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In this paper, a modified multiple signal classification (MUSIC) algorithm tailored for sound source identification
(SSI) of vehicle noise is introduced and experimentally validated. A uniform planar microphone array (UPMA) is
formulated for mathematical modeling, with its SSI-oriented parameters selected based on the primary frequency
spectrum of vehicle noise. Simulations are conducted to compare the SSI accuracy of two conventional spatial
spectra estimation (SSE) algorithms: the Capon algorithm and the MUSIC algorithm. The results demonstrate
that the MUSIC algorithm, which relies on the eigenvalues of a covariance matrix to estimate signal direction,
exhibits superior SSI resolution under low signal-to-noise ratio (SNR) conditions. However, it faces challenges
in distinguishing between coherent or closely spaced signals. To address this, a modified MUSIC algorithm is
proposed by reconstructing the covariance matrix of received signals and the SSE function. Simulation outcomes
indicate that the modified MUSIC significantly outperforms the conventional version, owing to its enhanced SSI
resolution. The accuracy of the SSI system, incorporating the UPMA and the modified MUSIC, is verified using
a low-frequency volume source. Ultimately, the devised SSI system is successfully deployed to identify noise
sources in a vehicle at different operational conditions, further validating the efficacy of the modified MUSIC.
The UPMA and the modified MUSIC presented in this study have direct applicability in vehicle noise source
identification and may be extended to other sound-related engineering fields for SSI purposes.

1. INTRODUCTION

Sound source identification (SSI) techniques, which may
provide the energy distribution of a sound in a spatial domain,
have been given more attention in vehicle noise control. The
vehicle noise generated by the vibrations of structural parts,
such as engine, powertrain, tire and exhaust system, etc., may
lead to early fatigue damage of some parts, thus reducing the
service life of the vehicle. Accurately determining the spatial
locations of noise sources is helpful for analyzing the mecha-
nism of noise and vibration, and can provide a basis for struc-
tural improvement and vibro-acoustic control of the vehicle.
The SSI is one of the techniques used for signal source local-
ization, which have been used in the fields of communications,
radar, sonar, seismology and radio astronomy.1 The commonly
used SSI technologies are mainly involved in the aspects of
microphone array design, source recognition algorithm and vi-
sualization.2, 3

A microphone array consists of multiple microphones ar-
ranged by a certain rule. Due to the different spatial posi-
tion of each array element and the amplitude and phase dif-
ferences of the channels, the spatial location information of
a sound source can be obtained by signal processing. Early
microphone array technology was mainly used in the noise
source recognition of large-scale products. Billingsley4 and

King5 measured the sound field distributions of an aircraft en-
gine and a high-speed train, respectively, by using linear mi-
crophone arrays. Fischer6 established a model of an arc mi-
crophone array for identifying engine noise sources. Based
on the theory of a one-dimensional (1D) linear array, a two-
dimensional (2D) array was developed. Brooks7 studied the
airflow noise source of a helicopter using a 12-channel planar
microphone array model. Piet8 and Michel9, 10 measured the
noise sources on the surface and in the landing process of an
aircraft by using a 39-channel cross-shaped microphone array
and a 111-channel large-size planar array, respectively. Qiao11

designed the regular and randomly optimized microphone ar-
rays for source localization of aircraft landing and flap noises.
To reduce the array size and improve its resolution, some pa-
rameter optimization techniques were introduced into the mi-
crophone array design. Mandal12 used the particle swarm algo-
rithm to optimize the line array and the planar array, in which
the side-lobes were significantly reduced, but the resolution
of the arrays is not high. An L-shape array was designed
and optimized by using the genetic algorithm,13 which effec-
tively suppressed the grating lobes and side-lobes of the two-
dimensional sparse arrays. To solve the problems of the two-
dimensional arrays, such as incomplete acquisition of sound
field information and poor imaging quality of sound source
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identification, a three-layered three-dimensional (3D) micro-
phone array was presented.14 The experimental results showed
that the designed array was superior to other two-dimensional
arrays in both the sound source directivity and the side-lobe
suppression. Then a new technique for automatically gener-
ating the 3D scanning surface for acoustic imaging using mi-
crophone arrays is proposed and more accurate results could
be obtained.15 This has advantages such as inexpensive and
short scan time, which is tested using beamforming algorithms
for a spherical array and an Underbrink multi-arm spiral array.
A fast-beamforming method to localize an acoustic emission
source in a thin-walled structure with unknown wave speed
is proposed, which can more accurately localize the damage
source than traditional delay-and-sum beamforming.16 Com-
paratively, the 1D array can be easily designed, but it cannot
provide the complete spatial information of a sound source.
The 3D array may realize the spatial localization of a sound
source, but its complex structure led to a high cost. Thus, a
2D microphone array with moderate performance and cost is
adopted for vehicle noise source identification.

