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A damage index describing damage severity based on the Auto correlation function at Maximum point value
Vector (AMV) is proposed for damage assessment as well as locating the damage is described in this study. The
detectability of the AMV-based damage detection method is compared with Mean Strain Energy (MSE) and the
Generalized Flexibility Matrix (GFM) method, to show its efficiency in localizing the damage and its simplicity
to conduct the analysis. Moreover, a procedure to estimate the damage severity using the sensitivity analysis is
introduced. The stiffness reduction detection of a twelve-story shear frame structure is provided to show that the
estimated damage severity by the AMV-based method is in close agreement with the simulated damage for small
damage even when the measurement noise exists or is just part of the available modal parameters.

1. INTRODUCTION

Structural damage detection technique is one of the most im-
portant issues in structural health monitoring (SHM).1, 2 Over
the last few decades, a wealth of research has been conducted
in the vibration-based damage detection field for it requires no
finite element model for the structure and can be performed
in real-time/online.3 The basic premise of the vibration-based
damage detection methods is that the dynamic characteristics
of the structure (natural frequency, mode shape, modal damp-
ing, etc.) will change when the physical parameters (mass,
stiffness, etc.) of the structure change due to the damage.
One can detect the changes of physical parameters using the
changes of the dynamic parameters, such that the damage can
be detected. A wide range of algorithms, methodologies and
techniques have been developed for various problems and sig-
nificant advancement has been achieved up to date.4, 5

Damage sensitive features such as using natural fre-
quency,6, 7 mode shape,8, 9 strain energy,10, 11 modal flexibil-
ity,12–15 transmissibility,16 etc., have been used to detect the
damages in various structures under diverse situations. Dewan-
gan et.al10 proposed a damage index using modal strain energy
for damage detection, with which they used their methodol-
ogy on planetary gear train and parallel gear that gives promis-
ing results. Instead of using mode shape, Choi and Stubbs11

used the vibration time-series response to derive the damage
index, so called Mean Strain Energy (MSE). A beam structure
simulation demonstrates that the MSE-based damage detection
method can effectively locate and evaluate the damage with the
existence of noise. While Wickramasinghe et.al12 proposed a
vertical damage index and lateral damage index based on the

modal flexibility, with which the damage in Ölfusá suspen-
sion bridges can be located. Li et.al13 used the decomposition
of proportional flexibility matrix to locate the damage, which
can decrease the influence of incomplete measured DOFs on
structural damage detection under ambient excitation. Li and
Wu14 proposed the Generalized Flexibility Matrix (GFM) for
damage detection to reduce the effect of truncating higher or-
der. Peng and Yang15 improved the Generalized Flexibility
Method which used arbitrary-scaled mode shapes instead of
mass-normalized mode shapes in the calculation.

Using the time-series response, the auto/cross correlation
function becomes a viable tool in vibration-based damage de-
tection.17–29 Gradzki et.al20 proposed a rotor fault detection
approach by using auto-correlation and power spectral den-
sity. Both a numerical and experimental test of the rotor
verified high sensitivity and reliability of the method. Lei
and Xia21 proposed an approach that combined the cross-
correlation function of structural responses and the extended
Kalman filter (EKF) to identify the damage under both in-
dependent stationary and non-stationary white noise excita-
tions. Several numerical simulations and experimental stud-
ies of multi-story shear structure showed this method is vali-
dated for the structure under ambient excitation and is not sen-
sitive to measurement noise. Wang and Chen22 showed that the
data fusion of the correlation function among different types
of vibration measurements could significantly improve the ac-
curacy of the identification. Hamidian and Soofi23 proposed
an output-only damage classification method using correlation
function and information entropy, which has 93.98% accuracy
for the test data. Taking the idea of Cross Correlation Function
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Amplitude Vector (CorV)24 and Inner Product Vector (IPV),25

based on the theory of natural excitation technique (NExT),26

Zhang and Schmidt27–29 proposed the Auto correlation func-
tion at Maximum point value Vector (AMV) using the auto
correlation function. Sensitivity analysis shows the normal-
ized AMV has a sharp change around the local stiffness change
area when damage appears, which can clearly indicate the lo-
cation of the damage. Stiffness reduction detection of a 12-
story shear frame structure compares the detectability of the
AMV obtained from different response types (displacement,
velocity and acceleration) under different excitations and mea-
surement noises.

