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Generators are subject to extreme environmental conditions that can cause critical areas to gradually break down,
potentially leading to catastrophic failures. This paper proposes a hybrid method for generator fault diagnosis.
Firstly, adaptive chirp mode decomposition (ACMD) is applied to decompose the vibration signal into five intrin-
sic mode function (IMF) components. Then, the permutation entropy (PE) of each IMF is calculated to construct
the feature vector. The deep learning part of the proposed method uses convolutional neural network (CNN) as
a classifier to recognize different faults. Finally, the visualization result using t-Distributed Stochastic Neighbor
Embedding (t-SNE) is presented. The result of classification suggests that the method proposed in this paper real-
izes fault diagnosis with the accuracy of 98%, which has a higher recognition rate than other methods mentioned
in this paper.

1. INTRODUCTION

The generator is the most critical component in the electrical
system and is susceptible to various faults due to its complex
and variable working environment. Common issues include
stator inter-turn short circuits, eccentricity, or other mechani-
cal faults, which can damage the generator and even result in
a critical accident[1]. To prevent significant human and eco-
nomic losses caused by generator faults, it is significant to ex-
plore methods for generator fault diagnosis in early stage.

To effectively monitor the operating status of the generator,
various sensor systems have gathered many variables related to
the generator operating characteristics, including temperature,
current, voltage, vibration, etc. If the fault information hidden
in these data can be extracted, the operational status of gener-
ator can be confirmed, and faults can be diagnosed as early as
possible. Many researchers spare no effort to explore simple
and effective methods in the field of generator fault diagnosis.
Their focus has primarily been on voltage, current, and other
electrical parameters, as well as vibration signal. In aspect of
electrical parameters, T. Goktas et al. realized the diagnosis of
static eccentricity faults and the discernment of broken mag-
net based on stator phase current waveform and electromotive
force.2 I. O. Zaparoli et al. diagnosed inter-turn short circuit
fault through transient envelope current analysis in the induc-
tion motor stator.3 Meanwhile, Ma et al. used the phase-angle
of the branch current as diagnostic indicators for the diagno-
sis of synchronous condensers, but they ignored generality and
difficulty in obtaining phase current in real conditions.4 While
electrical parameters are an excellent choice for diagnosing
electrical equipment, the abundant fault information hidden in
the vibration signal should not be underestimated. Most vi-
bration signal-based methods are mainly applicable to rotating
machinery such as bearings and gears.5, 6 Since the genera-
tor also falls under the category of rotating machines, and it
is necessary to introduce the fault diagnosis methods for ro-

tating machinery into generator fault diagnosis to obtain the
characteristic of fault and realize the fault classification based
on vibration signal.

Many scholars are constantly exploring advanced signal pro-
cessing technology and the signal processing technology has
made considerable advance over the past decades.7 For in-
stance, Huang et al. proposed the empirical mode decompo-
sition (EMD) method in 1998, which can decompose a signal
into a combination of several intrinsic mode functions (IMFs).8

