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Data driven fault diagnosis methods are increasingly being used for condition monitoring of rotating machinery in
the era of Industry 4.0. The effectiveness of Variational Mode Decomposition (VMD) denoised vibration signals
in improving the Long Short-Term Memory (LSTM) method for the intelligent fault diagnosis of a rolling bearing
is reported. The raw and VMD denoised vibration signals of rolling bearings are provided as inputs to the LSTM
network for classification of bearing condition. The efficacy of the methodology to extract the fault information is
assessed through datasets obtained from experiment test rig and through the open-source dataset of Case Western
Reserve University (CWRU). A comparative analysis is also carried out using both VMD based decomposition
and denoising techniques along with four machine learning classifiers viz. Decision Tree, k-Nearest Neighbour
(k-NN), Support Vector Machine (SVM) and Artificial Neural Network (ANN) by using the statistical features of
the VMD modes. Among the different methods evaluated, VMD denoised signals when fed to LSTM result in
the maximum classification accuracy of 99.14 % with experimental dataset. For the case of CWRU dataset, VMD
denoised signals as input to the SVM resulted in maximum classification accuracy of 98.16 %.

1. INTRODUCTION

The timely detection of faults developed in rolling bear-
ings is crucial in ensuring uninterrupted operation of rotating
machinery without sudden unexpected failures. Automated
rolling bearing fault detection methods using artificial intel-
ligence have received considerable research interest recently.
This has relevance in the evolution of autonomous manufactur-
ing systems and the emergence of data driven decision making
process for predictive maintenance.1–4

Studies show that machine learning5 and deep learning6

methods play a vital role in automated fault identification of
rolling bearings. In these methods, extraction of statistical
fault features from acquired vibration signals is critical. Signal
decomposition methods are employed by researchers for fault
feature extraction.7 Some of the signal decomposition methods
including Empirical Mode Decomposition (EMD), Ensemble
Empirical Mode Decomposition (EEMD) and Local Mean De-
composition (LMD) have been explored in the context of fault
feature extraction of rolling bearing vibration signals.8, 9 The
main problem with EMD method is the band mixing, which is
eliminated by using EEMD.8 In the case of the LMD method,
the envelop spectrum of the product function is analyzed, there
by detecting the inner and outer race faults in bearings in the

presence of strong noise.10 However, EMD, EEMD and LMD
methods fail to identify the optimum number of modes without
mode mixing which is addressed by VMD.11 Many studies12, 13

have been proposed for improvements in VMD, especially for
parameter tuning.

It is worth mentioning here that severe operating conditions,
the presence of background noise, impulses and the vibration
transmitted from nearby machine components often make the
automated fault detection difficult.14 For effective fault diag-
nosis, denoising the vibration signals before feature extraction
is vital.15 Several researchers have considered wavelet thresh-
olding16 where thresholding was performed on EMD modes
for denoising. Automated denoising techniques using denois-
ing autoencoder17 and convolutional neural network (CNN)18
were also proposed. A two stage denoising method was imple-
mented by choosing Intrinsic mode function (IMF) of VMD
based on sample entropy and further using wavelet threshold
denoising exhibited good results.19 A denoising techniques
was also implemented wherein after Single Value Decomposi-
tion (SVD), the VMD mode is removed considering the singu-
lar values and kurtosis.20 However in both the reported studies,
results are reported as envelope spectra of the denoised signal
without fault classification.21

It is worth noting here that the kurtosis of the mode decom-
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posed signal, which represents the randomness of the signal
was used as an effective parameter for denoising.16 The kurto-
sis value of an IMF which is rich in fault information of faulty
bearings must be greater than the kurtosis of IMF of the signal
from healthy bearings.

Many studies are reported in fault feature classification
using machine learning methods including k-NN, ANN and
SVM.22–25 Few researchers have also proposed machine learn-
ing techniques including k-NN along with VMD26 and Princi-
pal Component Analysis (PCA) along with SVM27 for fault
feature extraction and classification.

