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The operation of rolling bearings is directly related to the reliability of the whole rotating machinery. If the
rolling bearing failure cannot be diagnosed and repaired in time, it will probably lead to equipment shutdown.
The feature extraction process is an important part of bearing fault diagnosis. Some existing feature extraction
methods are sensitive to noise and interference, and cannot fully explore and characterize useful information in
nonlinear and non-stationary signals in complex scenes, and sometimes even lose important information contained
in the data, resulting in low diagnostic accuracy. Therefore, a new method combining Maximum Second-order
Cyclostationarity Blind Deconvolution (CYCBD) and Complementary Ensemble Empirical Mode Decomposition
(CEEMD) was proposed for feature extraction of rolling bearing faults. Firstly, the cyclic frequency is set according
to the failure frequency, and the original signal is filtered by CYCBD. Then, the filtered signal is decomposed into
multiple Intrinsic Mode Function (IMF) by CEEMD, and the effective IMF components are selected by kurtosis
criterion for reconstruction. Finally, the Teager energy operator is used to enhance the transient impact of the
reconstructed signals. The results of simulation and comparison experiments show that the proposed method
can extract bearing characteristics in different fault states more effectively, and the accuracy of network model
diagnosis is improved compared with the traditional methods.

1. INTRODUCTION

As one of the most common basic components in rotating
machinery equipment, rolling bearings are prone to wear, plas-
tic deformation, cracks and other phenomena under the harsh
working environment of high speed and heavy load for a long
time, so accurate fault diagnosis of bearings is very necessary.1

The key technology of fault diagnosis lies in fault feature ex-
traction and fault type recognition. In the aspect of feature ex-
traction, vibration analysis is the most practical method to de-
tect rolling bearing faults. When the bearing has been faulty,
a series of periodic pulse signals will be generated in the vi-
bration signal, and the fault characteristics can be effectively
extracted by analyzing and processing the vibration signals
through various algorithms. In terms of pattern recognition,
the constantly developing machine learning and deep learn-
ing technology has become the mainstream method, and the
diagnosis method has gradually developed in the direction of
intelligence and automation.2 Kaplan et al.3 took the statisti-
cal characteristics of vibration signal, such as kurtosis, max-
imum value and average value, as the input of artificial neu-
ral network to realize the bearing defect diagnosis with high
accuracy. Li et al.4 proposed a feature extraction method of
discrete random separated spectrum images and combined it
with deep learning network for bearing fault diagnosis, finally

achieving good accuracy and generalization ability. Kaya et
al.5 successfully diagnosed and predicted bearing fault degree
based on time-frequency image features extracted by Continu-
ous Wavelet Transform (CWT). Based on the Wavelet Trans-
form (WT), Bayram et al.6 obtained the wavelet coefficient
which can be used for bearing fault classification. Akcan et
al.7 used different entropy values in vibration signals as the
input of the ELM model, and obtained a high classification ac-
curacy.

However, in practical engineering applications, some exist-
ing fault diagnosis methods have some limitations in feature
extraction effect, anti-interference to noise, and ability of deal
with signals in complex environments. To overcome the above
limitations, experts and scholars have put forward many im-
provement and optimization methods. Huang et al.8 proposed
Empirical Mode Decomposition (EMD) in 1988, which has
become a milestone of non-stationary signal processing. How-
ever, the EMD method has many problems, such as mode mix-
ing, end effect, over-envelope, under-envelope, etc. caused by
noise and intermittent signal, which greatly affect its applica-
tion in practical engineering.9, 10 In 2009, Wu and Huang et
al.11 proposed the ensemble Empirical Mode decomposition
(EEMD) method, but the new white noise introduced by this
method will cause interference to the original signal and in-
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crease the calculation cost.12