Early SSI approaches are subjective estimation, sound pres-
sure measurement, separate operation, selective isolation, etc.,
which cannot obtain an accurate distribution of noise sources.
Therefore, some techniques based on signal processing meth-
ods, such as spectral analysis, coherence function, surface in-
tensity, near-field acoustical holography (NAH), beamform-
ing, spatial spectrum estimation (SSE), etc., have been pro-
posed in the past decades. Maynard17 first proposed the con-
cept of NAH. Veronesi18 extended the NAH to the cylindrical
and spherical coordinates and successfully realized the holo-
graphic surface reconstruction of a non-planar sound source in
discrete coordinates. To improve the NAH accuracy in equiva-
lent sound source identification, Hald19 proposed a statistically
optimized NAH (SONAH) method, in which the sound field
was reconstructed by using plane wave, evanescent wave and
superposition coefficients. Considering the high requirement
of array aperture for large-scale sound sources in the NAH,
an extrapolation method based on data iteration in real and
wavenumber spaces20 and a patch NAH method based on fast
Fourier transform21 were successively proposed, which extend
the NAH towards a quantitative technique in vibration and/or
noise measurements for actual large-scale structures. For SSI
of a vehicle noise, Yang22 established the geometric relation-
ship between the position and the time of a moving vehicle
in a sound field, and obtained the visualization results of the
noise source identification of a running vehicle. Although the
NAH technology can obtain high-resolution SSI results, the
signal acquisition must satisfy the near-field sound source con-
dition and cannot be directly applied in many fields in engi-
neering. The beamforming techniques based on delay-sum of
multi-channel data can compensate for this deficiency.23, 24 To
improve the resolution of the acoustic image, some methods,
such as the cross-spectral delay-sum (CPDS), the deconvolu-
tion approach for mapping of acoustic sources (DAMAS) and
the CLEAN based on spatial source coherence (CLEAN-SC),
etc., have been introduced into SSI. Based on the binocular
stereovision method, Yardibi25–27 systematically compared the
CPDS, DAMAS and CLEAN-SC algorithms, and the results
suggest that the resolutions of the DAMAS and CLEAN-SC

are higher than that of the CPDS. The DAMAS method has
been successfully applied in noise source recognition of rotat-
ing machinery.28

Due to the Rayleigh limit, the acoustic images from the
above beamforming methods have some problems, such as low
resolution, pseudo source and high side-lobe, etc. To break
through the Rayleigh limit, the SSE-based beamforming al-
gorithms that use a spatial array to parameterize sound sig-
nals in a space have been developed. An early SSE-based al-
gorithm proposed by Bartelett29 cannot recognize the sound
sources with a distance less than beam width. Capon30 pro-
posed an improved maximum likelihood estimation algorithm
that can identify the sound sources with Gaussian distribu-
tions, however, needs to solve inverse autocorrelation matrix
of signals and requires a large amount of computation. To re-
duce computational complexity, Schmidt31 proposed the mul-
tiple signal classification (MUSIC) algorithm with higher res-
olution, in which the eigenvalues of the received signals are
firstly decomposed, and then the orthogonality of noise sub-
space and signal subspace are utilized for sound source lo-
calization. Subsequently, an estimation of signal parameters
via rotational invariance technique (ESPRIT)32 was presented
by establishing a solvable function based on the array charac-
teristics and further searching the spectral peak on the func-
tion to estimate signal source direction. Considering the ES-
PRIT, furthermore, the high-resolution methods, so-called the
CLEAN-SC with compressed grids (CLEAN-SC-CG)33 and
CLEAN with cross spectral matrix function (CLEAN-CSM)34

were proposed based on the functional beamforming (FBF)
and CLEAN. More recently, the Hilbert curve was introduced
into the CLEAN-CSM, and a fast deconvolution method was
developed,35 which achieved a higher computation efficiency
and a better dynamic range in the multi-sound sources local-
ization. Currently, the most commonly used SSE algorithms
are the MUSIC algorithm and its improved versions, such as
the root-seeking MUSIC and the dimension reduction MUSIC
algorithms36–38 which are mainly applied in the fields of radar
and sonar, but are rarely used for SSI of vehicle noise. There-
fore, due to the characteristics of vehicle noise, it is still neces-
sary to develop novel SSI approaches to for noise source iden-
tification in vehicle engineering.

