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This paper proposes a comprehensive optimization algorithm for the crossbeam cross-section size to solve the
vibration problem of the flexible cable-driven parallel robot frame. The goal is to achieve an innovative design
of the cross-sectional structure. By using a differential evolution algorithm, a comprehensive scale analysis of
the cross-section size of the beam is carried out. This optimization method effectively improves the cross-section
moment of inertia and the bending stiffness of the beam. Additionally, based on the variable density penalty
method, the topological optimization design of the cross-section is carried out under the condition of minimum
flexibility, the optimization objective function is established, and the objective function is solved by the moving
asymptote method. The optimization results show that the beam stiffness is maximized while meeting the minimum
flexibility required by the project. Through comparative analysis with various aluminum profile structures and their
constructed frames, it is verified that the cross-sectional shape obtained through the optimized design method can
significantly improve the anti-vibration stability of the frame.

1. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) are a new type of
parallel robot that use cables instead of rigid links. One end
of each cable is connected to the end-effector, and the other
end is driven by a winch, controlling the posture of the end-
effector by controlling the length of the cable. Compared to
ordinary parallel robots, cable-driven parallel robots have a
larger workspace, a higher load-to-weight ratio, and smaller
motion inertia.1 After more than thirty years of development,
they have played an important role in medical surgery,2 reha-
bilitation training,3 special operations,4 industrial manufactur-
ing5 and other fields. CDPRs have attracted widespread atten-
tion due to their large workspace and high acceleration values,
but CDPRs lack intuitive and generally adaptable performance
evaluation indicators in the application process. Therefore,
scholars like Jin and others6 proposed a unified transmission
index based on the summarization of previous work, quantita-
tively evaluating the motion and force transmission of CDPRs.
They have verified the accuracy of the proposed indicators by
carrying out motion/force analysis on fully constrained and re-
dundant constrained CDPR. To better perform modal analysis,
robustness testing, design verification and workspace estima-
tion of cable-driven parallel robots, it is necessary to establish
an accurate motion simulation model. Mamidi and Bandy-
opadhyay7 had established a modular frame structure to an-
alyze the dynamic characteristics of CDPRs and proposed a
new recursive algorithm to consider the dynamic effect caused
by the time-varying inertia of the cable and verified the effec-
tiveness of the proposed frame structure using the FAST ma-
nipulator.

Additionally, in the process of building a cable-driven par-
allel robot, the frame structure as the main support part is in-
dispensable. Because the end-effector of CDPRs can achieve
high-speed rotation and rapid stop, when the end-effector stops
suddenly, its own kinetic energy will be transmitted to the
frame in a short time, causing strong vibration of the frame
structure and affecting the positioning accuracy of the end-
effector. Excessive vibration may seriously affect the per-
formance of the equipment.8, 9 Therefore, various vibration
suppression methods have been proposed, such as active con-
trol,10 passive control11 and specific control methods for spe-
cific structures.12 Structural optimization is currently widely
used to enhance vibration- damping performance.13, 14 Typi-
cal structural optimization involves finding the optimal design
to minimize or maximize a certain cost function under spe-
cific constraints. Researchers such as Joubert et al.15 carried
out optimal design of uniform slender cantilever beams and
plates that satisfy the Euler-Bernoulli and Kirchhoff-Love as-
sumptions respectively. They applied the boundary variation
method for the coupled optimization of the thickness and geo-
metric shape of the plate, significantly improving the damping
of linear viscoelastic structures under free vibration by means
of optimal design. Scholars like Yuan et al.16 proposed two
new methods to treat the welding nodes as equivalent stiffness
in response to the issue of considering many solid units at the
welding joints when obtaining accurate modal parameters of
conical truss sandwich beams. This method can accurately de-
termine the modal parameters of the welding nodes and ob-
tain their operating modal analysis results while avoiding miss-
ing modes. Guo et al.17 analyzed the existing conical truss
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Figure 1. Cable-drive parallel robot model.