The intelligent fault diagnosis methods use a pre-determined
transformation and decomposition for transforming the time
domain data to frequency domain. This requires larger com-
putation time in feature extraction and classification. This is
challenging in real time processing of the fault data which is
essential in autonomous diagnostic systems. This difficulty
is overcome by using the Long Short-Term Memory (LSTM)
network.9, 28, 29 A novel DWT-LSTM based fault diagnosis ca-
pable of discovering complex pattern from a large amount of
data. This has resulted in improved fault detection accuracy.30

Even with the large number of studies on evaluation of per-
formance of machine learning and deep learning classification
of rolling bearing faults with various modal decomposition and
denoising techniques, authors could not identify any specific
study pertaining to the effectiveness of VMD in denoising the
rolling bearing vibration signal and the efficacy of LSTM clas-
sifier for the intelligent classification of bearing fault condition.
The objective of the present study is to explore the capability
of the LSTM network in classifying rolling bearing fault con-
ditions through VMD denoising of the time domain signals.

The raw time domain signals were acquired from test bear-
ings categorized as healthy, with inner, outer race faults and
with ball faults. The open data source of healthy and faulty
rolling bearings available at the CWRU bearing data center
was also employed in the present study for validation. The
raw time domain signals were also directly fed to the LSTM
network for comparison of performance of proposed method-
ology. The performance of the proposed method was further
compared with two other VMD based methods for intelligent
fault classification of components of rolling bearings using De-
cision Tree, k-NN, SVM and ANN. The classification accu-
racy, recall, precision and F1 scores were evaluated to compare
the efficacy of different methods.

The remaining part of the article is structured into the fol-
lowing sections: Section 2 provides the theoretical background
of VMD and LSTM methods. Section 3 describes the exper-
imental details and the datasets used in the study. Section 4
provides the methodology adopted with a graphical descrip-
tion. Section 5 presents the results and the relevant discussions.
Finally, Section 6 concludes the work by quantitatively high-
lighting the main findings with limitations and future scope.

2. THEORETICAL BACKGROUND

VMD is an optimization-based methodology for decom-
posing signals into frequency centered Intrinsic Mode Func-
tions (IMFs) using the calculus of variation.31–33 Each IMF
is centered around a central frequency. An optimization

methodology viz. Alternating Direction Method of Multipliers
(ADMM) is used to identify the center frequency. The original
formulation of the optimization problem is continuous in time
domain, which is to minimize the sum of the bandwidths of all
modes, subject to the condition that original signal is recon-
structed by adding all the modes.

The mathematical expression is

min
uk,ωk

{∑
k

∥∥δt[((σ(t) + j
πt

)
∗ uk(t)

)
e−jωkt

] ∥∥2
2

s.t.
∑
k

uk = f ; (1)

where f is the original signal, λ - Lagrangian multipliers, uk−
kth IMF, ωk - Centre frequency, σ- Dirac distribution, α - The
balancing parameter of the data-fidelity constraint, t - Time-
step of the dual ascent.

Augmented Lagrangian formulation for the above statement
is as following,
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In ADMM, one variable is solved at a time assuming that oth-
ers are known and finally modes and central frequencies are
updated using equation (3) until convergence condition is sat-
isfied.

Update ûk for all ω ≥ 0

ûn+1
k ←

f̂ −
∑

i<k û
n+1
i −

∑
i>k û

n
i + λ̂n

2

1 + 2α(ω − ωn
k )

2
; (3)

Update ωk:

ωn+1
k ←

∫∞
0

ω|ûn+1
k (ω)|2dω∫∞

0
|ûn+1

k (ω)|2dω
. (4)

2.1. LSTM Network

The basic architecture of the LSTM network classifier used
for classification is shown in Fig. 1. Since the input data size
is 20000, the LSTM network classifier’s input layer comprises
of 20000 neurons. These data points are then fed to the hid-
den layer which consists of 5000 LSTM cells. Each LSTM
cell has an input gate, output gate, forget gate, and cell state.
The cell state from previous LSTM cell and new acceleration
information are sent to the adjacent LSTM cell. Since each ac-
celeration data is presented in a succession of time series data,
the LSTM network classifier operates on the premise that they
are all interconnected. Finally, the output from hidden layer is
given to the output layer for prediction. The ”SoftMax” output
layer provides the prediction as probabilities for the four con-
ditions of rolling bearings. Further details of LSTM method
used in this study are referred elsewhere.34, 35
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Figure 1. Basic architecture of LSTM network classifier.