Based on the above discussions, it can be found that the
SSE-based algorithm can provide high-resolution SSI results
by using a relatively small number of array microphones,
and can overcome the shortcomings of the limitations of mi-
crophone number and measurement distance of the acoustic
holography technique and low resolution of the traditional
beamforming algorithm. The MUSIC algorithm suffers from a
drawback: when multiple sources are coherent or close to each
other, the covariance matrix of the array signals becomes rank-
deficient, resulting in the MUSIC unable to distinguish them.
The sources investigated in this study is an engine, which emit
operational noise propagating through both air and solid medi-
ums, resulting in multiple coherent sources within the engine
compartment. By constructing a full-rank covariance matrix
and introducing a new noise subspace, the modified MUSIC
can identify the aforementioned coherent sources and closely
spaced sources. Based on a self-designed microphone array,
the noise source identification of the proposed method is ex-
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perimentally verified, and the influences of array parameters
on its output performance are investigated as well.

2. MICROPHONE ARRAY MODELING AND
SETTING

2.1. Modeling For A Uniform Planar Array
This paper designs a uniform planar microphone array, as

shown in Fig. 1. The uniform planar array with M × N el-
ements in the x − y plane was placed in the far field of the
sound sources. The spacing among the elements was d. There
were K sound sources in the space, and the sound signals satis-
fied the narrowband signal principle, which means the changes
in sound waves were very small when passing through the
array plane. θk and Φk represent the azimuth and pitch an-
gles of the k th sound source with respect to the array plane,
k = 1, 2, 3, · · · ,K. Thus, the wave path difference β between
the ith array element and a reference element in the space may
be expressed as:

β = 2π(xi cosϕ sin θ + yi sinϕ cos θ = zi cosϕ)/λ; (1)

where, λ was the wavelength of a sound signal, (xi, yi, zi) was
the coordinate of the ith array element. For a planar array on
the x − y plane, zi = 0. According to the theory of one-
dimensional linear arrays, in the orientational matrix Ax with
N array elements on the x-axis, the directional vector a(θk)
of the kth sound source can be calculated by Eq. (2) (see top
of the next page). The uniform array can be regarded as a
combination of M rows and each row was a linear array with
N elements. The directional matrix of the mth row in the ar-
ray was in fact a phase offset of the first row along the y-axis.
Therefore, the directional vector of the kth sound source on the
y-axis can be defined as:

ay(θk) =[
1e=j2π d

λ sin θk cosϕk · · · e=j2π(M−1) d
λ sin θk cosϕk

]T
. (3)

In case of the K sound sources, the orientational matrix in the
y-axis direction Ay was:

Ay = [ay(θ1)ay(θ2) · · · ay(θk)]. (4)

Then, the orientational matrix of each row can be calculated
by Ax and Ay , i.e.,

A1 = AxD1(Ay)

A2 = AxD2(Ay)
...AM = AxDM (Ay)

; (5)

where, Dm()̇ was the diagonal matrix of the mth row. Thus,
an orientational matrix AM×N (θk,Φk) of the uniform planar
microphone array can be rewritten in a form of matrix as in
Eq. (6) (see top of the next page).

2.2. Parameter Selections For Planar Array
To design the uniform planar microphone array in Fig. 1,

firstly, a minimum spacing d among the elements needed to

be determined. To avoid a large level of side-lobes in sound
source identification, the array design must satisfy the Nyquist
sampling theorem, i.e., the sampling frequency should be two
times greater than the frequency of interest of a signal. This
relationship may be mathematically expressed by the spacing
of array elements and the wavelength of sound waves:

d ≤ λmin

2
. (7)

In term of the array resolution that represents the identifica-
tion ability of two adjacent sound sources, for a beam S on a
reconstructed surface with a distance z from the sound source,
the resolution of pitch angle θ can be calculated as:

R(θ) =
zRs

S cos3 θ
; (8)

where, Rs was the width of the main lobe, Rs = 0.866 λ/D,
D denotes the array aperture, λ was the wavelength of the
sound, z was the measurement distance, and θ was the angle
between the incident direction of the sound wave and the nor-
mal line of the array plane. The relationship between the array
resolution R(θ) ∼ 1/ cos3 θ and the incident direction angle
θ of the sound was shown in Fig. 2. As can be seen that, the
array resolution reduces with the angle θ increasing, and re-
duces rapidly when θ > 30◦. Therefore, in actual noise source
identification, the angle between the normal line of the array
plane and the incident direction of the sound wave should be
set within 30◦ in order to ensure imaging resolution.