sandwich beams and proposed a new type of phononic crystal
sandwich beam with an hourglass lattice structure as the core.
Compared with traditional sandwich beams, the new sandwich
beam can generate two additional band gaps, achieving better
broadband vibration suppression. The study found that geo-
metric parameters have a significant impact on the structural
stiffness of the new sandwich beam, but have limited impact
on structural quality. Therefore, the band gap of the phononic
sandwich beam can be customized by adjusting structural pa-
rameters. Wu et al.18 studied the modal coupling problem be-
tween bending, stretching and torsional deformation of can-
tilever beams, and established an analytical model of a rotat-
ing cantilever beam with a pretwist angle and arbitrary cross-
section. The motion equation of the beam was derived using
Hamilton’s principle, and solved by the Rayleigh-Ritz method.
The natural frequencies obtained from the analytical modal fit
well with the modal natural frequencies obtained from the fi-
nite element method, proving the accuracy of the analytical
model.

Among the research on the flexible cable-driven parallel
robot, there is more research on workspace analysis, trajectory
tracking control and vibration suppression of the end-effector,
etc., while there is less research on the frame vibration of the
flexible cable-driven parallel robot. Additionally, in the cur-
rent frame construction process, to reduce the influence of the
frame vibration problem, the installation position of the auxil-
iary support beam mainly relies on past experience, but lacks
theoretical guidance and verification. Therefore, this paper
combines the vibration reduction optimization theory of truss
structure in the field of architectural engineering, starting with
the construction of the beam structure of the frame, analyzes
the maximum vibration amplitude of the beam structure under
the action of external forces, and optimizes the cross-section
shape of the beam structure, reducing the vibration response of
the frame from the foundation components.

This article aims at the vibration problem generated by the
frame when the cable-driven parallel robot is working and
optimizes the cross-section design of the cross- beam in the
frame. First, the size optimization design is carried out ac-
cording to the cross-sectional shape of the crossbeam, and the
cross-sectional moment of inertia of the crossbeam is taken as

Table 1. Model parameters of cable driven parallel robot framework.

Parameter
Numerical

Parameter
Numerical

value value
Frame length 4 m Pulley width 50 mm
Frame width 4 m Pulley radius 20 mm
Frame height 4 m Pulley depth 10 mm
Cross-section

0.08 m× 0.08 m Pulley angle 20◦
area of beam

Friction coefficient 0.6 Friction speed 100

the optimization target to improve the bending stiffness of the
crossbeam. Secondly, the cross-sectional shape of the cross-
beam is designed for topology optimization, and the flexibility
of the crossbeam is taken as the optimization target. When the
minimum flexibility required by the project is met, the overall
stiffness of the crossbeam is maximized to reduce the vibration
response amplitude of the crossbeam. In the second section,
the vibration of the cable-driven parallel robot is analyzed. In
the third section, the cross-sectional moment of inertia of the
beam and the flexibility of the beam are optimized and de-
signed respectively. Section 4 conducts comparative analysis
of related examples to verify that the optimized beam has bet-
ter anti-vibration stability. Finally, the article is summarized.

2. VIBRATION ANALYSIS OF CABLE-
DRIVEN PARALLEL ROBOT

To optimize the design of a cable-driven parallel robot, it
is necessary to establish the mechanical structure and for-
ward and inverse dynamics models for the cable-driven par-
allel robot. The above model accurately reflects the tension of
each cable and the vibration of each beam and frame when the
end effector runs under a given trajectory.

2.1. Building the Cable-Driven Parallel
Robot Model

Considering the diversity of structural types in different ap-
plications of cable-driven parallel robots,19–21 a frame struc-
ture model with more common applications was selected in
this paper.22 This model introduced multiple auxiliary support
structures based on the traditional frame, aiming to enhance
the stability of the frame. Unlike the traditional frame model,
this model considered the influence of several parameters of
the pulley and the contact parameters between the pulley and
the cables on the cable tension, thus describing the behavior
of the system more accurately. These improvements will help
improve the performance and reliability of the Cable-driven
Parallel Robots. The specific model image is shown in Fig. 1.