Figure 2. a) Experimental test rig for rolling bearing data acquisition (b)
CWRU test rig.36

Table 1. Operating conditions and specifications of rolling bearing.

Parameters Specifications
Operating Speed 1000 RPM
Shaft diameter 35 mm

DC Motor power 3 HP
Load range 100 N

Bearing type SKF 6007
Number of balls and ball diameter 11 and 8.9 mm
Pitch diameter and contact angle 48.5 mm and 0◦

3. DESCRIPTION OF EXPERIMENTAL AND
CWRU DATASETS

The experimental vibration data were acquired from a setup
consisting of a pulley driven shaft supported on two support
bearings and a test bearing as shown in Fig. 2 (a). The oper-
ating conditions and specifications of the test bearing are indi-
cated in Tab. 1. An ICP type of accelerometer was connected to
the load zone of the test bearing, which in turn was connected
to National Instruments (NI) 9250, which is a 2-channel,±5 V,
vibration input module connected through a C-DAQ 9171 pro-
vided by NI to a computer for data logging and further pro-
cessing. Experimental vibration data from the deep groove ball
bearings classified as healthy, inner, outer races faults and ball
faults have been obtained. Small sized circular faults measur-
ing 1.0 mm diameter were seeded on the inner and outer bear-
ing races and on the balls of different sets of bearings with the
help of electric discharge machining. These faults simulated
cracks and corrosion pitting at an early stage in the operational
bearing’s races and balls. The vibration data were acquired at a

Figure 3. Flow diagram of the reported research work.

sampling rate of 20 kHz. The vibration signals were acquired
for bearing conditions termed, healthy, inner, outer race fault
and ball fault. For each condition of the bearing, 3000 sets of
data of one second duration were acquired. Among the 3000
sets of data readings of each condition of the bearing, 80 % of
the data were considered for training and 20 % were considered
for testing of the LSTM and machine learning classification.

Open-source datasets available at the CWRU bearing data
center36 were used as the benchmark for validation of the pro-
posed methodology. CWRU rolling bearing test rig is shown
in Fig. 2 (b). The dataset provided by CWRU36 was acquired
from a deep groove ball bearing with a fault of size 0.007,
014, and 0.021 inches on inner, outer race and balls of SKF
bearings. The readings were taken under sampling frequencies
12000 Hz and 48000 Hz and a load of 0, 1 HP and 2 HP at
various speeds. The accelerometer was placed at 6 o’clock, 3
o’clock and 12 o’clock position of outer race fault points.

The fault information from CWRU dataset at one HP load
and 1772 rpm with a fault size of 0.007 inches under the sam-
pling frequency of 12000 Hz were considered in this study.
Here the load zone of the outer race fault was taken as 6 o’clock
position.

The data were collected for a duration of 40 seconds for each
condition of bearing. Thus, the study used each data of one
second duration as one set of data. Hence among the 40 sets
of data readings of each condition of bearing, 80 % data was
used for training and 20 % for testing the LSTM and machine
leaning algorithms.

4. FAULT CLASSIFICATION
METHODOLOGY

Figure 3 shows the flow diagram of the proposed methodol-
ogy for improving the LSTM classification of VMD denoised
rolling bearing vibration signals. The raw time domain signals
of the four bearing conditions along with the corresponding
envelope spectra are shown in Fig. 4. Theoretically calculated
fault frequencies37 were Ball Pass Frequency Inner (BPFI) at
108.48 Hz, Ball Pass Frequency Outer (BPFO) at 74.84 Hz,
and Ball Spin Frequency (BSF) at 43.88 Hz. The correspond-
ing experimentally obtained frequencies at 109 Hz, 75 Hz, and
44 Hz respectively along with their harmonics are indicated
in Fig. 4. The raw time domain vibration signals were first
decomposed into various IMFs using VMD. While decompos-
ing with VMD, the balancing parameter α plays a vital role
in identifying the impacts of faults in bearings. If the value
of α was small then VMD detected the impact of the faults.38
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Figure 4. Raw time domain signals of (a-d) healthy, inner race fault, outer
race fault and ball fault and (e-h) the corresponding envelope spectra.