To investigate the influences of the array dimension and the
element spacing on the acoustic pattern of the array, three sets
of parameters of the uniform array model: (a) M × N =
2 × 2, d = 0.5λ, (b) M × N = 4 × 4, d = 0.5λ, and (c)
M ×N = 4× 4, d = 1.2λ, were selected for acoustic pattern
simulations in this study. The signal to noise ratio (SNR) was
set to 30 dB, the number of snapshots is 500, and the sampling
rate was 1024 Hz. The simulated output acoustic patterns are
shown in Fig. 3.

Comparing the simulated results in Fig. 3 (a) and Fig. 3 (b),
the array resolution improves with increasing of the element
number. The results shown in Fig. 3 (a) and Fig. 3 (c) indi-
cate that the element spacing follows the principle of minimum
spacing principle. When the element spacing is greater than
0.5λ, a serious side-lobe phenomenon occurred, which affects
the array pointing performance. Therefore, the uniform planar
array was designed as a dimension of 4× 4. For the stationary
vehicle noise, the frequency range is mainly below 200 Hz.
According to the principle of minimum spacing, the element
spacing is determined as d = 1/λmin = 15 cm.

3. COMPARISON OF SSE ALGORITHMS
FOR SOUND SOURCE IDENTIFICATION

The basic and typical SSE-based algorithms are the Capon
and MUSIC algorithms. The MUSIC constructs a covariance
matrix of signal vectors and maps them into the signal and
noise subspaces according to the matrix eigenvalues. It uti-
lizes the orthogonal characteristics of the subspaces to define
a SSE function, and identifies the sound source by searching
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AX = [a(θ1)a(θ2) · · · a(θk)] =


1 1 · · · 1

e=j2π d
λ sin θ1 e=j2π d

λ sin θ2 · · · e=j2π d
λ sin θk

· · ·
. . .

...
e=j2π(M−1) d

λ sin θ1 e=j2π(M−1) d
λ sin θ2 · · · e=j2π(M−1) d

λ sin θk

 . (2)

AM×N (θ1,Φk) =
1 e−j 2πd

λ sin θ2 cosΦ2 · · · e−j 2πd
λ (N−1) sin θk cosΦk

e−j 2πd
λ sin θ1 cosΦ1 e−j 2πd

λ sin2 θ2 cosΦ2 sinΦ2 e−j 2πd
λ (N−1) sin2 θk cosΦk sinΦk

...
. . .

...
e−j 2πd

λ (M−1) sin θ2 cosΦ2 e−j 2πd
λ (M−1) sin2 θ2 cosΦ2 sinΦ2 · · · e−j 2πd

λ (N−1)(M−1) sin2 θk cosΦk sinΦk

 . (6)

Figure 1. A model of uniform planar microphone array.

Figure 2. The relationship between the array resolution and the incident
direction of a sound.

for spatial spectral peaks. The main sound source of a station-
ary vehicle is engine noise, which forms a continuous sound
source surface on the vehicle body through air and/or solid
propagations. To accurately obtain the sound source surface of
the vehicle, this paper proposes a modified MUSIC algorithm.
The results are compared to those of the Capon and MUSIC
algorithms to demonstrate its superiority.

3.1. Modified MUSIC Algorithm

Assuming that, (a) the uniform planar array satisfies the
minimum spacing condition in Eq. (7), (b) the sounds emit-
ted by the sound sources are mutually independent narrowband
signals, (c) the noises in received signals were uncorrelated
Gaussian white noise with the same variance, and (d) the num-
ber of sound sources was less than the number of the array

Figure 3. The output acoustic patterns of the designed uniform planar arrays:
(a) M × N = 2 × 2, d = 0.5λ, (b) M × N = 4 × 4, d = 0.5λ, and (c)
M ×N = 4× 4, d = 1.2λ

elements, the received sound signals can be described as,

X(t) = AS +N ; (9)

where, A was the directional matrix of the array, S was the
signal source matrix and N was the received noise matrix. The
covariance matrix R of the received signal may be calculated
by,