However, this method is plagued by the problem of endpoint
effect and mode mixing. Then, to address the problem shown
in EMD, Wu et al. developed ensemble empirical mode de-
composition (EEMD) based on EMD with a better decomposi-
tion effect by adding white Gaussian noise.9 This method has
been generally applied in fault pattern recognition.10, 11 Al-
though adding white noise to the original signal can solve the
problem of mode mixing, there is a problem where the aver-
age white noise cannot be offset, resulting in the inability to
ignore noise in the reconstructed signal. Thus, Torres M. E.
et al. proposed complete ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN) by adding IMF com-
ponents of white noise, which effectively reduces the residual
noise in the reconstructed signal and decreases the reconstruc-
tion error.12 Konstantin D. et al. proposed variational mode
decomposition (VMD) to decompose the signal into several
IMF components by solving a variational problem. VMD algo-
rithm can arbitrarily choose the number of components while
overcoming the problem of mode mixing and endpoint effect.
But the penalty coefficient and mode number need to be man-
ually set in advance.13 Since then, with the purpose of ob-
taining a better decomposition effect, various signal decom-
position algorithms have emerged. Empirical wavelet trans-
form (EWT) is a method that can localize signals in both the
time and frequency domains for analysis with strong adapt-
ability and denoising ability, but the decomposition process
is extremely time-consuming due to high computational com-
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plexity.14 Adaptive local iterative filtering (ALIF) proposed
by Antonio C. et al. faces the same problem as EWT, which
has a high computational accuracy but a complicated calcu-
lation process.15 These methods have been applied to obtain
the fault feature information hidden in the vibration signal col-
lected from the generator. Although these methods have al-
ready achieved satisfactory results, there still have shortcom-
ings that need to be overcome. Firstly, the signal decompo-
sition process is extremely complicated and time consuming
because the vibration signal required to decompose into nu-
merous components and a quantity of useless sub-band com-
ponents will be created. Then, the parameters of these methods
need to be preset before decomposition, making it difficult to
ensure the optimal selection of each parameter.16 Recently,
a novel signal decomposition method named adaptive chirp
mode decomposition (ACMD) is proposed.17 Compared to
these methods mentioned above, this method can extract spe-
cific modes with abundant feature information directly without
unnecessary components, and it requires fewer preset param-
eters. Consequently, this method is applied to generator fault
diagnosis in this paper.

To characterize the features contained in the signal pro-
cessed by processing algorithms, complexity theory has been
extensively applied to evaluate the complexity of signals and
extract fault feature information hidden in signals. Permuta-
tion entropy, as an effective complexity evaluation method, has
achieved excellent results in the field of fault diagnosis. Zhang
et al. input the feature vector composed of permutation en-
tropy values into the subsequent classifier, which achieved sat-
isfactory clustering results.18 The experimental results showed
the superiority of permutation entropy compared to other com-
plexity evaluation methods, such as approximate entropy (AE),
sample entropy (SE), dispersion entropy (DE) etc. Thus, the
permutation entropy is applied as the feature vector to evalu-
ate the complexity of signals decomposed by signal processing
algorithms in this paper.

Although signal processing algorithms can realize fault di-
agnosis with excellent results, operators require extensive ba-
sic knowledge of signal processing and practical experience
to complete the task. In an actual working environment, it
can be difficult to achieve the fault diagnosis without expert
guidance. Machine learning algorithms provide a solution to
this dilemma by directly classifying massive amounts of fault
information, omitting the need for human involvement. To
solve the problems in practical engineering conditions, vari-
ous classification algorithms have been applied in the actual
engineering environment such as the artificial neural network
(ANN), the support vector machine (SVM) etc.19, 20 By com-
bining the strong decomposition ability of signal processing
technique with the powerful classification capacity of machine
learning algorithms, a concise and effective method has ap-
peared to realize fault diagnosis. Zhang et al. proposed an
ANN model with modified EEMD for fault diagnosis of asyn-
chronous motor.21 Tang et al. realized the fault diagnosis of
hydraulic generator bearing and achieved high classification
accuracy through the model of VMD-SVM.22 These machine
learning classification algorithms still have their own disadvan-
tages to overcome. While the artificial neural network is capa-
ble of fault classification when processing a large amount of
data, adjusting the network structure parameters can be time-
consuming. The SVM has been extensively applied in fault
diagnosis, however, when it comes to a large amount of data,

the processing capacity is limited, and the training speed will
significantly decrease.

The emergence of deep learning algorithms provides a so-
lution for these problems, such as long short-term memory
(LSTM), CNN and so on, which had been generally applied
for fault detection and diagnosis for different objects. Masoud
Jalayer et al. developed a convolutional LSTM and continu-
ous wavelet transforms model to complete the fault detection
and diagnosis for rotating machinery.23 Deng et al. applied
VMD and CNN model to achieve incipient cable fault recog-
nition and classification.24 He et al. simultaneously optimized
the VMD and CNN and applied them to realize the fault diag-
nosis of flywheel bearing, achieving extremely high classifica-
tion accuracy.25 Even CNN and LSTM are commonly used in
tandem for wind turbine bearings fault diagnosis due to their
unique advantage.26 These deep learning algorithms ensure
both diagnostic accuracy and diagnostic efficiency. Thus, to
realize the fault diagnosis as early as possible, ACMD, PE and
CNN are applied to realize fault feature extraction and classi-
fication of the generator. The following are the primary contri-
butions of this study:

1. A signal processing algorithm named ACMD is utilized
to generator diagnosis based on vibration signal instead
of electric parameter.

