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Recognizing audio signals in complex environments is crucial for acquiring adequate information. This paper in-
tegrates the sparse expression algorithm with Mel-frequency cepstral coefficient (MFCC) features. The combined
approach was applied in convolutional neural network classifiers to recognize acoustic scenes in audio signals
within complex environments. The algorithm was then simulated and tested using the TUT Sound Events 2016
and TUT Acoustic Scenes 2016 datasets. In the experiments, the efficacy of the developed sparse feature ex-
traction method was validated. Then, the appropriate sparse dictionary size was determined. The algorithm was
subsequently compared with two recognition algorithms based on sparse and MFCC features, respectively. It was
found that the extraction approach proposed in this paper had a higher signal-to-noise ratio. The results revealed
variations in the required sparse dictionary size for different datasets: 75 for TUT Sound Events 2016 and 150 for
TUT Acoustic Scenes 2016. The MFCC-combined recognition algorithm demonstrated the fastest convergence
during training among the three audio scene recognition algorithms. For both the TUT Sound Events 2016 and
TUT Acoustic Scenes 2016 datasets, the MFCC-combined recognition algorithm achieved the highest classifica-

tion accuracy, and the recognition accuracy for the former dataset was higher.

NOMENCLATURE

y(k): the signal in the frequency domain acquired through fast
Fourier transform

y(n): the original time domain signal

k: the serial number of the sampling point

n: the time sampling point of the time domain signal

p(w): the instantaneous energy of y(k)

hm (k): the frequency response of the triangular filter

m: the serial number of a group of triangular filters

c(l): the L-order MFCC characteristic parameter

s(m): the energy spectral function of the filtered frequency domain
signal

Y': the set of audio samples

y;: the ¢-th audio sample

A the set of the sparse coefficient that corresponds to the audio sam-
ple

a;: the sparse coefficient corresponding to the i-th audio sample

D: the sparse dictionary

d;: the j-th atom in the sparse dictionary

e: the set of reconstruction errors

ac,j: the j-th sparse coefficient obtained from the sparse dictionary
for the sample in the class ¢ audio scene

a. ;¢ the score value of the sparse coefficient obtained after sigmoid
function mapping of a.,;

me: that there are m atoms in the class c sparse dictionary

a': the probability distribution feature of the sparse coefficient score
value of the audio sample in different audio scenes

LIST OF ABBREVIATIONS

MFCC: Mel-frequency cepstral coefficient
CNN: convolutional neural network

FFT: fast Fourier transform

1. INTRODUCTION

In everyday life, audio signals are omnipresent, ranging from sim-
ple music playback to intricate recordings of natural environments,
containing a wealth of information.' However, audio signals in com-
plex environments often exhibit various types of high-intensity noise,
posing challenges for effective signal recognition.> Recognizing au-
dio signals in such conditions has thus become a challenging problem.
The conventional approach often reduces noise from audio signals in
complex environments. However, this method can only completely
separate signals if the noise is entirely known. In practice, noise sig-
nals in complex environments are highly random,’ making complete
elimination difficult and risking the loss of original audio information
during the noise reduction process. Sparse representation, as a signal
processing method, operates on the fundamental idea of using a small
number of key elements to reconstruct the signal. In audio signal pro-
cessing, sparse representation is achieved through sparse dictionary
learning - a matrix composed of a limited number of atoms that can be
linearly combined to form audio signals. The extraction of useful in-
formation is accomplished through the atoms in the sparse dictionary.
Liang et al.* utilized sparse representation for source identification
of collision signals, aiming for more efficient and accurate classifica-
tion in low signal-to-noise ratio (SNR) environments. They found that
sparse features outperformed conventional features, such as the Mel-
frequency cepstral coefficient (MFCC). Rao et al.’> demonstrated the
high resilience of sparse representation-based classification in music
signal analysis by successfully applying it to automatically identify
chords, even under the influence of Gaussian white noise. Addition-
ally, Zou et al.® proposed a sparse representation-based verification
scheme for cell phone source recordings and proved the method’s
effectiveness in capturing intrinsic features of cell phone recording
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Figure 1. Scene recognition process for audio signals in complex environ-
ments using sparse representation technique.