Figure 5. VMD decomposed signals of (a) healthy bearing (b) bearing with
inner race fault.

Therefore, the balancing parameter was set as 2500 and the
number of modes, K was set as 6.39 Representative VMD
modes and the corresponding spectra of healthy and bearing
with inner race fault are shown in Fig. 5. Thereafter, signals
were VMD denoised based on the kurtosis parameter. For de-
noising, the IMF with kurtosis value less than three were dis-
carded which carried the noise component of vibration signal.
The signals were reconstructed from the remaining IMF.40, 41

The reconstructed signals of bearing with healthy and the
three fault conditions after denoising along with the corre-
sponding envelope spectra are shown in Fig. 6. After de-
noising, the noise components are significantly reduced as ob-
served from the envelope spectra.

4.1. Improved LSTM Method Of
Classification

The denoised signals were fed as input to the LSTM classi-
fier. The ”Adam” optimizer was used to perform the optimiza-
tion, and the ”learning rate” was fixed at 0.001.

To have a comparison of performance, the raw vibration sig-
nals were also directly fed as input to the same LSTM network
for fault classification. The procedure was repeated with the
open dataset of CWRU for validation purpose.

Figure 6. VMD denoised signals of (a) healthy bearing (b) bearing with inner
race fault (c) bearing with outer race fault (d) bearing with ball fault and (e-h)
the corresponding envelope spectra.

Table 2. Extracted statistical features.

Maxima Ȳ + Upper deviation
Minima Ȳ - Lower deviation
Mean X̄ = 1

N

∑N
i=1 Yi

Standard deviation s =
√

1
N−1

∑N
i=1(Yi − Ȳ )

Skewness SK =
∑N

i=1(Yi−Ȳ )3/N

s3

Kurtosis K =
∑N

i=1(Yi−Ȳ )3/N

s4

Entropy h(x) = logP (x)

Apart from the deep learning method i.e., LSTM, the effec-
tiveness of VMD denoising was evaluated using four different
machine learning classifiers viz. Decision Tree, k-NN, ANN
and SVM after extracting the statistical features from both the
VMD decomposed and VMD denoised vibration signals.

4.2. Classification By Decision Tree, K-NN,
ANN And SVM

From each of the six VMD modes, seven statistical features
viz. maxima, minima, mean, standard deviation, skewness,
kurtosis and entropy were extracted.42 The mathematical ex-
pressions of these features are provided in Tab. 2. Thus, from
the vibration signals categorised as healthy, inner, outer race
fault and ball fault, a total of seven features were extracted
from each of the six modes which results in 42 features for
each condition of bearing. Here N was the number of data
points and Ȳ was the mean and P (x) was the probability of x.

The box plots indicating the variations of each statistical fea-
ture for the case of raw as well as the VMD denoised signals
are shown in Fig. 7. Each box plot in subfigure indicates the
variation of a statistical feature which were normalised and in-
dicated using a colour scheme. Figure 7 (a-d) indicates the
variation of raw signals for the four conditions of bearing,
while Fig. 7 (e-h) indicates the variations of VMD denoised
signals for the four conditions of bearing using the experi-
mental dataset. Box plots were generated considering all the
samples in the dataset. The mean value of each of the sta-
tistical parameter remained unchanged after denoising, how-
ever the maxima and minima values of each parameter is ob-
served to have variations in magnitude. Similarly, Fig. 7 (i-l)
and Fig. 7 (m-p) shows the variation of statistical features for
the cases of four classes of bearing conditions of the CWRU
dataset. For visualizing the effect of denoising on the distribu-
tion of features, t-SNE plots are shown in Fig. 8 for the case
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Figure 7. Box plots of statistical features of raw signals of (a-d) and (i-l)
healthy, inner, outer race faults and ball fault for experimental dataset and of
CWRU dataset respectively (e-h) and (m-p) corresponding conditions of the
VMD denoised signal.