2. The PE is applied to extract fault feature information hid-
den in vibration signals.

3. Combining with the advantages of signal processing tech-
nology and machine learning, a hybrid model of the
ACMD PE and CNN is proposed.

4. The effectiveness and superiority are proved by compar-
ing with other methods.

The subsequent sections of this paper are organized as fol-
lows: Section 2 presents an overview of the fault classification
methodologies proposed in this paper, which include ACMD,
permutation entropy, and CNN. In section 3, the complete fault
diagnosis process of synchronous generator based on ACMD,
PE and CNN is discussed. Section 4 presents the results of the
proposed method, including model diagnosis and visualization
analysis, and the effectiveness and superiority of the method
are demonstrated through comparative analysis. Finally, sec-
tion 5 of this paper provides a summary of the conclusions
drawn from the proposed method and outlines the prospects
for future research work.

2. THEORY

2.1. Adaptive Chirp Mode Decomposition
The core idea of adaptive chirp mode decomposition

(ACMD) is to use a greedy algorithm to decompose the signal
into multiple components. The decomposition process can be
described as follows:17 For one signal component, the problem
defined in Eq. (1) needs to be solved

min
mi(t),ni(t),fi(t)

{
||m̈i||22 + ||n̈i + α||s(t)− si(t)||22

}
;

s.t.


s(t) =

∑K
i=1 si(t)

si(t) = mi(t) cos
[
2π

∫ t

0
fp(τ)d(τ)

]
+ni(t) sin

[
2π

∫ t

0
fp(τ)d(τ)

] ;
(1)
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where s(t) is the original signal, si(t) is called the i-th chirp
mode of s(t), ||s(t)− si(t)||22 represents the remaining energy
after the estimated component is removed, α > 0 is a weight-
ing coefficient, fi(τ) is the instantaneous frequency of the i-th
chirp mode, mi(t) and ni(t) represent the corresponding de-
modulated signals of si(t).

For a series of the digital signal with N samples, Eq. (1) can
be expressed in a discrete form as follows:

min
ui(t),fi(t)

{||Θui||22 + α||s−Giui||22}; (2)

where Θ =

[
Ω

Ω

]
, Ω is a second-order difference matrix,

ui = [mT
i , n

T
i ] with mT

i = [mi(t0), . . . ,mi(tN−1)]
T , mT

i =
[ni(t0), . . . , ni(nN−1)]

T and mT
i = [si(t0), . . . , si(sN−1)]

T .

Gi = [Ci, Si]; (3)

Ci = diag[cos(ϕi(t0)), . . . , cos(ϕi(tN−1))]; (4)

Si = diag[sin(ϕi(t0)), . . . , sin(ϕi(tN−1))] (5)

where ϕi(t) = 2π
∫ t

0
fi(τ)dτ .

By solving a l2-regularized least-squares problem, vector ui,
which is created by the demodulated signals, can be estimated
when given a frequency function fi(t) (or matrix Gi), as shown
in Eq. (2). Therefore, an iterative algorithm can be employed
to solve the above problem by alternately updating the vector
ui. In the j-th iteration, the vector ui is updated as follows:
where Gj

i is a matrix consisted of the instantaneous frequency,
j refers to the number of iterations. Then the mode can be
estimated as

sji = Gj
iu

j
i ; (6)

The variation ξ between two adjacent iterations of the modes
can be computed as follows:

ξji = ||sji − sj−1
i ||22/||s

j
i ||

2
2. (7)

The iterative decomposition steps described above continue
until the difference value between the modes in two adjacent
iterations is within the predetermined stopping criterion. Fol-
lowing the iterative decomposition process described above,
once the stopping criterion is met, the estimated mode can be
obtained.