Considering that the working space of the cable-driven par-
allel robot is related to the size of the external frame, and the in-
crease in the size of the external frame is conducive to the con-
trol of the cable tension, making the cable transmit the driving
force more smoothly, so the various parameters of the pulley
were considered. In the case of the influence of the contact pa-
rameters between the cable and the cable on the tension of the
cable, the parameters of the cable-driven parallel robot model
are shown in Table 1.
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R = Rx(α)Ry(β)Rz(γ) =

cosβ cos γ sinα sinβ cos γ − cosα sin γ cosα sinβ cos γ + sinα sin γ
cosβ sin γ sinα sinβ sin γ − cosα cos γ cosα sinβ cos γ − sinα sin γ
− sinβ sinα cos γ cosα cosβ

 . (2)

Figure 2. Simplified diagram of cable-driven parallel robot.

2.2. Optimal Distribution of Cable Tension
Based on the cable-driven parallel robot model shown in

Fig. 1, a simplified diagram of the cable-driven parallel robot
was established, as shown in Fig. 2. Ai was the connection
point between the cable and the external frame, and Bi was
the connection point between the cable and the end-effector.
A global coordinate system O−XY Z was established within
the external frame, and a local coordinate system o− xyz was
established at the center position of the end-effector, with the
two coordinate systems being parallel to each other. li repre-
sented the cable length, Pai was the position vector of point
Ai in the global coordinate system, ri was the position vec-
tor of point Bi in the local coordinate system, Pbi was the
position vector of Bi in the global coordinate system, and P
was the position vector of the local coordinate system in the
global coordinate system. The pose vector of the center point
of the end-effector relative to the global coordinate system is:
q = [x y z θx θy θz]

T .
According to the closed vector quadrilateral method, the

lengths of each cable can be obtained as follows:

li = Pai −P−Rri; (1)

where R was the rotation matrix, given by Eq. (2).
The static equilibrium equation of the cable-driven parallel

robot can be obtained as follows:{∑N
i=1 fi = −F;∑N
i=1 ri × fi = −M;

(3)

where fi and ri× fi were the cable tension and the torque gen-
erated by the cable tension, respectively, and F and M were

Figure 3. End effector motion trajectory diagram.

the external force and torque experienced by the end-effector,
respectively. The equation was rewritten in matrix form as fol-
lows:

WF = ω; (4)

where W was the structure matrix:

W =

[
ui

ri × ui

]
; (5)

where ui = |li/li| was the unit vector of the i-th cable.
In the preliminarily determined model of the CDPRs, the

rotational torque of the pulley was taken as the input vari-
able, and the displacement in all directions of the end-effector
was taken as the output variable. Given the motion trajectory
of the end-effector, the maximum tension of each cable un-
der different trajectories was obtained through Newton’s itera-
tive method.23, 24 The motion trajectory of the end-effector was
given as:
X1 = 2 ∗ sin(2πt1);
Y1 = 2 ∗ cos(2πt1);
Z1 = 2− 0.625 ∗ t1;


X2 = 2 ∗ sin(2πt2);
Y2 = 2 ∗ cos(2πt2);
Z2 = 2− 0.625 ∗ (t2 − 6.25).

(6)
This trajectory was divided into two parts, from 0 to 6.25

seconds, the end-effector spirals downward, and from 6.25 to
12.5 seconds, the end-effector spirals upward. The motion
graph is shown in Fig. 3.

Under the given trajectory, the tension graph of each cable
of the CDPRs obtained through simulation is shown in Fig. 4.

According to the tension graph of the cable shown in Fig. 4,
when the end-effector runs along the given track, the maximum
tension of the cable does not exceed 1800 N. Therefore, in the
beam vibration analysis in Section 3, the external excitation
received by the beam vibration can be taken as 1800 N.
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Figure 4. Cable tension image.

Figure 5. External force images.