devices. Mishra et al.” proposed diagnosing multiple faults using
balanced and unbalanced acoustic, vibration, and current signal sets.
The experimental results validated the effectiveness and universality
of this method. Mishra et al.® introduced a multi-fault diagnosis sys-
tem that can operate under any rotational speed. This system utilizes
a segmented time-frequency network to extract fault information and
establish an intelligent multi-fault classification model, which greatly
aids in diagnosing multiple faults at various uncertain rotational speed
conditions. The above-mentioned studies have explored various ap-
proaches for audio recognition. Some studies have employed sparse
features, while others have utilized different features to identify audio
signals. Similarly, this paper also employs sparse features for audio
signal recognition, but it fuses them with traditional MFCC features to
enhance recognition accuracy. In this paper, the sparse representation
algorithm was integrated with MFCC features and applied in convolu-
tional neural network (CNN) classifiers to recognize acoustic scenes
in complex environments. The algorithm was then subjected to sim-
ulation experiments using two datasets, TUT Sound Events 2016 and
TUT Acoustic Scenes 2016. The novelty of this article lies in combin-
ing MFCC features with the sparse characteristics of audio and then
using a CNN to recognize and classify audio data, providing an ef-
fective reference for accurately identifying audio signals in complex
environments.

2. AUDIO SIGNAL RECOGNITION BASED
ON SPARSE REPRESENTATION

The process of utilizing sparse representation for scene recogni-
tion of audio signals in complex environments is shown in Fig. 1. Its
specific steps are shown below.

1. Audio clips undergo preliminary noise reduction, windowing,
and framing as part of the preprocessing stage.’

2. The MFCC features are extracted from each frame of the audio
signal with the following equations:

u(k) = 3 ym) -~
p(w) = ly(k)|?
s(m) = In <Z p(w) hm(m) |
k=0 ’
i hm(k) =1
c(l) = i s(m) cos (%ﬁ) =1,2,3,---,L

m=1

&)
where y(k) denotes the signal in the frequency domain acquired
through fast Fourier transform (FFT)," y(n) denotes the origi-
nal time domain signal, (k) is the serial number of the sampling

point, n is the time sampling point of the time domain signal,
p(w) is the instantaneous energy of y(k), hm (k) denotes the
frequency response of the triangular filter,'® m is the serial num-
ber of a group of triangular filters (there are a total of M filters),
c(l) is the L-order MFCC characteristic parameter, and s(m)
denotes the energy spectral function of the filtered frequency
domain signal.!!

3. Sparse representation feature extraction is conducted on the ba-
sis of MFCC features. The main purpose of sparse representa-
tion feature extraction for audio signals is to extract the sparse
coefficients using a sparse dictionary, and the relationship be-
tween audio signal, sparse dictionary, and sparse coefficient'?
is:

Y =DA +e
Y = {y17y27"' ,yn} . (2)
A:{a‘17a27"' aa’ﬂ}’

D ={di,d, - ,dn}

where Y is the set of audio samples, y; is the i-th audio sample
(there are n samples), A is the set of the sparse coefficient that
corresponds to the audio sample, a; is the sparse coefficient cor-
responding to the ¢-th audio sample (there are n coefficients), D
is the sparse dictionary, d; is the j-th atom in the sparse dictio-
nary (there are m in total, which depends on the feature dimen-
sions of the audio samples), and e is the set of reconstruction
errors.'® In the case of known audio samples and sparse dictio-
naries, the process of solving the sparse coefficients of audio is
the process of minimizing e, and the ideal situation is that e is
0. However, in practice, it is almost impossible, so a small toler-
ance value will be set. When the reconstruction error is smaller
than the tolerance value, it is considered that the sparse coeffi-
cients have been obtained. The formula for solving the iterative
model is:

D= argminZn;i_n (|/Da; — yill3 + Allaillr)
b =% SN E))
a; = argmin (||Da; — yill5 + Allaillr)

In the upper part of Eq. (3), D is solved on the premise that the
value of a; has been determined; in the lower part, a; is solved
on the premise that the value of D has been determined. The

reconstruction error can be gradually reduced by iterating the
upper and lower components of the equation set.