Figure 8. t-SNE plot of (a-b) raw vibration signal and VMD denoised signals
of experimental dataset (c-d) raw vibration signal and VMD denoised signals
of CWRU datasets.

of experimental and CWRU datasets. Here Fig. 8 (a) and (b)
represent the features of experimental dataset before and after
denoising and Fig. 8 (c) and (d) represent the corresponding
features of CWRU dataset before and after denoising. Each
colour represented the datapoints corresponding to each condi-
tion of bearing projected to the two dimensions from the seven
dimensions of the statistical features. Figures 8 (a) and (b) pro-
vides the t-SNE plots for the raw and denoised data from the
experiments. Here the separation of four bearing conditions
is visible after denoising. For the case of CWRU dataset, the
separation of the four bearing conditions is more evident as
indicated in Figs. 8(c) and (d).

5. RESULTS AND DISCUSSION

5.1. Results Of LSTM Classifier
Accuracy and loss plots of LSTM network classifier using

the raw and VMD denoised signals are shown in Fig. 9. for the

Figure 9. LSTM network classifier accuracy plot of (a) raw signal (b)VMD
denoised signal and loss plot of (c) raw signal (d) VMD denoised signal of
experimental dataset.

Table 3. Classification accuracy using the LSTM method.

Dataset/Method
Classification

Recall Precision F1 Score
accuracy (%)

Experimental
dataset

Raw signal 94.37 0.9433 0.9982 0.9700
VMD-denoised

99.14 0.9916 0.9983 0.9949
signal

CWRU
dataset

Raw signal 82.00 0.9899 0.9879 0.9889
VMD-denoised

87.30 0.9905 0.9887 0.9895
signal

case of experimental dataset. The results in terms of classifi-
cation accuracy, recall, precision and F1 scores for the case of
raw and VMD denoised signals are provided in Tab. 3. The raw
time domain signals when fed to the LSTM network resulted
in a maximum classification accuracy of 94.37 % whereas the
classification accuracy of 99.14 % was obtained in the case of
VMD denoised signals using the experimental dataset. For the
case of CWRU dataset an accuracy of 82 % and 87.30 % were
obtained respectively for the raw and VMD denoised signals.
The results reported in Tab. 3 indicate that the accuracy, recall,
precision and F1 scores of VMD-denoised signals are higher
in comparison with the raw signal for the case of experimental
and CWRU datasets. This indicates the effectiveness of VMD
denoising along with the LSTM classifier.

5.2. Results Of Decision Tree, K-NN, ANN
And SVM Classifiers

To evaluate the efficacy of denoising technique using the dif-
ferent machine learning methods, statistical features extracted
from both the VMD decomposed and VMD denoised signals
were classified using the Decision Tree, k-NN, SVM and ANN
classifiers. The confusion matrix obtained by classifying the
VMD decomposed and VMD denoised signals are shown in
Fig. 10 and 11 respectively. The methodology of classifi-
cation by using the features of VMD decomposed signals and
VMD denoised signals were further validated using the CWRU

300 International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024



T. Joseph , et al.: AN IMPROVED ROLLING BEARING FAULT DIAGNOSIS MODEL OF LONG SHORT-TERM MEMORY NETWORK BASED ON. . .

Figure 10. Confusion matrix of (a) Decision Tree (b) k-NN (c) SVM and
(d)ANN classifier of VMD decomposed signal of experimental dataset.