2.2. Permutation Enthropy
Permutation entropy is a technique used for quantifying the

complexity of non-stationary and chaotic time series signals,
particularly in the presence of intricate and varying noise[28]
Permutation entropy is particularly well-suited for fault diag-
nosis in rotating machinery due to its excellent superiority in
reflecting the tiny abrupt change of vibration response in the
whole mechanical system. The algorithm operates based on
the following principle: Given a set of time series {xi|i =
1, 2, . . . , N}; then, reconstruct the phase space.

XI = [xi, xi + τ, . . . , xi + (m− 1)τ ]; (8)

where the τ is delay time and the m is the embedding dimen-
sion.

The number of permutations of any Xi in time series is m!,
the probability of any permutation occurring in m! permuta-
tions is:

P (ω) =
T (ω)

N − (m− 1)τ
(9)

Figure 1. The basic structure of CNN.

where the ω is any permutation occurring in m! permutations,
T (ω) indicates that the number of times ω appears.

Then the PE can be described as:

HPE = −ΣP (ω) lnP (ω); (10)

After the normalization,

PE =
HPE

ln(m!)
. (11)

The PE algorithm evaluates the complexity and variability
of time series signals. A higher value of PE indicates a greater
complexity of the signal, while a lower value indicates the op-
posite. The selection of parameters also has a significant im-
pact on the calculation result of PE. The constructed feature
vector contains little information if m is too small, making the
application of this algorithm meaningless. If the value of m is
too large, the time series would homogenize by a reconstructed
phase space, which would spend a lot of time on calculating
values. By comparison, the selection of delay time τ has little
effect on the algorithm.27

2.3. Convolutional Neural Network
The convolutional neural network is a widely used deep

learning algorithm that possesses remarkable learning capa-
bility and adaptability owing to its intricate network architec-
ture, making it capable of processing complex multidimen-
sional data. The typical structure of a convolutional neural
network consists of an input layer, convolutional layer, pool-
ing layer, fully connected layer, and classifier layer, as shown
in Fig. 1.28

In the convolutional layer, the input characteristic matrix is
calculated by fixed-sized convolutional kernel and activated by
activation function. The calculation process of convolutional
layer is as follows:

aln = f
(∑
∀m

am
l−1 ∗ klm,n + bln

)
; (12)

where the aln is the n-th feature map in l-th layer, klm,n is con-
volutional kernel between two characteristic maps, bln is bias
and f is nonlinear activation function.

In the pooling layer, the output feature from convolutional
layer is merged and reduced in dimension to prevent the over-
fitting of the network model. According to the different down-
sampling methods, the pooling layer is divided into two ways,
namely maximum pooling, and average pooling. As shown in
Fig. 2, the pooling kernel scale is 2 × 2, and the step size is
2. The 4 × 4 image or feature map is divided into four differ-
ent regions, and the maximum or mean values are taken from
each of the four different regions to represent the information
of each region.
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Figure 2. Schematic diagram of pooling in different ways.

For max pooling (MP) or average pooling (AP), the expres-
sion is as follows:

MP (Rk) = max
i∈R−k

ci; (13)

AP (Rk) =
1

|Rk|
∑
i∈Rk

ci; (14)

where the Rk represents the k-th local statistical information
of the feature map, and ci is the i-th activation value of the
local statistical information.

Maximum pooling is selected as pooling method in this pa-
per. The selection of size of pooling layer must be appropriate,
otherwise the critical information would be omitted if the size
is too small or large.

In the full-connection layer, the full-connection form is
mainly used to realize the one-dimensional expansion of the
output features from the previous layer, to facilitate the classi-
fication and recognition of the next layer.

At the classification level, according to the one-dimensional
feature vector expanded at the full connection, the model is
trained and classified with the help of the relevant classification
recognizer. At present, the Logistic and the Soft-max are gen-
erally applied as classification methods in the classifier layer,
and Soft-max method is utilized in this study.