2.3. Vibration Analysis of CDPR
2.3.1. Beam Vibration Analysis

During the movement of the CDPR, the sudden start and
stop of the end-effector will cause a sharp change in the tension
of the cable. The sharp change in tension will cause strong
vibration of the frame. According to the maximum tension
of the cable determined in Fig. 4, combined with the feature
of short tension change time, the external excitation can be
simplified to a step function of 1800 N lasting for 1 second.
The external force image is shown in Fig. 5 .

In the process of building the frame of the CDPR, the four
types of cross-sectional shapes of aluminum profiles shown in
Fig. 6 are commonly used.

Finite element analysis of beams with four different cross-
sectional shapes was carried out to observe the overall vi-
bration response of beams with different cross-sections un-
der load. During the construction process of the frame of
the CDPR, the beams were fixedly connected through angle
irons and bolts, so when performing finite element analysis,
the beam was considered as a fixed beam, and fixed con-
straints were added to both ends of the beam. Relevant param-
eters such as elastic modulus, density, and Poisson’s ratio were
filled in according to the properties of the aluminum profile, as
shown in Table 2.

TG-8-8080 beam GY-8-8080 beam

MV-8-8080 beam LE-8-8080 beam

Figure 6. Cable driven parallel robot beam image.

Table 2. Aluminum profile material properties.

Attribute Numerical value Unit
Density 2.69 kg·m−3

Elastic modulus 6.9 × 1010 Pa
Poisson’s ratio 0.3

Table 3. Maximum vibration deformation of beam.

Beam type Maximum deformation value [m]
TG-8-8080 beam 0.0083046
GY-8-8080 beam 0.010648
MV-8-8080 beam 0.0082421
LE-8-8080 beam 0.0094645

According to the model shown in Fig. 1, the installation po-
sition of the pulley on the beam was the application point of
the tension of the cables, the size of the force was as shown
in Fig. 5, the direction of the force was along the direction of
the cables, and the vibration response diagram of the beam was
obtained after finite element analysis, as shown in Fig. 7.

As can be seen from Fig. 7, the maximum vibration ampli-
tude of each aluminum profile mainly occurred at the center
position, and Table 3 summarizes the maximum vibration am-
plitude of each aluminum profile.

2.3.2. Frame Vibration Analysis

In the previous section, vibration analysis was conducted on
four different cross-sectional shapes of aluminum profiles. In
this section, vibration analysis will be conducted on frames
constructed using four different cross-sectional shapes of alu-
minum profiles. When conducting vibration analysis on the
frame structure, due to the limitations of hardware facilities,
the structure of the frame structure has been relatively simpli-
fied. The simplified frame vibration analysis image is shown
in Fig. 8.

Combined with the data analysis results in Table 3 and Ta-
ble 4, the vibration of the aluminum beam and frame con-
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TG-8-8080 beam GY-8-8080 beam

MV-8-8080 beam LE-8-8080 beam

Figure 7. Vibration deformation image of beam.

Table 4. Maximum vibration deformation of frame.

Frame type Maximum deformation value [m]
TG-8-8080 frame 0.077597
GY-8-8080 frame 0.07592
MV-8-8080 frame 0.090387
LE-8-8080 frame 0.086607

structed by the aluminum profiles is comprehensively ana-
lyzed. It can be concluded that among the four kinds of alu-
minum profiles, the vibration response amplitude of the LE-8-
8080 aluminum profile is the smallest. This paper will opti-
mize the design of the LE-8-8080 aluminum profile to further
improve the stiffness of aluminum profile and reduce its vibra-
tion response amplitude.

3. OPTIMIZATION OF CROSSBEAM
STRUCTURE

3.1. Cross-Sectional Structural Analysis of
Aluminum Profiles

Aluminum profiles are mainly affected by the bending mo-
ment and torque in the process of use, it is necessary to ensure
its performance, that is, the bending and torsional resistance
of aluminum profiles, in the case of aluminum profile model

selection, the bending and torsional resistance of the following
formula can be known that its bending and torsional perfor-
mance depends on the section moment of inertia:

τmax =
Tρmax

Ip
=

T

Wt
; (7)

σmax =
Mymax

Iz
=

M

Wz
; (8)

where: Wt, Wz are the bending and torsional section coeffi-
cients respectively, which are quantities related only to the sec-
tion size. Therefore, the moment of inertia of the cross-section
of the selected aluminum alloy profile is used as an indicator to
improve its bending performance. Figure 9(a) shows the cross-
sectional shape of the aluminum profile that will be optimized,
determined in Section 2, and the specific dimensions have been
marked.