R = E[X(t)XH(t)] = APAH + σ2I; (10)

where, P was the covariance matrix of the spatial signals, and
I was the unit matrix. H denotes the conjugate transpose of a
matrix. Due to the independence of signal sources, P was a di-
agonal matrix, where the diagonal elements were powers of the
signal. Because the number of sound sources was less than the
number of array elements, R was full rank and can be decom-
posed into eigenvalues. However, the MUSIC algorithm also
has its shortcomings. When there were two coherent signals or
two signals that were very close to each other, the traditional
MUSIC algorithm cannot distinguish them. It was necessary to
restore the signal covariance matrix to a full-rank matrix. So,
the MUSIC was modified following the below steps:

(a) Reconstruction for the covariance matrix Rx of the re-
ceived signal:

Rx = 1/2(R+ IvR
∗Iv); (11)

where, Iv was the inverse unit matrix, and R∗ was the con-
jugate matrix of R. Given that the covariance matrix R was
Hermitian, R∗ was equal to the transpose of R.
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(b) Eigenvalue decomposition and subspace definition of the
matrix Rx

Rx = UsΣsU
H
s + UnΣnU

H
n ; (12)

where, Us and Un were the decomposed eigenvectors of the
signal subspace and the noise subspace, respectively. Here,
UnΣnU

H
n was defined as the first noise subspace RNx1 and

expressed as:

RNx1 = UnΣnU
H
n = Un1Σn1U

H
n1. (13)

Replacing the Rx with the RNx1 and performing eigenvalue
decomposition. Similarly, another noise subspace was ob-
tained, which is named the second noise subspace RNx2:

RNx2 = Un2Σn2U
H
n2. (14)

In a coherent acoustic environment, some of the signal energy
leaks into the noise space. The difference between RNx1 and
RNx2 was that the residual signal energy contained in the first
noise subspace was greater than that in the second noise sub-
space. The two noise subspaces were partially coherent.

(c) Sum of the results in the noise subspaces obtained in step
(b) {

Un = Un1 + Un2

Σn = Σn1 +Σn2

. (15)

Thus, a new noise subspace can be defined as RN =
UnΣnU

H
n , and thereby a result of Rnn = UnΣ

−1
n UH

n . This
processing procedure is like spatial smoothing algorithms,
where the noise subspaces obtained from two decompositions
maintain partial coherence with the signal subspace.

The coefficient 1/2 in Eq. (11) and the summation operation
in Eq. (15) ensure that the noise energy remains consistent.

(d) Construction of the SSE function by substituting the
Rnn:

PMUSIC(θ) =
1

aH(θ)RnnRnnHa(θ)
. (16)

3.2. Simulation Experiments And
Discussions

The Capon, the traditional MUSIC and the modified MU-
SIC algorithms were simulated and compared in this study.
Firstly, the simulation conditions were set as follows: The
dimension of the uniform planar array is 44, and the ele-
ment spacing is d = 0.5λmin. Two sound sources located at
[θ1,Φ1] = [30◦, 30◦], [θ2,Φ2] = [100◦, 120◦] were assumed in
the space. The distance between the two sound sources and the
array plane was 2 m. The SNRs of the two sound sources were
set to SNR = [30, 10] dB. In the simulations, the number of
snapshots was 500, and the sampling frequency was 1024 Hz.
The simulated results of the Capon and the MUSIC algorithms
are shown and compared in Fig. 4. On the surfaces of the left
panels in Fig. 4 (a) and (b), there were two obvious spectral
peaks at the positions [30◦, 30◦] and [100◦, 120◦], indicating
that the Capon and the MUSIC can identify the orientations of
the sound source in the space. Comparing the contour lines
of the results identified by the two algorithms shown in the
right panels in Fig. 4, the MUSIC algorithm has a more con-
centrated output energy at the second sound source position

[100◦, 120◦], although the SNR = 10 was lower than that
used in the Capon. This indicates that MUSIC has higher res-
olution and more accurate that the Capon algorithm.