Rytter30 categorized damage assessment into four levels:
(1) damage presence identification; (2) damage localization;
(3) damage severity quantification; and (4) remaining service
life prediction. Normally, a wealth of papers just focus on
detecting and locating the damage; that is, the first two lev-
els of the damage assessment. This study is an extension of
the Zhang and Schmidt paper28 to not only locate the damage
but also assess the damage severity. First, the theory of the
AMV and sensitivity analysis is briefly reviewed. Second, an
AMV-based damage location index is compared with MSE-
and GFM-based damage location index for stiffness reduc-
tion detection of a 12-story shear frame structure. Then, dam-
age severity is estimated by the theory from sensitivity analy-
sis. Estimation results from a comparison of MSE- and GFM-
based method, without/with measurement noise and from com-
plete/incomplete modal parameter information are presented.
Finally, conclusions are made.

2. DAMAGE INDEX

2.1. Auto Correlation Function at Maximum
Point Value Vector

In this subsection, a brief derivation of the AMV introduced
by Zhang and Schmidt28 is presented. A standard matrix equa-
tion of motion for a given structure is expressed as:

Mẍ(t) +Cẋ(t) +Kx(t) = f(t); (1)

where M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, f is a vector of the force and x(t), ẋ(t) and
ẍ(t) is the vector of displacement, velocity and acceleration,
respectively.

Suppose proportional damping C = αM + βK and real
normal modes are assumed, the displacement response xi(t) at
point i due to input fe at point e can be expressed by:

xi(t) =

n∑
r=1

ϕirϕer ·
∫ t

−∞
fe(τ)g

r(t− τ)dτ ; (2)

where ϕir, ϕer is the ith and eth component of mode shape ϕr,
respectively. And the function:

gr(t) =

{
(1/mrωr

d)e
−ζrωr

nt sin(ωr
dt) t ≥ 0

0 t < 0
; (3)

where mr is the rth modal mass, ωr
n is the rth modal fre-

quency, ζr = (α/ωr
n+βωr

n)/2 is the rth modal damping ratio,
ωr
d = ωr

n

√
[1− (ζr)2] is the damped modal frequency.

The auto correlation function of the vibration response xi(t)
is defined as:

Ri(T ) = E[xi(t+ T )xi(t)]. (4)

Substitute the expression of the vibration response in Eq. (2)
into Eq. (4)

Ri(T ) =

n∑
r=1

n∑
s=1

ϕirϕerϕjsϕes ·∫ t

−∞

∫ t+T

−∞
gr(t+ T − σ)gs(t− τ)E[fe(σ)fe(τ)]dσdτ ;

(5)

where the superscript r and s is the modal order.
Assume the excitation fe is white noise, then the auto corre-

lation function of this fe can be expressed as:31

Rfefe(τ − σ) = E[fe(τ)fe(σ)] = εeδ(τ − σ); (6)

where εe is a constant representing the one-side auto-spectral
density of white noise and δ(t) is the Dirac delta function.

Then, Eq. (5) can be further written by collapsing its first
integration as:

Ri(T ) =

n∑
r=1

n∑
s=1

εeϕirϕerϕjsϕes ·∫ t

−∞
gr(t+ T − τ)gs(t− τ)dτ. (7)

Assume λ = t − τ , the limits of the integration in Eq. (7)
can be changed to 0 and ∞, Eq. (7) can be further simplified
as:

Ri(T ) =

n∑
r=1

n∑
s=1

εeϕirϕerϕjsϕes ·
∫ ∞

0

gr(λ+ T )gs(λ)dλ.

(8)

Substitute the expression of the function g(t) in Eq. (3) into
Eq. (8) result in the auto correlation function of the vibration
response xi(t) when the time lag T = 0 as:

Ri(0) =

n∑
r=1

ϕir

[
n∑

s=1

ϕisµrs

]
; (9)

where µrs is expressed as:

µrs =
2εeϕerϕes

mrms
·

ζrωr
n + ζsωs

n

[(ωs
d+ωr

d)
2+(ζrωr

n+ζsωs
n)

2]·[(ωs
d−ωr

d)
2+(ζrωr

n+ζsωs
n)

2]
.