Since the structure shown in Fig. 9(a) is a centrally symmet-
rical figure, only 1/4 of the cross-section needs to be analyzed.
Taking the upper right corner of the cross-section as an exam-
ple, the selected cross-section design variables are shown in
Fig. 9(b), and the value range and initial values of the design
variables limited by the cross-section wall thickness require-
ments are shown in Table 5.

In the process of structural design and calculation, it was
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TG-8-8080 beam GY-8-8080 beam

MV-8-8080 beam LE-8-8080 beam

Figure 8. Frame vibration deformation image.

Table 5. Design variable value range.

Design variable Design interval Initial value [m]
a [2.4 4.4] 3.4
b [5 7] 6

necessary to calculate the bending stiffness of the cross-section
of the crossbeam around the x-axis and y-axis respectively un-
der the action of bending moment, to meet the requirements
for the use of the crossbeam. The moment of inertia was the
integral of the area of each element of the cross-section and
the quadratic product of the distance of each microelement to
a specified axis on the cross-section, which can be expressed
as:

Ix =

∫
y2dA; (9)

Iy =

∫
x2dA; (10)

According to Eqs. (9) and (10), the moment of inertia of the

cross-section of the figure shown in Fig. 10 can be obtained as:

Ix = −πa4

16
− 4900πa2 − b4

3
− 1600b2 + 2275554.6; (11)

Iy = −πa4

16
− 4900πa2 − b4

3
− 1600b2 + 2275554.6; (12)

According to Eqs. (11) and (12), the cross-sectional moment
of inertia about the x-axis was equal to the cross-sectional mo-
ment of inertia about the y-axis due to the symmetry of the
center of the structure.

3.2. Optimization Method of Aluminum
Profile Cross-Section Moment of Inertia

The design objective of the optimization problem in this pa-
per is to maximize the moment of inertia I of the aluminum
profile cross-section, and the constraint is the range of design
variable values. According to Table 6, the optimization param-
eters of the beam are a and b, and the vector relationship of the
optimization parameters is:

x = [a b]. (13)
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(a) Aluminum profile cross-section dimensions

(b) Aluminum profile design variables

Figure 9. Aluminum profile cross-section shape.

According to Eqs. (11) and (12), the moment of inertia of
the cross-section of the beam about the x-axis is equal to that
about the y-axis, so the moment of inertia of the cross-section
about the x-axis was taken as the objective function to find
the maximum value of the moment of inertia of the aluminum
profile cross-section. The expression of the objective function
is:

max: f(x) = −πa4

16
− 4900πa2 − b4

3
− 1600b2 +2275554.6.

(14)

Considering the size of the wall thickness of the aluminum
profile, the change of the design variables needed to be within
the range of the wall thickness. Therefore, this condition was
met by constraining the range of the design variable values.
So, the constraint conditions are as follows:

{
2.4 ≤ a ≤ 4.4;

5 ≤ b ≤ 7.
(15)

So, the overall topological optimization mathematical model

is:

Find x = [x1, x2, . . . , xn]
T

max f(x) = −πa4

16
− 4900πa2 − b4

3
− 1600b2 + 2275554.6

s.t.
2.4 ≤ a ≤ 4.4;
5 ≤ b ≤ 7.

(16)

To solve the above topological optimization mathemati-
cal model, this paper used the differential evolution algo-
rithm.25–28 The differential evolution method is essentially a
real-number genetic algorithm, which has all the characteris-
tics of a genetic algorithm, but has been significantly modified
based on the original real-number genetic algorithm, giving it
strong global convergence ability and robustness. The process
of using the differential evolution algorithm to solve the objec-
tive function is as follows:

1) Setting control parameters
Set the population size to Np, the mutation factor to
F , the crossover factor to Cr, the dimension to D,
and randomly generate the initial population X(0) =

[x
(0)
1 , x

(0)
2 , . . . , x

(0)
Np].