4. The sparse coefficient of the audio samples is extracted using
sparse dictionaries for different audio scenes in the same way as
in step 3.'* Then, the score value of the extracted sparse coef-
ficient is calculated for feature fusion. The following equations
calculate the score value:

1
1+ exp(—ac,;)

me
aq = Za'c,j
Jj=1
I
expla
O'(O/IC) — — p( C) -
> k=1 €xp(ag)

a = [g(all)70'(a/2), te 70’(0‘,0)}

where a.,; is the j-th sparse coefficient obtained from the sparse

/ —
Ae,j =

dictionary for the sample in the class ¢ audio scene, a'cy ; is the
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score value of the sparse coefficient obtained after sigmoid func-
tion mapping of a,;,"> m. indicates that there are m atoms in
the class c¢ sparse dictionary, which can be used to obtain m
sparse coefficients for the samples, and a’ is the probability dis-
tribution feature of the sparse coefficient score value of the audio
sample in different audio scenes,'® which is used for the subse-

quent fusion of the features.

5. The MFCC feature and the sparse coefficient-based audio scene
probability distribution features are fused. a’ in each frame of
the audio is combined with the MFCC feature.

6. The combined feature is input into the CNN for forward com-
putation, yielding the classification results for the audio scene.

3. SIMULATION EXPERIMENTS

3.1. Experimental Data

The TUT Sound Events 2016 and TUT Acoustic Scenes 2016
The
TUT Sound Events 2016 dataset comprises 22 recordings from two
acoustic scenes, while the TUT Acoustic Scenes 2016 dataset in-
cludes recordings from 15 acoustic scenes. Each acoustic scene con-

datasets were utilized for conducting simulation experiments.

sists of 78 segments. The duration of each segment was 30 seconds.
The audio parameters for both datasets were 44.1 kHz, dual-channel,
and 24-bit depth. Eleven audio clips were randomly selected from
each acoustic scene in the dataset to form the training set; then, an-
other set of 11 non-repetitive audio clips was chosen from the dataset
to create the testing set.

3.2. Experimental Setup

3.2.1. Testing the performance of the sparse repre-
sentation feature extraction method

Firstly, the effectiveness of the sparse representation feature extrac-
tion method was verified. Eleven randomly selected audio segments
from each acoustic scene in the dataset were used as training data for
learning the audio dictionary. The dictionary sizes were set to 50,
100, 150, 200, and 250, respectively. The number of iterations was
set at 200. Subsequently, another set of eleven non-repetitive audio
segments was randomly chosen from the dataset as the testing set.
Using the trained audio dictionary, a sparse representation feature ex-
traction was performed on the audio in the test set. Subsequently, the
sparse representation features were reconstructed, and the SNR ratio
between the original and reconstructed audio signals was calculated
to assess the performance of the sparse representation feature extrac-
tion approach proposed in this paper. Additionally, a comparison was
made with another matching pursuit-based sparse feature extraction
method'” to validate the effectiveness of our proposed approach. The
method of reconstruction using sparse representation features is:

Y = DA, (5)

where Y is the reconstructed signal, D is the audio dictionary, and A
is the extracted sparse representation feature. This article used SNR
to evaluate the performance of the sparse representation feature ex-

traction method:

IE31
; (6
|z —ylf3

where z is the original signal and y is the reconstructed signal. The
SNR reflects the difference between the original signal and the recon-

SNR=10lg

structed signal, with a larger SNR indicating a smaller difference.
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Figure 2. Recognition results of the sparse feature and MFCC feature-based
algorithm for two datasets under different dictionary sizes.