In 2010, Yes et al.13 proposed the CEEMD method. By
adding two white noise signals with opposite symbols to non-
stationary signals and then performing EMD decomposition,
the signal decomposition efficiency was successfully improved
and the additional interference caused by adding white noise to
the original signal by EEMD method was reduced. The resid-
ual of additional white noise that persists in IMF is eliminated,
the IMF reconstruction error is reduced, and the calculation
time is saved. In view of IMF component reconstruction after
CEEMD decomposition, Sahu et al.14 carried out Adaptive
Threshold Denoising (ATD) for noise-dominated IMF com-
ponents obtained after CEEMD decomposition and tested the
effectiveness of the proposed denoised signals on the exper-
imental data set. Ke et al.15 used the global optimality of
Genetic Algorithm (GA) to optimize the white noise ampli-
tude in EEMD, and then processed the optimized Gaussian
white noise signal through CEEMD, and finally successfully
applied it in bearing fault diagnosis. Gong et al.16 decomposed
and reconstructed the Horizontal Visibility Graph (HVG) by
CEEMD method, and reflected the local geometric features of
vibration signals through the horizontal visibility relationship.
Gu et al.17 combined CEEMD with Permutation Entropy (PE)
to achieve a good decomposition of rolling bearing vibration
signals by taking advantage of the randomness detection of PE
signals.

The Blind Deconvolution (BD) theory has obvious effect in
the process of bearing fault pulse extraction.18 The inverse fil-
tering coefficient is obtained by solving the maximum or mini-
mum criteria of different convolution objects, and then the fault
period or quasi-periodic pulse is extracted from the original
signal.19, 20 One of the most commonly used BD algorithms
is the Minimum Entropy Deconvolution (MED) proposed by
WIGGINS,21 which uses kurtosis as the objective function.
However, kurtosis is very sensitive to large random pulses and
cannot distinguish periodic pulse from random pulse, so it is
only suitable for extracting a single periodic pulse.22 In 2012,
McDonald et al.23 proposed Maximum Correlated Kurtosis
Deconvolution (MCKD) method, which highlighted periodic
pulse components on the basis of correlated kurtosis. How-
ever, MCKD has poor adaptive ability, and the selection of
parameters such as filter length and convolution period has a
great influence on the results.24

Buzzoni et al.25 proposed the method called CYCBD in
2018. Based on maximizing the second-order cyclostationar-
ity (ICS2), the periodic part of the impact energy in the original
signal was considered by introducing cycle frequency param-
eter. Ke et al.26 used CYCBD for early fault feature extrac-
tion of common rail injectors, and input extracted fault fea-
tures into Least Squares Support Vector Machine (LSSVM)
to successfully complete fault identification and classification.
Wang et al.27 improved CYCBD. The cyclic frequency is es-
timated by the autocorrelation function of morphological en-
velope. The performance efficiency ratio index combined with
the equal-step search strategy was proposed to determine the
filter length. The experimental results on the gearbox fault test
platform show that the improved CYCBD can accurately ex-
tract the bearing fault frequency. Zhang et al.28 used Envelope

Harmonic Product Spectrum (EHPS) to accurately estimate cy-
cle frequency, which greatly improved the practical application
value of CYCBD.

In summary, the existing fault feature extraction methods
have some defects, such as sensitivity to noise, limited extrac-
tion ability in complex environment and information loss. The
approach presented in this paper aims to overcome these limi-
tations by combining CEEMD with CYCBD. CEEMD method
has strong anti-noise ability and focuses on capturing differ-
ent frequency characteristics of global signals, while CYCBD
method focuses on analyzing local characteristics such as pe-
riodic characteristics and correlation in signals. The two meth-
ods complement each other's information and can well adapt
to the extraction task in complex environments. At the same
time, with the assistance of Teager energy operator, the noise
is further suppressed, which provides convenience for the sub-
sequent network model diagnosis.

The content of this paper was arranged as follows: the basic
theory, the overall process of feature extraction method, sim-
ulation analysis, comparative experimental verification, and
conclusion.

2. THEORY BACKGROUND

2.1. CYCBD

Blind Deconvolution is a technique that can extract pulse
components from observed signals. Its core purpose is to con-
struct an inverse filter to extract noiseless fault signals from
noisy original signals. The mathematical expression is as fol-
lows:

s = x ∗ h = (s0 ∗ g) ∗ h ≈ s0. (1)

Where s is the calculated source signal, s0 is the target source
signal, x is the mixed signal, g is the unknown impulse re-
sponse function, h is the inverse filter to be sought, and ∗ rep-
resents the convolution operation. It can be expressed in matrix
form as follows:

s = Xh; (2)sN−1

...
sL−1

 =

xN−1 · · · x0

...
. . .

...
xL−1 · · · xL−N−1

×

 h0

...
hN−1

 . (3)

Where L and N represent the length of signal sampling and
the length of inverse filter, respectively.

