is known as genetic algorithms, see, for example, discus-
sions in.1 Gradient-based optimization techniques with ana-
lytic, semi-analytic, and/or adjoint operator-based sensitivity
analysis will hardly benefit from methods efficiently solving
for many right-hand sides since most function evaluations need
to be performed sequentially.

The papers on efficient reanalysis of fully coupled vibroa-
coustic systems mentioned in the Introduction of this pa-
per42, 43 are essentially based on a modal reduction scheme.
This makes sense at first glance. However, the author is not
that convinced of the suitability of modal reduction for prob-
lems with a high modal density after testing this technique for
a simple one-dimensional case of the Helmholtz equation.45

This holds in particular in the case of42, 43, where extremely
many (> 1000) modes are present in the frequency range un-
der consideration.

4. CONCLUSION

Having briefly reviewed some concepts for efficient fre-
quency sweeps and reanalysis for optimization and uncertainty
quantification, the author has tried to convince the reader that
this field accounts for a field of active research. Most papers in
this field deal with either purely acoustic or vibroacoustic con-
tent. Even if we assume that the future will allow for efficient
solutions to these problems, the author is sure that there will
remain many challenging problems related to them. One could
be the transfer of these techniques into problems involving
flow as discussed here.221–223 Closely related are efficient time-
domain solutions, including radiation or frequency-dependent
boundary conditions as discussed here224 or non-local bound-
ary conditions.225 Hence, the author expects many more papers
on this subject to be published in the future.
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54 Bermúdez, A., Hervella-Nieto, L., Prieto, A., and
Rodrı́guez, R. An optimal perfectly matched layer with
unbounded absorbing function for time-harmonic acoustic
scattering problems. Journal of Computational Physics,
223, 469–488, 2007.

55 Marburg, S. Boundary Element Method for Time–
Harmonic Acoustic Problems. In M. Kaltenbacher, edi-
tor, Computational Acoustics, chapter 3, 69–158. Springer,
Wien, 2018.

56 Fritze, D., Marburg, S., and Hardtke, H. J. FEM–BEM–
coupling and structural–acoustic sensitivity analysis for
shell geometries. Computers and Structures, 83, 143–154,
2005.

57 Luo, J. and Gea, H. C. Modal Sensitivity Analysis of Cou-
pled Acoustic–Structural Systems. Journal of Vibration
and Acoustics, 119, 545–550, 1997.

58 Flanigan, D. L. and Borders, S. G. Application of Acous-
tic Modeling Methods for Vehicle Boom Analysis. SAE–
paper 840744, 207–217, 1984.

59 Trefftz, E. Ein Gegenstück zum RITZschen Verfahren (A
counterpart to Ritz’ method). In Proceedings of the 2nd in-
ternational Congress on Applied Mechanics. Zürich, 1926.

60 Deckers, E., Atak, O., Coox, L., D’Amico, R., Devriendt,
H., Jonckheere, S., Koo, K., Pluymers, B., Vandepitte, D.,
and Desmet, W. The wave based method: An overview of
15 years of research. Wave Motion, 51, 550–565, 2014.

61 Hiptmair, R., Moiola, A., and Perugia, I. A Survey of Trefftz
Methods for the Helmholtz Equation, 237–279. Springer,
Cham, 2016.

62 Marburg, S., Shepherd, M., and Hambric, S. A. Structural-
Acoustic Optimization. In S.A. Hambric, S.H. Sung, and
D.J. Nefske, editors, Engineering Vibroacoustic Analysis:
Methods and Applications, 268–304. John Wiley & Sons,
Chichester, 2016.

63 Sommerfeldt, S. D. and Nashif, P. J. An adaptive filtered-x
algorithm for energy-based active control. Journal of the
Acoustical Society of America, 96, 300–306, 1994.

64 Cazzolato, B. S. and Hansen, C. H. Active control of sound
transmission using structural error sensing. Journal of the
Acoustical Society of America, 104, 2878–2889, 1998.

65 Cazzolato, B. S. and Hansen, C. H. Errors arising
from three-dimensional energy density sensing in one-
dimensional sound fields. Journal of Sound and Vibration,
236, 375–400, 2000.