3. PROCESS OF THE PROPOSED MODEL

In this section, a detailed description of the proposed fault
diagnosis model based on ACMD, PE, and CNN is presented,
as shown in Fig. 3. The steps involved in the diagnosis model-
ing process are as follows:

• Step 1: Conduct ACMD algorithm to obtain K IMF com-
ponents;

• Step 2: Calculate the permutation entropy of each IMF
using formula (12) and construct the feature vector matrix
composed of K permutation entropy values;

• Step 3: Divide the feature vectors obtained in step 2 pro-
portionally into training and test sets.

• Step 4: Use CNN to classify the different kinds of gener-
ator fault and output the diagnostic result.

Figure 3. The process of fault diagnosis.

Table 1. The structural parameters of CS-5 fault simulation motor.

Parameter Value Parameter Value
Rated power 5 kW Pole pairs 1

Rated stator current 9.0 A Rated stator voltage 321 V
Rated speed 1500 r/min Radial air gap length 1.2 mm

4. EXPERIMENTAL VERIFICATION

4.1. Data Acquisition
The vibration signals related to generator faults used in this

study are obtained from the CS-5 fault simulation generator.
The appearance of CS-5 fault simulation generator is presented
in Fig. 5. The sampling frequency fs is set at 5000 Hz while
the number of sample point is 10000. Other main parame-
ters of the generator are shown in Tab. 1. Normal condition
and three classical fault types of generators were selected in
this study, including stator eccentricity, stator inter-turn short
circuit, short circuit, and eccentric mixed fault. The total num-
ber of experimental data is 480 groups, and each fault type in-
cludes 120 samples. The vibration signals of generator under
four different fault conditions are shown in Fig. 4, and the basic
structure of convolutional neural network is shown in Fig. 6.

4.2. Diagnose Preparation
4.2.1. The Order of IMF

The selection of the order of IMF had a significant impact on
the accuracy of fault classification. If the order was too small,
the feature vector may not have contained enough fault infor-
mation, leading to low classification accuracy. Conversely, if
the order was too large, the calculation process became overly
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(a)

(b)

(c)

(d)

Figure 4. Time domain signal of generator under four different states: (a)
Normal; (b) Inter-turn short circuit fault; (c) Eccentricity fault; (d) Short circuit
and eccentricity mixed fault.

Figure 5. The appearance of CS-5 fault simulation generator.

Figure 6. The structure of convolutional neural network.

Table 2. Correlation coefficients of different order components of signal.

Order Value Order Value
1 0.8989 6 0.0339
2 0.3467 7 0.0316
3 0.3554 8 0.0253
4 0.3486 9 0.0180
5 0.1606 10 0.0155

complicated, resulting in unnecessary time wastage. There-
fore, it was important to choose an appropriate IMF order.

One way to access the similarity between two signals was
calculating the correlation coefficient between the original sig-
nal and the target signal. The result closer to 1 indicates a
higher similarity, whereas a result closer to 0 indicates the op-
posite. In this study, we applied the correlation coefficient
method to determine the order of IMF. At first, the signal
of stator inter-turn short circuit and stator eccentricity mixed
fault, which obtains the most fault information, was selected
as the example to be decomposed. Then, the signal was de-
composed into 10-order IMF components through ACMD al-
gorithm. Subsequently, the correlation coefficients between
each order component and the original signal are calculated.
The results of the calculations are shown in Tab. 2. As shown,
the value of correlation coefficient continuously decreases and
is not reduced to below 0.1 until the number of orders increases
to 6. The smaller value indicates the weaker correlation be-
tween the IMF component and original fault signal. Finally,
based on the result in the Tab. 2, the reasonable number of
IMF component is set at 5.

4.2.2. Parameter of ACMD

The only parameter of ACMD algorithm needs to be preset
is the weighting coefficient α, which would affect the band-
width of estimated mode. The value of α is usually set be-
tween 0.01 and 0.0001. To find the most appropriate value, the
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Table 3. Parameters of the simulating signal.