The cyclostationarity process can be used to describe the
vibration signals of rotating machinery with periodic statis-
tical characteristics, in which some periodic information of
the second-order cyclostationarity (ICS2), characterizing the
periodic fluctuation of the signal energy, indicates the occur-
rence of faults. CYCBD is a blind deconvolution method
based on generalized Rayleigh Entropy, which aims to max-
imize ICS2 and achieve the purpose of fault feature extraction.
Formula (4)– (8) give the general definition of ICS2 matrix.

ICS2 =
hHXHWXh

hHXHXh
=

hHRXWXh

hHRXXh
; (4)
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W = diag(
P
[
|s|2
]

sHs
)(L−N + 1) =

. . . 0

P
[
|s|2
]

0
. . .

 (L−N + 1)∑L−1
l=N−1 |s|2

; (5)

P
[
|s|2
]
=

1

L−N + 1

∑
ek(e

H
k |s|2) = EEH |s|2

L−N + 1
; (6)

E =
[
e1 · · · ek

]
; (7)

ek =
(
e
−j2π k

TS
l · · · e

−j2π k
TS

(L−1)
)T

. (8)

In the above formula, RXWX and RXX are weighted cor-
relation matrix and correlation matrix respectively, W is the
weighted matrix, k is the number of samples, Ts indicates the
fault period.

According to the properties of generalized Rayleigh entropy,
the optimal filter h is obtained by solving the maximum eigen-
value λ, then the maximum ICS2 is obtained:

RXWXh = RXXhλ. (9)

The specific steps of initializing the filter h and setting the
iterative error ε to iteratively solve the optimal filter are shown
in Fig. 1.

2.2. CEEMD
Complementary Ensemble Empirical Mode Decomposition

is a derivative method of EMD. By adding positive and nega-
tive pairs of Gaussian white noise into the original signal and
then using EMD decomposition to calculate the average value,
this method not only effectively suppressed the mode aliasing
effect, but also overcame the disadvantages of low computa-
tional efficiency of EEMD and large influence of white noise
residue, significantly improved the signal-to-noise ratio after
IMF component reconstruction and reduced the reconstruction
error. The details of the CEEMD method are as follows:

1. The M groups of Gaussian white noise with the same am-
plitude and opposite sign are added to the original signal.[

y+i (t)

y−i (t)

]
=

[
1 1

1 −1

] [
x(t)

ni(t)

]
. (10)

Where i = 1, 2, ...,M , x(t) as the original signal, and
ni(t) is the additional ith Gaussian white noise signal.

2. A series of IMF sets c+ij(t), c−ij(t) and residuals are
obtained by EMD decomposition of 2M mixed signals
y+i (t) and y−i (t) respectively. Where cij(t) represents the
jth IMF component obtained after adding the ith noise.
Detailed introduction of EMD is described by Huang.8

3. By summing and averaging IMF components correspond-
ing to the above M groups, the final IMF components of
each order are calculated as follows:

IMFj =
1

2M

M∑
i=1

[
c+ij(t) + c−ij(t)

]
. (11)

Figure 1. Iterative solution of the optimal filter.

Finally, the original signal x(t) can be decomposed into a
series of IMF components and a residual rn(t):

x(t) =

N∑
j=1

IMFj + rn(t). (12)

2.3. Teager Energy Operator
Teager energy operator is a nonlinear operator used to cal-

culate signal energy. For continuous signal s(t), Teager energy
operator is defined as:

φ [s(t)] = [ṡ(t)]
2 − s(t)s̈(t). (13)

Where ṡ(t) and s̈(t) represent the first and second differential
of the measured signal s(t) at time t, respectively.

For discrete signal s(n), difference is used to instead of dif-
ferential, and only three discrete points are used in each calcu-
lation, so it has good time resolution and demodulation speed.
The Teager energy operator of discrete point can be expressed
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as:
φ [s(n)] = [s(n)]

2 − s(n+ 1)s(n− 1). (14)

Different from the traditional definition of signal energy as the
square of signal amplitude, the Teager energy operator is more
sensitive to transient components, and the output is the square
of instantaneous amplitude multiplied by the square of instan-
taneous frequency. Therefore, Teager energy operator can ef-
fectively detect the sudden change of energy flow and enhance
the characteristics of high-frequency transient shock.