3.2.2. Testing for the optimal sparse dictionary size

For comparison, the dictionary size of each audio scene was set
to be the same. The dictionary size was set to 25, 50, 75, 100, 125,
150, 175, and 200. The dimension of the MFCC feature was set to 60
through orthogonal experiments. The relevant parameters of the CNN
obtained through orthogonal experiments are shown in Table 1. C'is
the number of kinds of audio scenes.

3.2.3. Comparison of the recognition performance of
various audio scene recognition algorithms for
audio signals in complex environments

To validate the audio scene recognition algorithm, which com-
bined sparse and MFCC features, it was compared with two other
algorithms: one based solely on sparse features and the other based
solely on MFCC. The parameters of the fusion feature-based recogni-
tion algorithm remained consistent with those mentioned earlier, and
the optimal dictionary size was selected. The recognition algorithm
based on sparse features did not incorporate MFCC features, while the
recognition algorithm based on MFCC did not use sparse features.

3.3. Experimental Results

This article measured the performance of sparse feature extraction
methods by evaluating the SNR between the original signal and the re-
constructed signal using the extracted sparse features. A higher SNR
indicated a greater similarity between the original and reconstructed
signals, as shown in Table 2. It can be observed that as the dictionary
size increased, both extraction algorithms initially showed an increase
in SNR followed by a decrease. Furthermore, in the same dictionary
specification, the sparse feature extraction method proposed in this
paper exhibited a higher SNR compared to the matching pursuit-based
method.

The recognition results of the algorithm, based on the fusion of
sparse features and MFCC features, for two audio datasets under dif-
ferent dictionary sizes are depicted in Fig. 2. It can be observed from
Fig. 2 that with an increase in dictionary size, the recognition accu-
racy of this algorithm initially rose and then declined for both datasets.
However, the optimal recognition accuracy was achieved with differ-
ent dictionary sizes for the two datasets. Specifically, for TUT Sound
Events 2016, the highest recognition accuracy was attained with a
dictionary size of 75, while for TUT Acoustic Scenes 2016, the peak
recognition accuracy was observed with a dictionary size of 150.

The convergence curves of the algorithms based on sparse features,
MFCC features, and sparse features + MFCC features during the
training process are illustrated in Fig. 3. As observed from Fig. 3, the
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Table 1. Relevant parameter settings for CNN.

Structure Parameter Structure Parameter
Input layer Audio feature dimension Convolutional 32 convolution kernels (5 X 5), a step size of 2,
number X number of audio frames layer 1 and Relu activation function are used.

Convolutional 32 convolution kernels (3 x 3); a step size of 1; Pooling layer 1 A 2 X 2 maximum pooling frame
layer 2 Relu activation function
Convolutional 64 convolution kernels (3 X 3); a step size of 1; Convolutional 64 convolution kernels (3 x 3); a step size of 1;
layer 3 Relu activation function layer 4 Relu activation function
Pooling layer 2 2 X 2 maximum pooling frame Convolutional 128 convolution kernels (3 X 3); a step size of 1;
layer 5 Relu activation function
Convolutional 128 convolution kernels (3 x 3); a step size of 1; Convolutional 128 convolutional kernels (3 X 3); a step size of 1;
layer 6 Relu activation function layer 7 Relu activation function'8
Pooling layer A 2 X 2 maximum pooling frame Convolutional C convolutional kernels (1 x 1); a step size of 1;
layer 8 Relu activation function

Pooling layer Global mean pooling

Output layer Using the softmax function; C' output channels

Table 2. The reconstruction SNR of the two sparse feature extraction methods
under different dictionary sizes.

Dictionary size 50 100 150 200 250

The sparse feature
extraction method
based on matching pursuit

18.4dB|22.3dB|25.5dB|21.9dB|19.7 dB

The sparse
representation feature
extraction method

21.4dB|25.9dB|30.8 dB|26.3dB|23.2 dB

35
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Figure 3. Convergence curves of three audio scene recognition algorithms
during training.

loss function of the three recognition algorithms, employing CNN as
the classifier, decreased with an increasing number of iterations. No-
tably, the recognition algorithm based on sparse features and MFCC
features exhibited the fastest convergence, stabilizing after approx-
imately 250 iterations. The recognition algorithm based on MFCC
features was closely followed, and it stabilized after approximately
320 iterations. In contrast, the recognition algorithm based solely on
sparse features converged the slowest, stabilizing after approximately
440 iterations.