Amplitude Value Frequency Value Phase Value
A0 8 f0 50 φ0 2π/3
A2 10 f2 150 φ2 π/6
A3 5 f3 200 φ3 π/3
A4 4 f4 250 φ4 π/4
A5 5 f5 300 φ5 π/3
A6 3 f6 350 φ6 π/6
A7 5 f7 400 φ7 2π/3
A8 3 f8 450 φ8 π/6
A9 7 f9 500 φ9 π/3

envelope spectrum of stator inter-turn short circuit and eccen-
tricity mixed fault is shown in Fig. 6 under different α from
0.01 to 0.0001. According to the research in Ref.,1 the ampli-
tude of 1 ∼ 10f (f = 50 Hz was the fundamental frequency
of the generator) will increase evidently and can be seen in the
frequency spectrum. It can be seen from Fig. 7 (a) that the
1 ∼ 10f of the generator can be vividly found in the envelope
spectrum when the α is set at 0.01. However, only the 1 6f
can be found in Fig. 7 (b) when the α is set at 0.001, and the
1−4f can be found when the α is set at 0.0001, which is com-
pletely inconsistent with previous research results. Compared
Fig. 7 (a) with Fig. 7 (b) and Fig. 7(c), the main difference is
reflected in the existence of 7− 10f , which illustrates that the
vibration signal contains abundant and accurate fault informa-
tion. Thus, 0.01 is selected as the most appropriate parameter.

4.2.3. Application Of ACMD On Simulation And Real
Signal

It is essential to make further efforts to prove the effective-
ness and superiority of ACMD after determining the parame-
ters of ACMD. Thus, the result of signal processing was com-
pared with VMD algorithm. Before adapting to the real fault
vibration signal, a simulation signal under the hybrid fault state
of stator eccentricity and short circuit was studied. According
to the conclusion in Ref.,1 the amplitude 1− 10f will increase
significantly and the enormous noise will appear simultaneous
when the fault occurs19 in the generator. To accurately simu-
late the fault vibration signal, a simulation signal is designed
as:

2

x(t) = A+A0 cos(2πf0t+ φ0)+

A1 cos(2πf1t+ φ1)+

· · ·+A8 cos(2πf8t+ φ8)+

A9 cos(2πf9t+ φ9) + n(t; )

(15)

where A is the direct-current component contained in
x(t);Ai cos(2πfit + φi) refer to the ten main components of
the vibration signal to simulate the characteristic frequencies
of the stator eccentricity and short circuit fault; n(t) is a Gaus-
sian white noise and signal-to-noise ratio is 30 dB. The value
of A is arbitrary, and the detailed parameters of the simulating
signal are shown in Tab. 3.

To verify the credibility of the experiment, reconstructed
signal, which was composed of first five IMF, it was de-
termined as the optimum mode component to apply in both
ACMD and VMD algorithms. The envelop diagrams of the
simulation signal are drawn, respectively, as shown in Fig. 8 (a)
and Fig. 8 (b). The envelop spectrum of the simulation signal
processed by ACMD not only has evident characteristic fre-
quency, but also is not influenced by Gaussian white noise.

(a)

(b)

(c)

Figure 7. ACMD envelope spectrum under different α: (a) α = 0.01; (b)
α = 0.001; (c) α = 0.0001.

As a comparison, the 1 − 3f and 8 − 10f can be found in
Fig. 8 (a). The 4− 6f components are submerged in Gaussian
white noise.

Regarding the real generator fault, the stator eccentricity and
short circuit mixed fault was chosen, and the results of the en-
velope spectrum analysis of VMD and ACMD are carried out
in Fig. 8. As can be seen from Fig. 8 (c), the peak of 1 − 2f ,
4 − 6f and 8 − 10f frequency components are apparent, 3f
and 7f frequency components disappear in the envelope spec-
trum. On the contrary, as shown in Fig. 8 (d), there are several
manifest peak spectrum lines at each fault characteristic fre-
quency which indicates that stator inter-turn short circuit and
stator eccentricity mixed fault occurs in the generator. In ad-
dition, the envelope spectrum lines are not interfered from re-
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dundant frequency. The analysis result of the simulation fault
signal is consistent with the actual situation and the superiority
of ACMD is proved by comparing with VMD.