Figure 11. Confusion matrix of (a) Decision Tree (b) k-NN (c) SVM and
(d)ANN classifier of VMD denoised vibration signal of experimental dataset.

dataset. Table 4 shows the condition wise classification accu-
racy with four different classifiers and two datasets. The in-
ner race fault classification accuracy was less compared to the
outer race and ball fault condition, while the ball fault and the
outer race faults were classified with better accuracy while us-
ing both the datasets. Results using the experimental dataset
show that the condition wise accuracy of Decision Tree classi-
fier was highest in classifying the ball fault and the ANN clas-
sifier showed the maximum class wise accuracy in classifying
the outer race fault. The tabulated results show that the class
wise classification accuracy using VMD denoised signals were
the highest for the case of both the datasets used herein. The
classification accuracy using VMD denoised signals with SVM
showed a class wise accuracy value of 98.83 % while classify-
ing the outer race fault and a value of 99.6 % while classify-
ing the ball faults using the experimental dataset. This method

Figure 12. Overall classification accuracy for VMD decomposed and VMD
denoised signals (a) Experimental dataset (b) CWRU dataset.

showed the highest accuracy in classifying the ball faults.
Table 5 provides evaluation parameters of Machine Learn-

ing (ML) such as classification accuracy, recall, precision and
F1 scores. The results in Tab. 5 show that the SVM clas-
sifier provided maximum classification accuracy of 98.25 %
for VMD decomposed signal and an accuracy of 98.88 % for
the VMD denoised signal using the experimental dataset while
92.42 % and 98.16 % accuracies using the CWRU dataset for
respective conditions.

The overall accuracy of VMD decomposed and VMD de-
noised signals of experimental and CWRU datasets for the
case of four ML classifiers and LSTM classifier are shown in
Fig. 12. It is observed that the SVM classifier outperformed all
other ML classifiers and LSTM Classifier outperformed for ex-
perimental signals after VMD denoising. Significant improve-
ments in classification accuracy were observed for all the clas-
sifiers by using the VMD denoised signal. The recall value
of VMD-denoised LSTM as provided in Tab. 3 showed max-
imum value in comparison with Decision Tree, k-NN, SVM
and ANN classifiers which indicate that VMD-denoised LSTM
classifier outperformed other classifiers in classifying the con-
dition of rolling bearing. The precision value of VMD de-
noised LSTM classifier reached the maximum at 0.9983. The
F1 score of the VMD denoised LSTM classifier showed max-
imum among all the classifiers for the raw and VMD decom-
posed vibration signals.

Since among the ML classifiers, SVM provided best classi-
fication accuracy for both the datasets, a comparison of classi-
fication accuracy of SVM and LSTM classifiers are provided
in Tab. 6. It is worth noting here that classification accuracy
remained consistently higher for the case of VMD denoised
signal for both the SVM and LSTM classifier with the datasets
used in this study. For the case of experimental dataset by
using LSTM with VMD denoised signals as input provided
higher accuracy of 99.14 % compared to SVM. However, for
CWRU dataset SVM, provided the better accuracy of 98.16 %
for denoised signals. It is observed that LSTM classifier re-
sulted in better classification accuracy with VMD denoised
signals when a greater number of samples were available from
experimental dataset. In contrast, when the number of samples
were limited, SVM resulted in better classification accuracy
with VMD denoised signals. It is evident that deep learning
classifier performed better with larger data samples and ma-
chine learning classifier performed better with limited number
of sampled vibration data. To compare the present work with
the state-of-the-art results, Tab. 7 provides the details of fea-
tures used, classifier and the classification accuracy reported in
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Table 4. Comparison of class wise accuracy using experimental and CWRU datasets.
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Experimental
dataset

VMD
decomposed 97.66 97.50 97.66 99.50 98.00 96.50 97.50 97.00 98.16 97.83 98.33 98.66 98.00 97.66 97.50 99.50

VMD denoised 99.17 98.50 98.10 99.33 98.83 98.00 96.00 99.10 99.00 98.00 98.83 99.60 97.83 97.67 98.66 98.83

CWRU dataset
VMD

decomposed 92.33 90.67 91.67 92.33 91.33 89.67 93.33 90.67 92.32 94.52 90.62 92.22 93.67 91.33 92.33 90.67

VMD denoised 100 96.67 93.33 100 100 93.33 93.33 100 100 97.20 99.12 96.32 100 96.67 96.67 96.67

Table 5. Classification accuracy in percentage of all classification methods.