To verify the performance of modified MUSIC, firstly, the
simulations of the traditional and modified MUSIC algorithms
were performed based on a virtual 1D linear array. The con-
ditions were set as follows: three sound sources at the posi-
tions of θ = [−20◦, 11◦, 14◦] were 2 m away from the array
line, the spacing of the array elements was d = 0.5λmin, the
number of array elements was M = 8, the SNR was 10 dB,
the number of snapshots was 500 and the sampling frequency
was 1024 Hz. The simulated results are shown in Fig. 5. The
two algorithms can give an obvious peak at the position of
θ = −20◦. However, the traditional MUSIC only shows a
broadband peak in the angle range of [11◦14◦] and cannot dis-
tinguish the sound sources with small distance. The modified
MUISC algorithm can obtain definite energy peaks at the posi-
tions of θ = [−20◦, 11◦, 14◦], which implies that the modified
version of MUISC algorithm has a higher resolution for sig-
nal source identification comparing with the traditional one.
To examine the estimation errors, by changing the conditions
θ = 50◦ and SNR = [−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10],
the direction of arrival (DOA) estimations of the MUSIC and
the modified MUSIC are conducted. The root mean square
(RMS) errors of the two algorithms for the same sound source
are shown in Fig. 6. Comparison of the RMS errors shows
that the estimated errors of the two algorithms decrease with
increasing of the SNR. The estimated error of the modified
MUSIC is obviously less than that of the traditional one at low
SNRs, and the difference of RMS errors between the two al-
gorithms gradually decreases with the increase of SNR. Thus,
it can be concluded that the modified MUSIC algorithm has
higher accuracy and stronger anti-noise ability in sound source
recognition.

Furthermore, the simulations of the traditional and modified
MUSICs are expanded to 2D space by assuming a uniform pla-
nar array for comparing their capability to identify two sound
sources with a very small distance. The simulation conditions
were as follows: the distance from sound source to array plane
was 2 m, the planar array with a dimension of 4 × 4 had a
uniformed spacing d = 0.5λmin among the elements, The
sound source positions were set to [45◦, 45◦] and [60◦, 80◦],
i.e., the signal azimuths were 45◦ and 60◦, and the pitch an-
gles were 45◦ and 80◦, the SNRs were set to 5, 15 and 20 dB,
respectively, the number of snapshots was 500, and the sam-
pling frequency was 1024 Hz. The 2D simulated SSI results
with the SNR equals to 5 dB, 15 dB and 20 dB are shown in
Figs. 7, 8 and 9, respectively. Comparing the simulated re-
sults in Figs. 8, 9 and 10, the conclusions can be drawn that,
in case of identification for two very close sound sources, the
traditional MUSIC algorithm only has one peak in the iden-
tification results, while the modified MUSIC algorithm yields
two peaks that appear at the positions [45◦, 45◦] and [60◦, 80◦]
(without ”confusion” phenomenon), which are exactly consis-
tent with the assumed sound source positions. Under the con-
ditions of the same SNRs, the obtained spectral peaks from
the modified MUSIC are obviously higher than those from the
traditional one, which implies that the modified MUSIC has a
higher SSI resolution. The obtained spatial spectral peaks of
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Figure 4. Comparison of the sound source identification results of (a) the Capon and (b) the MUSIC algorithms.

Figure 5. Comparison of the simulation results from the MUSIC and the
modified MUSIC algorithms.

Figure 6. The estimated RMS errors obtained from the MUSIC and the
modified MUSIC algorithms.

the traditional and modified MUSIC algorithms increase with
increasing of SNR, which suggests that the SNR needs to be
effectively controlled in application of the MUSICs in engi-
neering.

From the above simulations and discussions, it can be con-
cluded that the modified MUSIC presented in this paper can
obtain exact results in sound source identifications. In terms
of the resolution, RMS error and SSI accuracy, the modified
MUSIC algorithm is superior to the Capon and the traditional
MUSIC algorithms, and might be a promising approach for
SSI of vehicle noise.

Figure 7. The simulated results from (a) the traditional MUSIC and (b) the
modified MUSIC algorithms (SNR=5dB).