3. THE PROPOSED FAULT FEATURE
EXTRACTION METHOD OF ROLLING
BEARING

Based on the advantages of CYCBD and CEEMD methods,
a rolling bearing fault feature extraction method was proposed
in this paper. The specific process is shown in Fig. 2. The main
steps of this method were as follows:

1. Step 1: Acceleration sensor was used to collect vibration
signal of rolling bearing.

2. Step 2: Selecting the appropriate filter length, the bearing
failure frequency was obtained by the theoretical formula
to set the cycle frequency set, the maximum number of
iterations and convergence criteria.

3. Step 3: CYCBD was used to filter signals for noise reduc-
tion.

4. Step 4: Performing CEEMD decomposition on the fil-
tered signal to obtain a series of IMF components ar-
ranged from high frequency to low frequency.

5. Step 5: Calculating the kurtosis value of each IMF com-
ponent. According to the kurtosis criterion, the kurtosis
will increase significantly when bearing faults occur, so
the IMF components with kurtosis value greater than 3
were selected for signal reconstruction.

6. Step 6: Using Teager energy operator to improve the im-
pact characteristics of the reconstructed signal.

7. Step 7: Analyzing the envelope spectrum of the signal
processed by Teager energy operator and extracting clear
fault features.

4. SIMULATED ANALYSIS

To verify the effectiveness of the proposed fault feature ex-
traction method, the bearing outer ring fault was simulated by
using periodic unilateral attenuation pulse signal x(t) and har-
monic component s(t) mixed with Gaussian white noise n(t).
The constructed simulation y(t) can be expressed as:

y(t) = x(t) + s(t) + n(t)

x(t) = y0e
−ζωnt sin

(
ωnt
√
1− ζ2

)
ωn = 2πfn

s(t) = A0 sin (2πf0t) +A1 sin (2πf1t)+

A2 sin (2πf2t)

. (15)

Figure 2. Specific process of fault feature extraction.

Where y0 was 0.3 for displacement coefficient, fn was
3000 Hz for natural frequency of bearing, and ζ was 0.035 for
damping coefficient. A0, A1 and A2 were 0.15, 0.1 and 0.2 re-
spectively, representing the amplitude of interference harmon-
ics, f0, f1 and f2 were 5, 75 and 150 respectively, represent-
ing the frequency of interference harmonics. n(t) is Gaussian
white noise. After adding noise, the SNR of y(t) was −10 dB.
Under the condition of sampling frequency 12000 Hz, 8192
data points are collected, and the pulse period is set to 0.01 s,
so the fault frequency is 100 Hz. The time domain diagram of
the fault simulation signal of the bearing outer ring is shown in
Fig. 3.

The Hilbert envelope spectrum below 1500 Hz of the sim-
ulation signal is shown in Fig. 4. Due to noise and harmonic
interference, the periodic pulse component with a frequency of
100Hz in the signal has been completely covered without any
fault related information. To extract the periodic pulse compo-
nent clearly, according to the fault feature extraction method
proposed in this paper, the hybrid simulation signal was firstly
filtered by CYCBD to reduce the noise interference. The fil-
ter length was 400 and the cyclic frequency set of 100 Hz and
its multiples was constructed according to the pulse signal fre-
quency. The filtered envelope spectrum of the simulated signal
is shown in Fig. 5. Compared with the stage before filtering,
part of the noise interference component in the signal is fil-
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(a)

(b)

(c)

(d)

Figure 3. Simulation signals: (a) periodic unilateral
attenuation pulse signal; (b) Harmonic components; (c)
Gaussian white noise; (d) Mixed signals.

Figure 4. Envelope spectrum of original simulated signal.

Figure 5. Envelope spectrum of simulated signal after
CYCBD filtering.

tered out, the periodic pulse component begins to appear, and
the amplitude of the triple frequency component is the most
obvious. Then, the filtered simulation signal was decomposed
by CEEMD, and the signal was decomposed into 11 IMF com-
ponents from high frequency to low frequency and a residual,
as shown in Fig. 6 and Fig. 7. Then, relevant IMF components
were selected for reconstruction according to the kurtosis cri-
terion. The kurtosis values of each IMF component are shown
in Table 1. Then, the instantaneous energy of the signal is cal-
culated by using the Teager energy operator to highlight the
periodic pulse part of the signal. The time domain waveform
of the reconstructed signal and instantaneous Teager energy
are shown in Fig. 8. Finally, through the envelope analysis of

Figure 6. High-frequency components of IMF.

Figure 7. Low-frequency component and residual of IMF.