2) Mutation
For each target vector xi,G (i = 1, 2, . . . , Np), the ba-
sic differential scheme algorithm generates the mutation
vector according to the following formula:

vi,G = xr1,G + F · (xr2,G − xr3,G). (17)

In the equation above: the randomly selected indices r1,
r2, and r3 must be distinct, and must also differ from the
target vector index i. Thus, it was necessary to satisfy
Np > 4. The mutation operator F was a real constant
factor, ranging within [0, 2], which controls the scaling of
the deviation variable.

3) Crossover
The mutated individual was probabilistically selected in a
certain way with another individual from the current pop-
ulation:

UG
i =

{
UG
j,i rand(j, i) ≤ Cr;

XG
j,i rand(j, i) > Cr.

(18)

Here, rand(j, i) (i ∈ [1, Np], j ∈ [1, D]) was a random
number uniformly distributed in the interval [0, 1]. Cr is
the crossover factor, and Cr ∈ [0, 1].

4) Selection
The individual produced by “crossover” was compared
with the individuals from the initial population. The bet-
ter ones are retained:

XG+1
i =

{
UG
j,i f(UG

i ) ≤ f(XG
i );

XG
j,i f(UG

i ) > f(XG
i );

(19)

where: f(x) represented the objective function value of
the population individual; i = 1, 2, . . . , Np.
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Figure 10. Differential evolution algorithm flowchart.

Table 6. Design variable optimal solution.

Design variables Optimal solution [mm]
a 2.4
b 5

The optimization process diagram is shown in Fig. 10.
The differential evolution algorithm was used to optimize

the objective function, thus solving for the design variables.
The optimization parameters were set as: population size
Np = 20, mutation factor F = 0.5, crossover factor Cr = 0.1,
and maximum evolution generation G = 100. The optimal so-
lution of the design variables obtained by inputting the design
variables and section parameter model into the optimization
algorithm is shown in Table 6.

The graphs of the objective function and the iterative process
are shown in Fig. 11 and Fig. 12.

After obtaining the optimal solution that meets the require-
ments through the differential evolution algorithm, it was sub-
stituted into Eqs. (11) and (12) to obtain the optimized section
moment of inertia.

As can be seen from Table 7, by comparing the results before
and after, it is found that the moment of inertia of the optimized
cross-section has increased by 5% compared with that before

Figure 11. Objective function image.

Figure 12. Iterative image.

Table 7. Optimal results.

Ix [mm4] Iy [mm4]
Before optimization 2103350 2013350
After optimization 2146670 20146670

optimization. The bending stiffness of the crossbeam has been
further improved.

3.3. Optimization Method for Aluminum
Profile Compliance

Based on the optimized beam obtained in Section 2, the
overall stiffness was optimized, and the flexibility of the beam
was selected as the optimization target. The volume of the
material was selected as the constraint condition, and the
maximum stiffness was achieved when the minimum flexibil-
ity required for engineering needs was reached. The SIMP
model29–32 was adopted, and the artificial density ρi was intro-
duced as the design variable:

X = [ρ1, ρ2, . . . , ρi, . . . , ρn]. (20)

The relationship between the discrete unit and the elastic
modulus was established using the unit pseudo-density, and the
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formula for the variable density material interpolation model
is:

Ei(ρi) = Emin + ρpi (E0 − Emin); (21)

where: Ei(ρi) represented the actual elastic modulus of the i-
th unit, p was a penalty parameter, generally taken as 3 ∼ 6.
E0 was the elastic modulus of the solid material, set to 1. Emin

was the elastic modulus of the blank material, generally a small
number close to zero. Based on the SIMP model, the change of
the elastic modulus Ei(ρi) can be driven by the iterative update
of ρi, and then finite element analysis was carried out.