4. EXPERIMENTAL VERIFICATION OF
MODIFIED MUSIC ALGORITHM

To prove the modified MUSIC algorithm in practical appli-
cations, furthermore, an experimental verification is conducted
in this paper. The experimental setting39 is shown in Fig. 10
and the corresponding equipment is listed in Tab. 1. A uniform
planar array with a dimension of 4 × 4 (16 microphones) and
the same microphone spacing of d = 15 cm was designed and
made for sound source identification. The 4 × 4 uniform pla-
nar array and a 40-channel LMS-SCM data acquisition system
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Figure 8. The simulated results from (a) the traditional MUSIC and (b) the
modified MUSIC algorithms (SNR=10dB).

were used to collect the sound signals from a low-frequency
volume sound source Q-LMF. The sounds in a low-frequency
range similar to the engine noise of a vehicle were given by
the volume sound source, and the excitation signals were pro-
vided by the LMS-SCM system. The square microphone array
with a size of 45 cm × 45 cm was placed directly opposite
the volume sound source, and the distance between the array
plane and the sound source was 1.2 m to meet the require-
ment of a far-field configuration. Taking the microphone in the
lower left corner of the array as a reference, considering the
spatial position relationship of the volume sound source to the
reference position, the centre coordinates of the sound source
were calculated as [18◦, 16◦]. In accordance with the recon-
struction surface rule, the volume sound source was placed in
the reconstruction surface of the sound source. In experiments,
the sampling rate was set to 1024 Hz according to the Nyquist
sampling theorem. The data collection duration was set to 30 s.
Three experiments were conducted by setting the sound signal
frequencies as 100 Hz, 120 Hz and 150 Hz, respectively.

The data collected from the experiments 1, 2 and 3 were
imported into the sound source identification program based
on the modified MUSIC algorithm. The calculated SSI results
are given in Fig. 11 and Tab. 2. The SSI results show that
the modified MUSIC algorithm can successfully identify the
angular position of the sound source relative to the microphone
array.

From experiment results in Fig. 11 and Tab. 2, it can
be found that, three experiments produce significant spectral
peaks near the reference position of [18◦, 16◦], indicating that
the experiments can identify the position of the sound source.

Figure 9. The simulated results from (a) the traditional MUSIC and (b) the
modified MUSIC algorithms (SNR=15dB).

Table 1. The experimental equipment selected for sound source identification.

Equipment name Company Type
Microphone PCB 378B02

Microphone calibrator B&K 4231
Data acquisition system Siemens LMS-SCM 05

Power amplifier Siemens Q-AMP
Volume sound source Siemens Q-LMF

Host computer Dell Inspiron 14R SE 7420

Table 2. Identified azimuth and pitch angles of the sound source.

Item
Azimuth angle Pitch angle SSI error

(degree) (degree) (degree)
Actual position 18 16 –
Experiment 1 18 16 [0, 0]
Experiment 2 19 15 [1,-1]
Experiment 3 18 17 [0, 1]

Through the contours of the three experiments shown in the
right panels of Fig. 11 and the SSI errors listed in Tab. 2, rel-
ative to the fixed position of the sound source at the angular
coordinate [18◦, 16◦], The azimuth angle errors of the three
experimental results are [0◦, 1◦, 0◦], corresponding to the pitch
angle errors of [0◦, 1◦, 0◦]. The SSI errors are ±1◦. Many stud-
ies have suggested that the error range of the azimuth and pitch
angles is generally between ±2◦ and ±5◦ in the SSI engineer-
ing. The obtained SSI errors are acceptable, because they are
within the allowable error range. These experimental results
suggest that the modified MUSIC algorithm has good stabil-
ity and accuracy, and is effectively in practical sound source
identifications.
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Figure 10. Arrangements of a sound source and the microphone array.

5. CONCLUSION

This paper proposes a modified MUSIC tailored for the
identification of low-frequency vehicle noise sources. The ap-
proach integrates the uniform planar microphone array tech-
nique with a spatial spectra estimation (SSE) algorithm. De-
rived from the traditional MUSIC, the modified MUSIC equa-
tions are formulated through the reconstruction of the covari-
ance matrix. Both simulations and experiments are conducted
to validate the modified MUSIC’s efficacy in sound source
identification (SSI). Simulation results indicate that the modi-
fied MUSIC outperforms both Capon and the traditional MU-
SIC in terms of resolution, root mean square (RMS) error,
and SSI accuracy. Subsequently, a self-designed microphone
array is employed to verify the modified MUSIC’s perfor-
mance, demonstrating its high stability and accuracy in SSI
applications. Finally, the modified MUSIC, alongside the self-
designed microphone array, is applied to identify noise sources
from a stationary vehicle in a semi-anechoic chamber. Obser-
vations reveal that as engine speed escalates, the primary noise
source shifts position. The established SSI system, grounded
in the modified MUSIC and the uniform planar microphone
array, offers exceptional stability and accuracy, making it a vi-
able solution for vehicle noise source identification.
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