Table 1. The kurtosis of the IMF components.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
kurtosis 3.160 3.302 4.097 3.264 2.864 2.764

IMF IMF7 IMF8 IMF9 IMF10 IMF11
kurtosis 2.631 3.3663 2.031 1.904 1.455

the instantaneous energy waveform of Teager, clear and accu-
rate fault characteristic frequency and frequency doubling are
obtained, as shown in Fig. 9. Simulation results show that the
proposed method can effectively extract the impact feature in-
formation under multiple interference states.

5. EXPERIMENTAL VALIDATION

5.1. Case 1: Rotating Machinery
Transmission Parts Fault Implantation
Test Bench

To explore the fault feature extraction effect of the proposed
method, a comparative study of several fault feature frequency
extraction methods was carried out using the bearing vibration
data collected by the rotating machinery transmission compo-
nent fault implantation test rig. The test platform is shown in
Fig. 10, equipped with a three-phase asynchronous motor and
connected the load plate, bearing seat, planetary gear box and
powder brake through the coupling. The acceleration sensor
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(a)

(b)

Figure 8. (a) Time domain waveform of reconstructed signal;
(b) Instantaneous Teager energy.

Figure 9. Envelope spectrum of Teager energy waveform.

Figure 10. Bearing fault signal collection experiment
platform.

is vertically placed above the bearing, and the bearing vibra-
tion signal is collected by data acquisition board. The bearing
model used in the test is 6205, and the relevant parameters are
shown in Table 2.

Under the condition of sampling frequency 12000 Hz and
motor speed 1000 RPM, the vibration signals of healthy bear-
ing and outer ring fault, inner ring fault and ball fault of 0.2 mm
and 0.4 mm were collected respectively. The test bearings in
various states are shown in Fig. 11. According to formula (16)–
(18), the fault characteristic frequencies of inner ring, outer
ring and ball are 90.17 Hz, 59.83 Hz and 78.50 Hz, respec-
tively.

fIF = 0.5z

(
1 +

d

D
cosα

)
n

60
; (16)

Table 2. Geometric parameters of the bearing.

Bearing type 6205-2RS JEM SKF
Inside Diameter 0.9843 in

Outside Diameter 2.0472 in
Thickness 0.5906 in

Number of rollers 9
Ball Diameter 0.3126 in
Pitch Diameter 1.537 in
Contact Angle 0◦

(a) (b)

(c) (d)

Figure 11. Fault condition of bearing type 6205.

fOF = 0.5z

(
1− d

D
cosα

)
n

60
; (17)

fBF =
D

d

(
1−

(
d

D

)2

cos2 α

)
n

60
. (18)

Where fIF , fOF , and fBF were the inner ring failure fre-
quency, outer ring failure frequency and rolling element failure
frequency, z was the number of rolling element, d was the di-
ameter of rolling element, D was the raceway pitch diameter,
α was the bearing contact Angle, and n was the speed.

Each state was collected for 5 seconds, and 12000 data
points were randomly selected for repeated analysis. The sig-
nal with outer ring fault size width of 0.4 mm was taken as an
example. It shows the time domain waveform and the origi-
nal envelope spectrum of the fault signal with the fault size of
0.4 mm outer ring in Fig. 12. In the envelope spectrum, ro-
tation frequency dominates, and no other fault frequency was
reflected.

The final envelope spectrum of the original signal processed
by the method proposed in this paper is shown in Fig. 13(a).
Bearing fault feature extraction methods of Maximum Corre-
lation Kurtosis Deconvolution and Complementary Ensemble
Empirical Mode Decomposition (MCKD-CEEMD),29 Mini-
mum Entropy Deconvolution and Local Mean Decomposition
(MED-LMD),30 Variational Mode Decomposition and Max-
imum Correlation Kurtosis Deconvolution (MCKD-VMD),31
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(a)

(b)

Figure 12. Failure signal of 0.4 mm outer ring: (a) time
domain diagram; (b) envelope spectrum.