4.3. Generator Diagnosis Analysis
This section presents the detailed processing results of the

proposed method to demonstrate its effectiveness. According
to many studies on deep learning algorithms for fault diagno-
sis, the number and proportion of training and testing sets can
influence the results of fault diagnosis.29 Better diagnostic re-
sults will be acquired if the number of each fault type sample
is more than 100 and the proportion of training sets exceeds
80 %. Thus, a total of 480 samples, with 120 samples for
each fault type, were included in the dataset. Among them,
400 samples were randomly selected for training, while the re-
maining 80 samples were reserved for testing.

Firstly, several modal components can be acquired after pro-
cessing by ACMD algorithm. Next, the feature vectors were
constructed by calculating the permutation entropy of modal
component. The final step was to use the constructed fea-
ture vectors and their corresponding labels as inputs to the
CNN model for generator fault diagnosis The CNN model was
trained for 500 iterations with a training batch size of 64 and
a learning rate of 0.001. After completing the training, the
confusion matrix of the invisible test set was demonstrated in
Fig. 9, which shows that the model only misclassified a single
sample, predicting a normal state as an eccentric fault. The ac-
curacy curve of CNN model is represented in Fig. 10, where
it can be observed that the accuracy of the model rapidly in-
creases at the beginning of the iteration. Subsequently, the ac-
curacy curve stabilizes at over 95 % after 50 iterations. After
200 iterations, the accuracy of fault classification approaches
100 % and keeps stable until the end of training. The y-axis
at right side in Fig. 10 indicates the training loss of model.
Training loss was a parameter used to calculate the difference
between predicted value and true value. A smaller training loss
indicates higher prediction accuracy of the model. After 350
iterations, the value of training loss decreases approximately
to 0.02 and inclines to remains steady in subsequent iterations,
indicating the model have achieved a convergence state.

To demonstrate the superiority of the proposed method,
a comparison was made with other methods, includ-
ing EEMD-PE-SVM, EEMD-PE-GA-BP, EEMD-PE-LSTM,
EEMD-PE-CNN, VMD-PE-SVM, VMD-PE-GA-BP, VMD-
PE-LSTM, VMD-PE-CNN, ACMD-PE-SVM, ACMD-PE-
GA-BP, ACMD-PE-LSTM, and the results are presented in
Fig. 11. As shown in Fig. 11, the 12 different diagnostic meth-
ods mentioned above are divided into four groups based on
different classification algorithms. Through the comparison of
the different groups, it can be found that an enormous gap ex-
ists between traditional machine learning classification algo-
rithms and other deep learning networks. The first group using
the SVM algorithm as a fault classifier obtains the worst results
with only 80 % accuracy, while other neural network methods
obtain superior results. Generator fault classification diagno-
sis is different from rotating machinery such as bearings and
gears, which has a noticeable fault characteristic frequency.
Not only the fault characteristic frequency of generator fault
is not conspicuous, but also the difference between different
faults is extremely small. For this reason, traditional machine
learning algorithm is not applicable for generator fault classi-

(a)

(b)

(c)

(d)

Figure 8. Envelope spectrum of simulation signal :(a) VMD envelope spec-
trum (b) ACMD envelope spectrum; Envelope spectrum of real signal :(c)
VMD envelope spectrum (d) ACMD envelope spectrum..
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Figure 9. Confusion matrix representing the training results of CNN.

Figure 10. Fault diagnosis accuracy curve of ACMD-PE-CNN.

fication and diagnosis compared with the deep learning algo-
rithms.