Therefore, the total stiffness matrix and structural objective
function of the SIMP model can be expressed as:

K(x) =

N∑
i=1

[Emin + ρpi∆E]K(pi); (22)

C(x) =

N∑
i=1

[Emin + ρpi∆E][Ui]
T [Ki][Ui]; (23)

where U and F were the total displacement direction vector
and the direction vector of the external force related to the
structure respectively, and K was the total stiffness matrix.

3.4. Method of Moving Asymptotes Based
on SIMP Model

The Solid Isotropic Material with Penalization (SIMP)
method was used to establish a minimum compliance objec-
tive function. The method of moving asymptotes (MMA)33–36

is applied to solve the topology optimization problem. The
mathematical expression is as follows:

Find: ρi = [ρ1, ρ2, . . . , ρn]
T ∈ Rn, y1 ∈ Rn, z ∈ R

min:
N∑
i=1

ρpi u
T
i k0ui + z + 1000y1

s.t.:
N∑
i=1

ρi − fV − y1 ≤ 0;

0 < ρmin ≤ ρi ≤ 1 (i = 1, 2, . . . , n);

yi ≥ 0; z ≥ 0; (24)

where ρi represented the design variables of the material,
which was the relative density of the material. n was the num-
ber of finite elements within the design domain. y, z were the
additional design variables. k0 was the stiffness matrix when
the element density ρi = 1. ui was the displacement vector
of the i-th element. f was the given ratio of relative volumes
between different materials. V0 was the relative volume of the
initial material structure. ρmin was the minimum relative den-
sity (in this article, ρmin = 0.01). The calculation process of
topology optimization of continuum structure based on MMA
algorithm is as follows:

1) Construct the structural topology optimization problem
into the solution form of the MMA standard algorithm.

2) Select initial iteration values of design variables.

3) Calculate the function values and sensitivity values of the
objective function and constraint function corresponding
to the independent variables.

Figure 13. Method of moving asymptotes flowchart.

4) Construct the MMA sub-problem and its dual problem,
and solve them to obtain an approximate solution to the
original problem.

5) Update the upper and lower moving limits of the design
variables.

6) Determine whether the result meets the given conver-
gence conditions. If not, return to step (3) for a new cycle.
If it matches, end the loop and output the result.

The algorithm flow chart designed in this paper is as Fig. 13.
This paper focuses on optimizing the cross-sectional shape

of the beam to improve the overall stiffness of the beam. The
cross-sectional size of the beam was (0.08 m × 0.08 m), grid
division density was 80 × 80. The endpoints of the cross-
section were fixed, and an external force of 1800 N was ap-
plied at the center of the cross-section. The Young’s modulus
E of the beam was 2.1×105, and the Poisson’s ratio σ was 0.3.
The objective function is to minimize the total compliance of
the structure, with the constraint that the volume fraction does
not exceed 50%. The penalty factor p was 3, and the filter
radius rmin was 1.2.

Using the MMA based on the SIMP method, after 53 it-
erations (The computer configuration used in this paper was
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Figure 14. Topology optimization results.

Figure 15. Iterative image.

Intel®Core™ i5-11400H, with 16.0 GB memory), an average
compliance of 216.347 was obtained. The optimized struc-
ture diagram and optimization iteration process are shown in
Fig. 14 and Fig. 15 respectively.

After modeling the optimized beam structure, the schematic
diagram of the beam structure as shown in Fig. 16 is obtained.

4. NUMERICAL ANALYSIS

The cross-sectional moment of inertia and the overall com-
pliance of the LE-8-8080 aluminum profile were optimized
and analyzed, and the cross-sectional shape as shown in Fig. 16
was obtained. According to the data of the cross-sectional
drawing, the sketch is first drawn, the solid model of the opti-
mized beam is established, and the vibration simulation anal-
ysis is carried out. According to the cable-drive parallel robot
model shown in Fig. 1, the optimization beam adds fixed con-
straints to its two ends during the analysis process, the instal-

Figure 16. Schematic diagram of optimized crossbeam.