66 Gurbuz, C., Schmid, J. D., Luegmair, M., and Marburg,
S. Energy density-based non-negative surface contribu-
tions in interior acoustics. Journal of Sound and Vibration,
527, 116824, 2022.

67 Ishiyama, S. I., Imai, M., Maruyama, S. I., Ido,
H., Sugiura, N., and Suzuki, S. The application of
ACOUST/BOOM – A noise level prediction and reduction
code. SAE–paper 880910, 195–205, 1988.

68 Coyette, J. P., Wynendaele, H., and Chargin, M. K. A
global acoustic sensitivity tool for improving structural de-
sign. Proceedings– SPIE The International Society for Op-
tical Engineering, Issue 1923, 1389–1394, 1993.

69 Marburg, S., Hardtke, H. J., Schmidt, R., and Pawandenat,
D. An Application of the Concept of Acoustic Influence
Coefficients for the Optimization of a Vehicle Roof. En-
gineering Analysis with Boundary Elements, 20(4), 305–
310, 1997.

International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024 349



S. Marburg: CONCEPTS FOR FREQUENCY SWEEPS AND EFFICIENT REPEATED ANALYSIS IN THE CONTEXT OF VIBROACOUSTIC. . .

70 Cremers, L., Guisset, P., Meulewaeter, L., and Tournour,
M. A computer–aided engineering method for predicting
the acoustic signature of vibrating structures using discrete
models. Great Britain Patent No. GB 2000–16259, 2000.

71 Dong, J., Choi, K. K., and Kim, N. H. Design Optimization
of Structural–Acoustic Problems Using FEA–BEA with
Adjoint Variable Method. ASME Journal of Mechanical
Design, 126, 527–533, 2004.

72 Marburg, S. Efficient optimization of a noise transfer func-
tion by modification of a shell structure geometry. Part
I: Theory. Structural and Multidisciplinary Optimization,
24(1), 51–59, 2002.

73 Johnson, W. M. and Cunefare, K. A. Use of principle ve-
locity patterns in the analysis of structural acoustic opti-
mization. Journal of the Acoustical Society of America,
121, 938–948, 2007.

74 Gurbuz, C. and Marburg, S. Efficient analysis of energy-
based surface contributions for an entire acoustic cav-
ity. Journal of Theoretical and Computational Acoustics,
31(3), 2350002, 2023.

75 Kim, N. H., Dong, J., and Choi, K. K. Energy flow anal-
ysis and design sensitivity of structural problems at high
frequencies. Journal of Sound and Vibration, 269, 213–
250, 2004.

76 Cho, S., Park, C. Y., Park, Y. H., and Hong, S. Y. Topology
design optimization of structures at high frequencies using
power flow analysis. Journal of Sound and Vibration, 298,
206–220, 2006.

77 Lamancusa, J. S. Numerical Optimization Techniques for
Structural–Acoustic Design of Rectangular Panels. Com-
puters and Structures, 48(4), 661–675, 1993.

78 Shepherd, M. R. Structural–Acoustic Optimization of
Structures Excited by Turbulent Boundary Layer Flow.
Dissertation, Penn State University, 2014.

79 Klaerner, M., Wuehrl, M., Kroll, L., and Marburg, S.
Efficient Vibro-Acoustic Optimisation of a Thermoplas-
tic Composite Oil Pan. SAE Technical Papers, 2018–01–
1480, 2018.

80 Klaerner, M., Wuehrl, M., Kroll, L., and Marburg,
S. Accuracy of vibro-acoustic computations using non-
equidistant frequency spacing. Applied Acoustics, 145,
60–68, 2019.

81 Marburg, S., Dienerowitz, F., Fritze, D., and Hardtke, H. J.
Case studies on structural–acoustic optimization of a finite
beam. Acta Acustica united with Acustica, 92(3), 427–439,
2006.

82 Rumpler, R., Göransson, P., and Rice, H. An adaptive
strategy for the bivariate solution of finite element prob-
lems using multivariate nested Padé approximants. Inter-
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