proposed by previous scholars, were used to extract vibration
signals analyze. To ensure the minimum experimental vari-
ables, the filter length of various methods was the same as
that of CYCBD method, and the number of iterations was 50.
It shows the final envelope spectrum obtained after MCKD-
CEEMD treatment in Fig. 13(b). Firstly, MCKD was used to
filter the fault signal. After CEEMD decomposition, IMF com-
ponent with a mutual relation number greater than 0.5 with the
original signal was selected for reconstruction. LMD was a
very effective fault signal processing method with high decom-
position efficiency and good effect on non-stationary signal
processing. Using MED method to preprocess the signal can
improve the decomposition accuracy of LMD, reduce the num-
ber of decomposition layers and improve the signal-to-noise
ratio. The final envelope spectrum obtained after MED-LMD
processing of fault signal is shown in Fig. 13(c). The final
envelope spectrum obtained after MCKD-VMD processing of
fault signals is shown in Fig. 13(d), where the penalty factor of
VMD was 3000 and the number of decomposed modes was 5.
After the reconstructed signal is obtained, MCKD is used to
enhance the weak fault characteristics of the bearing.

As the envelope spectrum shown in Fig. 13(a), the fault char-
acteristic frequency and high-order harmonics of the bearing
outer ring are clearly visible, and the amplitude of the funda-
mental frequency is more than 1.5, and the noise interference
is greatly suppressed, which effectively improves the sensitiv-
ity of fault identification. In Fig. 13(b), the failure frequency
and rotation frequency of the bearing outer ring dominate. The
second and third harmonics of the rotation frequency and the
harmonics of the failure frequency of the bearing outer ring can
also be detected in the envelope spectrum. In Fig. 13(c), the
rotation frequency and outer ring failure frequency and their
harmonics can be clearly detected. In Fig. 13(d), the charac-
teristic frequency of the outer ring fault and its first four or-
ders of harmonics all exist in prominent peaks. By introducing
evaluation index P ,32 the processing performance of different
methods are compared with each other. The comparison results
of the four methods are shown in Table 3. Where, the evalu-
ation index P is defined as the ratio of the energy of the fault

(a)

(b)

(c)

(d)

Figure 13. Envelope spectra of different treatment methods:
(a) CYCBD-CEEMD-Teager; (b) MCKD-CEEMD; (c)
MED-LMD; (d) MCKD-VMD.

characteristic component to the total energy in the envelope
spectrum, which can be calculated according to the following
formula:

p =

∑
[A(f)]2∑

[A(f)]2+
∑

[A (f ′)]
2 × 100%. (19)

Where f and f ′ are fault component and noise component re-
spectively, A(f) and A (f ′) are their amplitudes in the enve-
lope spectrum respectively.

It can be seen from Table 3 that all the four methods can
detect the fault characteristic frequency, but the method pro-
posed in this paper can detect the highest amplitude of fault
frequency and the most relevant harmonic components. The
value of evaluation index P is also the largest, indicating that
the energy proportion of fault characteristic component is the
highest, and the influence of interference component on fault
characteristics is the least. Therefore, the method proposed in
this paper can extract more obvious fault features and has bet-
ter results in fault diagnosis.

5.2. Case 2: CWRU Bearing Data Set
To further evaluate the effectiveness of the feature extrac-

tion method proposed in this paper, the open bearing data from
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Table 3. Comparative results of different methods.

methods The comparison of fault extraction results P
fi 2fi 3fi 4fi 5fi 6fi 7fi 8fi Failure frequency amplitude

CYCBD-CEEMD-Teager ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.502 27.71%
MCKD-CEEMD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.024 20.98%

MED-LMD ✓ ✓ ✓ × × × × × 0.092 19.39%
MCKD-VMD ✓ ✓ ✓ ✓ × × × × 0.011 23.84%

Figure 14. The CWRU bearing test platform.

Case Western Reserve University (CWRU) was used to con-
duct an experimental study of fault classification. The experi-
mental platform for data acquisition is shown in Fig. 14, which
was driven by a 1.5Kw three-phase induction motor and con-
nected to a dynamometer by torque sensor and decoder and
coupling. The driving end bearing model is deep groove ball
bearing 6205-2RS JEM SKF. Single point faults of different
sizes were introduced in different parts through electric dis-
charge machining, and bearing vibration signals were collected
by acceleration sensors. According to a reference study on
CWRU bearing data proposed by Smith et al.,33 three signals
of different fault types, highly disturbed by noise and difficult
to extract fault feature (N1), are selected for experimental anal-
ysis in this paper. The details of the selected fault signals are
shown in Table 4.