Figure 17. Cross beam force diagram.

lation position of the pulley is used as the action point of the
cable on the beam, the tension of the cable is shown in Fig. 5,
and the direction of the force is along the direction of the cable.
The force diagram of the beam is shown in Fig. 17.

In the simulation analysis of the optimized beam and var-
ious types of beams, the vibration amplitude of each point is
observed every 0.2 m in the direction of the length of the beam,
and the specific beam separation image is shown in Fig. 18.

Through the vibration simulation analysis of each beam, the
vibration response image of each point in the beam is obtained
as shown in Fig. 19.

The vibration response of the beam in the x and y directions
(transverse to the beam) shown in Fig. 19 is relatively obvi-
ous, while the order of magnitude of the vibration response
along the Z direction (axial to the beam) is less than 10−5,
so it is ignored here. The image in Fig. 19 shows that the
vibration response amplitude at the middle position of vari-
ous crossbeams is the highest and gradually decreases towards
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Figure 18. Separation image of each point on the crossbeam.

Cross beam displacement image in x-direction

Cross beam displacement image in y-direction

Figure 19. Vibration deformation images of beams in various directions.

both ends. Compared to traditional beam structures, the op-
timized beam has the smallest vibration response amplitudes
at each point in the x and y directions. From this, it can be
concluded that the optimized crossbeam structure has high sta-
bility in terms of vibration resistance.

The optimized crossbeam was used to construct a cable-
driven parallel robot frame structure for vibration analysis. To
ensure the rigor of the comparison with the traditional frame,
in addition to replacing the main beam, other factors such
as the number of auxiliary supports, the configuration of the
frame, and the stress point and force size of the frame have not
changed. The simulation analysis of the built frame is carried
out, and the simulation results as shown in Fig. 20 are obtained.

The relationship between modal order and vibration defor-
mation is critical to understanding and optimizing the perfor-
mance of the beam. Therefore, in Fig. 20, the modal analysis
of various types of beams is carried out, and their vibration
deformation in different modes is studied in detail. It can be
observed from the figure that in the first seven modes, no mat-

Figure 20. Modal deformation images of each order of the frame.

ter what type of beam, their vibration deformation increases
according to the law of increasing order. However, this trend
changes as soon as the modal order exceeds the seventh order,
and the vibration deformation begins to decline step by step.
This phenomenon shows that the modal order plays a signif-
icant role in the vibration deformation process of the beam.
In this case, the cable-driven parallel robot frame constructed
using optimized crossbeams has the smallest vibration defor-
mation at each mode. The results show that the frame struc-
ture with optimized beams can significantly improve the anti-
vibration stability of the frame.

5. CONCLUSIONS

This paper focuses on the vibration problem of the cable-
driven parallel robot frame structure and optimizes the cross-
beam structure in the frame structure. In the design process, the
differential evolution algorithm is used to optimize the cross-
sectional dimensions of the crossbeam, and the parameters in
the cross-section are optimized by constructing an objective
function. The optimization results show that this optimization
method can effectively improve the moment of inertia of the
crossbeam cross-section and thus enhance the bending stiff-
ness of the crossbeam. Additionally, this paper introduces a
new overall stiffness topological optimization algorithm for the
crossbeam. This algorithm aims to minimize the flexibility of
the crossbeam structure and uses the Solid Isotropic Material
with Penalization method to build the topological optimization
model. The method of moving asymptotes is used to solve the
model, thereby obtaining the ideal crossbeam cross-sectional
shape. Finally, a comprehensive comparative analysis is con-
ducted between the optimized crossbeam structure and four
different types of aluminum profile crossbeams. Simulation
data verifies that the optimized crossbeam structure can signif-
icantly reduce vibration response. This result is applicable not
only to single crossbeams but also to the overall frame struc-
ture composed of crossbeams, confirming the excellent perfor-
mance of the optimized crossbeam in vibration control. These
findings provide important guidance and theoretical support
for the design of cable-driven parallel robot frame structure.
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