Dataset Method Classifier
Classification
accuracy (%) Recall Precision F1 Score

Experimental
dataset

VMD
decom-
posed
signal

Decision
Tree

98.08 0.9792 0.9794 0.9792

k-NN 97.25 0.9725 0.9728 0.9726
SVM 98.25 0.9825 0.9825 0.9825
ANN 98.17 0.9817 0.9817 0.9817

VMD
denoised

signal

Decision
Tree

98.79 0.9879 0.9879 0.9879

k-NN 98.00 0.9800 0.9802 0.9800
SVM 98.88 0.9888 0.9888 0.9888
ANN 98.25 0.9825 0.9826 0.9825

CWRU
dataset

VMD
decom-
posed
signal

Decision
Tree

91.75 0.9250 0.9307 0.9254

k-NN 91.25 0.9243 0.9288 0.9239
SVM 92.42 0.9375 0.9452 0.9385
ANN 92.00 0.9250 0.9313 0.9253

VMD
denoised

signal

Decision
Tree

97.50 0.9750 0.9733 0.9753

k-NN 96.67 0.9625 0.9631 0.9625
SVM 98.16 0.9875 0.9881 0.9875
ANN 97.50 0.9750 0.9756 0.9750

Table 6. Comparison of classification accuracy.

Method
Accuracy of classification
using experimental dataset

(%)

Accuracy of
classification using
CWRU dataset (%)

Raw Signal
+LSTM

94.37 82.00

VMD denoised
+LSTM

99.14 87.30

VMD
decomposed

+SVM
98.25 92.42

VMD denoised
+SVM

98.88 98.16

the recent literature. In comparison with the reported results,
VMD denoising of rolling bearing vibration signal has resulted
in overall improvement by using LSTM and SVM classifiers
for experiment dataset and CWRU dataset respectively.

6. CONCLUSIONS

This research work addresses the need for improving the
performance of automatic fault diagnosis rolling bearing faults
in noisy environment using data driven methods. An improved
methodology of LSTM classification by employing VMD de-
noising is reported. Experimentally obtained vibration signals
from healthy and bearings with seeded faults on races and balls
are denoised by VMD based on the kurtosis parameter. Enve-
lope spectra of vibration signals are obtained before and after

Table 7. Summary of recent results reported in the literature.

Reference Features used Classifier
Maximum

classification
accuracy

43

Multi-domain fea-
ture set containing
features from time
domain, frequency
domain,and entropy
energy

SVM 100 %

44 Amplitude, BPFO,
Amplitude, BPFI Fine KNN 100 %

45

Discrete Wavelet
Transform, Expec-
tation Selection
Maximization method
of feature selection

GMM 80 %

46
Spectrogram as 224-
pixel square RGB im-
ages

ResNet trained
and tested using
different set of
data

99.5 %

denoising which indicated the extent of denoising. The de-
noised signals are fed to the LSTM classifier for fault clas-
sification. A classification accuracy of 99.14 % is reported.
Raw time domain signals are also fed directly to the LSTM for
comparison purposes which resulted in classification accuracy
of 94.37 %. In addition to the LSTM classifier, four machine
learning classifiers viz. Decision Tree, k-NN, SVM and ANN
are also employed to evaluate the efficacy of VMD denoising.
Recall, precision and F1 scores are also calculated and com-
pared for LSTM and all machine learning classifiers employed.
All the machine learning classifiers achieved higher fault clas-
sification accuracy for VMD denoised signals compared to the
VMD decomposed signals. SVM classifier provided maxi-
mum classification accuracy of 98.88 % among machine learn-
ing classifiers. The methodology is further evaluated with the
benchmark open dataset of CWRU. In contrast to the results
obtained using the experimental dataset, the best classification
accuracy of 98.16 % is observed by SVM classifier using the
VMD denoised signal.

Overall, it is found that VMD denoising improved classi-
fication accuracy in comparison with raw signals and VMD
decomposed signals. LSTM classifier provided best classifica-
tion accuracy using experimental dataset whereas SVM classi-
fier provided best accuracy using dataset of CWRU. The pro-
posed methodology still has some limitations since it has con-
sidered only kurtosis parameter for VMD denoising. This limi-
tation can be overcome by employing other correlation param-
eters for denoising the signals, which is the scope for future
work.
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