After observing Fig. 11, it can be found that the ACMD
method can obtain superior results in fault classification com-
pared with the EEMD and VMD methods when the fault
classification algorithm is same, which reflects the superior-
ity of ACMD in signal processing. The results obtained by
the fourth group prove that the method using CNN algorithm
as classifier can predict the type of fault with an accuracy
of 98 %, which proves that CNN model has excellent supe-
riority in fault classification. Overall, the results in Fig. 11
show that the diagnosis method of applying ACMD as decom-
position algorithm and CNN network as classifier can realize
the best diagnostic result. Then, the relationship between the
accuracy curve of VMD-PE-LSTM, VMD-PE-CNN, ACMD-
PE-LSTM, ACMD-PE-CNN, and the number of iterations is
drawn in Fig. 12. As can be seen from Fig.12 that the diagnos-
tic accuracy of CNN remained stable at over 90 % after 30-th
iteration, while the accuracy of the LSTM network increased
slowly, approaching high accuracy after 100th iteration. The
result proves that CNN has superiority in terms of diagnostic
accuracy and efficiency.

To present the feature information extracted from the model
more intuitively, a method known as t-Distributed Stochastic

Figure 11. Comparison of different fault diagnosis methods.

Figure 12. Accuracy curve for the neural network combination method using
ACMD and VMD.

Neighbor Embedding (t-SNE) is applied to reduce the dimen-
sionality in this paper. Through this method, the feature in-
formation of each sample extracted by the fault classification
algorithm can be mapped into a visualized two-dimensional
vector.

As visualized in Fig. 13, the fault feature information ex-
tracted from the hybrid model of ACMD+PE+CNN is trans-
formed into a two-dimensional vector. It can be seen in Fig. 13,
the model has learned the features that distinguish between dif-
ferent classes of generator situations, particularly normal state
and the other three classes. Each of the four groups of feature
vector vectors has a clear distinction from the other groups,
with only one point that should have been in a normal state
mistakenly classified as an eccentric fault. The result suggests
that the model can correctly classify faults and achieve satis-
factory results in practical applications.
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Figure 13. Visualization of the feature extracted from CNN, mapped into
2-dimensional vector.

5. CONCLUSIONS

Generators, as the most critical equipment in the power pro-
duction system, are frequently suffering from different faults,
resulting in serious human and material loss. To avoid this
situation, this paper selects vibration signal to diagnose gener-
ator faults. However, the vibration signal of generator faults is
weak in the early stage and is easily affected by environmental
noise. At the same time, various mixed faults often occur si-
multaneously, making it difficult to diagnose manually through
the spectrum feature obtained by traditional signal processing
methods. Therefore, to complete the diagnosis of generator
faults timely and accurately, this paper proposes a practical
fault diagnosis method for generator using ACMD permutation
entropy and the CNN network, combing advanced signal pro-
cessing technology with the powerful classification function of
neural networks to diagnose motor faults. Firstly, the original
vibration signals are decomposed into several intrinsic mode
functions by ACMD algorithm. Then the permutation entropy
values of each component are calculated and construct the fea-
ture vectors, which are regarded as the input of CNN. Finally,
CNN is utilized to classify the feature vectors obtained in the
previous step to achieve the diagnosis of generator faults and
obtains a classification accuracy of nearly 100 %. Below are
the main conclusions drawn from the study:

1. The signal decomposition algorithm ACMD is employed
for decomposing the generator vibration signal, which is
found to be superior compared to other methods.

2. An entropy method called PE is applied to characteristic
the fault feature of different types of generator fault.

3. The result of fault diagnosis based on CNN proves that it
has excellent advantages over other classification models.

4. The proposed hybrid method achieves generator fault
classification with the diagnostic accuracy of 98 %, which
is higher than the comparison methods mentioned in this
paper.

The experimental results indicate that the method proposed
in this paper accurately diagnoses faults under actual engineer-
ing conditions and is of great significance for preventing vari-
ous faults in generators and maintaining the stability and safety
of the entire power system.

In future study, an improvement can be the inclusion of
an appropriate optimization algorithm in the parameter selec-
tion process. Additionally, using multi-dimensional and multi-
scale feature vectors as input for fault pattern recognition, and
utilizing fault data under variable speed situations could also
be considered in future research. Another potential research
direction is investigating fault diagnosis under unbalanced data
or small sample data, which has recently gained attention from
many scholars.
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