When the sampling frequency was 12 kHz, 100 samples
were randomly selected for each fault signal, each sample con-
tained 4096 data points, and all samples were processed ac-
cording to the proposed feature extraction method. The length
of CYCBD filter is 300. In the process of CEEMD decom-
position, 8 times of ensemble average processing were carried
out, and the ratio of the standard deviation of the amplitude of
white noise to the standard deviation of the amplitude of the
original signal was selected as 0.2. The final envelope analysis
results are shown in Fig. 15.

Due to the motor speed error, the inevitable bearing manu-
facturing size deviation and long-term wear and other reasons,
there was a slight deviation between the above fault character-
istic frequency and the theoretical calculation, but it was within
the acceptable range. Based on model transfer theory of trans-
fer learning, this paper introduces ResNet-18 network model to
realize fault classification. ResNet-18 is a deep learning neural
network model designed by Microsoft Research Asia on the
basis of traditional convolutional neural networks, and is one
of the residual neural network series. The model belongs to a
lightweight model, which is suitable for use under the condi-
tion of limited resources. To adapt the input size of the net-

(a)

(b)

(c)

Figure 15. Envelope spectrum of different fault signals: (a)
inner race; (b) outer race; (c) ball.

work model, all samples after feature extraction were saved
as 224 × 224 × 3 RGB three-channel JPEG format images,
and 40 samples under each fault were used for training and the
remaining samples were used for testing. The setting of hy-
perparameters in the network model is adjusted by many tests.
The selection of model hyperparameters is shown in Table 5.

Fig. 16 shows the final accuracy curve and cross entropy
loss curve of the smoothed test set. The results show that the
convergence speed of the classification network model is fast,
and the accuracy of the model is high after 10 iterations, and
the final accuracy reaches 100%. The loss curve also rapidly
converges to about 0.03, which indicates that the model has a
good fitting ability for the task.

Table 6 compares the diagnostic performance of the pro-
posed method with the results of other studies. It can be seen
from the table that in multiple studies using Case Western Re-
serve University data as the benchmark, the accuracy of fault
diagnosis using the method proposed in this paper is higher
than most other methods.

6. CONCLUSION

In this paper, a bearing fault feature extraction method based
on CYCBD and CEEMD is proposed. Firstly, by selecting rel-
evant parameters, the original signal is filtered by CYCBD and

242 International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024



H. Ding, et al.: FAULT FEATURE EXTRACTION OF ROLLING BEARING BASED ON MAXIMUM SECOND-ORDER CYCLOSTATIONARITY. . .

Table 4. Details about the fault signal.

File number Fault type Motor speed (rpm) Load (hp) Fault diameter (in) Fault depth (in) Failure frequency (Hz)
3001 inner race fault (IF) 1797 0 0.028 0.05 162.18
200 outer race fault (OF) 1772 1 0.014 0.011 106.02
119 ball fault (BF) 1772 1 0.007 0.011 139.10

Figure 16. Network model final accuracy and loss curve.

Table 5. Network model hyperparameter Settings.

Number Hyperparameter Set value
1 optimizer SGD
2 Initial learning rate 0.001
3 Batch size 64
4 Iteration rounds 8
5 Verification frequency 5
6 Gradient clipping mode/Threshold L2/1
7 Momentum term attenuation coefficient 0.9

decomposed by CEEMD. Then, the IMF components are se-
lected by kurtosis criterion for signal reconstruction. Finally,
the Teager energy operator is used to process the signal to re-
alize the feature extraction of the complex signal. The results
of simulation and comparison experiments show that the pro-
posed method can clearly extract the fault features contained in
the signal. The residual network model is introduced to iden-
tify the faults of CWRU bearing data after feature extraction,
and the final accuracy rate reaches 100%. Compared with the
existing methods, this method has the following advantages.
On the one hand, nonlinear components and time-varying in-
formation in the whole signal can be captured by CEEMD,
local periodic information in the signal can be extracted by
CYCBD. The combination of the two algorithms can realize
information complementarity, which effectively avoid data in-
formation loss and realize deep discovery of fault characteris-
tic information. On the other hand, the Teager energy oper-
ator method is introduced in this paper to enhance the weak
impact signal hidden in the noise, strengthen the difference be-
tween different fault characteristics, and effectively improve
the comprehensiveness and accuracy of diagnosis. In addition,
the method involves human intervention to find the optimal
parameters, as well as the problems of occupying computing

resources and consuming time costs. In the future, research
will focus on improving the adaptability and real-time perfor-
mance of fault feature extraction to improve the reliability and
efficiency of diagnosis.
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