The recognition results of sparse feature-based, MFCC feature-
based, and sparse feature + MFCC feature-based audio scene recog-
nition algorithms for the TUT Sound Events 2016 and TUT Acoustic
Scenes 2016 datasets are depicted in Fig. 4. The recognition results
in various acoustic scenarios are shown in Table 3. As observed from
Fig. 4, irrespective of the dataset used, the classification accuracy of
the algorithm was highest when the sparse features + MFCC features
were used. The two recognition algorithms, based on sparse features
and MFCC features, respectively, exhibited comparable performance.
When comparing the recognition performance of the same algorithm
for different datasets, it is evident that the algorithm achieved higher
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Figure 4. Recognition results of three algorithms for different datasets.

Table 3. Recognition results of three algorithms in different acoustic scenes.

Dataset No. of Based on | Based on Based on
acoustic sparse MFCC sparse feature
scene feature + MFCC

TUT Sound Scene 1 80.1 82.9 95.8
events 2016 Scene 2 79.8 83.3 96.7
TUT Acoustic Scene 1 81.4 82.9 95.5
scenes 2016 Scene 2 80.7 82.3 95.7
Scene 3 81.0 81.5 95.4
Scene 4 79.9 81.7 94.8
Scene 5 80.4 83.0 94.3
Scene 6 80.3 83.0 94.3
Scene 7 80.2 81.4 94.7
Scene 8 80.5 81.7 95.2
Scene 9 81.0 82.9 94.7
Scene 10 81.4 81.3 94.3
Scene 11 79.8 81.9 95.6
Scene 12 81.0 82.8 95.2
Scene 13 81.7 82.5 94.8
Scene 14 80.2 82.1 95.6
Scene 15 80.8 81.4 95.2

accuracy for the TUT Sound Events 2016 dataset. The data in Ta-
ble 3 also shows the same trend. This discrepancy is because the
TUT Sound Events 2016 dataset comprised only two acoustic scenes,
whereas the other dataset included 15 acoustic scenes. The higher
number of scenes in the latter dataset increased the susceptibility of
the recognition algorithm to misjudgments.
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4. CONCLUSION

This paper combined the sparse representation algorithm with
MEFCC features for a CNN classifier to recognize acoustic scenes in
audio signals within complex environments. The proposed algorithm
was then subjected to simulation experiments. In the experiments,
the efficacy of the sparse feature extraction method proposed in this
paper was validated. Then, the optimal sparse dictionary size was de-
termined, and the performance of this algorithm was compared with
two other algorithms - one based on sparse features and the other on
MECC features. The key findings are as follows. (1) As the size of
the dictionary increases, both extraction algorithms show a trend of
initially increasing and then decreasing SNR. However, the method
combining sparse features with MFCC features had a higher SNR for
the same dictionary size. (2) The highest recognition accuracy was
achieved with a dictionary size of 75 for the TUT Sound Events 2016
dataset and 150 for the TUT Acoustic Scenes 2016 dataset. (3) Dur-
ing the training, the loss function of the three audio scene recognition
algorithms decreased as the number of iterations increased. Specifi-
cally, the feature fusion-based algorithm converged and stabilized af-
ter approximately 250 iterations, the one based on MFCC features
stabilized after about 320 iterations, and the one based on sparse fea-
tures stabilized after around 440 iterations. (4) For both datasets and
the 17 acoustic scenes, the recognition algorithms based on feature
fusion achieved the highest classification accuracy. Additionally, the
recognition algorithm exhibited slightly higher accuracy for the TUT
Sound Events 2016 dataset compared to the other one.

The future research direction involves further enhancing the per-
formance of the sparse feature extraction algorithm to make the signal
after the sparse feature reconstruction is closer to the original signal.
The goal is to improve and enhance the recognition and classification
performance of audio signals.
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