(10)

An AMV vector is formed from the maximum value of the
auto correlation function of the vibration response at different
measurement locations, expressed as:

R = [R1, R2, . . . , Rn]
T . (11)
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Substituting Eq. (9) into Eq. (11), AMV can be written in
matrix form as:

R =



n∑
r=1

n∑
s=1

µrs · (ϕ1rϕ1s)

n∑
r=1

n∑
s=1

µrs · (ϕ2rϕ2s)

...
n∑

r=1

n∑
s=1

µrs · (ϕnrϕns)


=

n∑
r=1

n∑
s=1

µrs · (ϕr ◦ ϕs);

(12)

where ‘◦’ is the Hadamard product32 symbol, then R can be
considered as a weighted sum of the Hadamard product of two
mode shape vectors.

In order to eliminate the influence of the constant εe that
is related to the excitation, R is normalized by its root mean
square value as follows:

R =
R

rms(R)
= [R1, R2, . . . , Rn]

T ; (13)

where rms(R) =
√

1
n

∑n
i=1 R

2
i .

Consequently, the damage index of the AMV method can be
defined as:

D = [D1, D2, . . . , Dn]
T ; (14)

where Di is the relative change of ith element in R before and
after damage, as:

Di =
Rd

i −Ru
i

Ru
i

; (15)

where the superscript d denotes the damaged structural state
and u is the healthy structural state.

The vector D defined in Zhang and Schmidt study27, 28 has a
shape of ‘step change’,25 thus in order to identify this damage
location, a damage location index is defined as:

L = [L1, L2, . . . , Ln−1]
T ; (16)

where Li is the difference of Di, as:

Li = Di −Di−1; (17)

where the local maxima of L corresponding to the sudden
change of the damage index of Di. This sudden change is due
to the change of the health state of the structure, i.e., damage
occurs. Thus, the damage location can be identified.

2.2. Sensitivity Analysis
In the engineering arena, sensitivity analysis has been

widely used to evaluate the change of one variable to the other,
which can increase the understanding of the relationships be-
tween these two variables in the system.33, 34 One way to define
the sensitivity is by the relative change of variable x to variable
y, expressed as:

η(x/y) = lim
∆y→0

∆x/x

∆y/y
=

y

x

∂x

∂y
. (18)

The sensitivity of the normalized AMV R in Eq. (13) to the
local stiffness kj change is defined as:

η(R/kj) = [η(R1/kj), η(R2/kj), . . . , η(Rn/kj)]
T ; (19)

where the ith element is expressed as:

η(Ri/kj) =
kj

Ri

∂Ri

∂kj
; (20)

using the definition of the sensitivity in Eq. (18), where Ri is
the ith element in the vector R in Eq. (13).

Substitute Eq. (13) into the Hadamard product of η(Ri/kj)
and R result in:

η(R/kj) ◦R =


η(R1/kj)

η(R2/kj)
...

η(Rn/kj)

◦

R1

R2

...
Rn

=

kj

∂R1

∂kj

kj
∂R2

∂kj

...
kj

∂Ri

∂kj

= kj
∂R

∂kj
.

(21)

Using the definition of R in Eq. (13) and note

∂[rms(R)]

∂kj
=

1

n

1

rms(R)

(
RT · ∂R

∂kj

)
; (22)

Eq. (21) can be rewritten as:

η(R/kj) ◦R =

{
[1]n×n − 1

n
RRT

}
kj

∂R

∂kj
; (23)

where [1]m×n is the m× n matrix that each element is 1. De-
fine the sensitivity of µrs to the local stiffness kj as:

η(µrs/kj) =
kj
µrs

∂µrs

∂kj
; (24)

and the sensitivity of the Hadamard product of mode shape
Φr ◦Φs to the local stiffness kj as:

η[(Φr ◦Φs)/kj ] =

[η(ϕ1rϕ1s/kj), η(ϕ2rϕ2s/kj), . . . , η(ϕnrϕns/kj)]
T . (25)

Using the definition of the sensitivity in Eq. (18), the ith
element of η[(Φr ◦Φs)/kj ] can be expressed as:

η(ϕirϕis/kj) =
kj

ϕirϕis

∂(ϕirϕis)

∂kj
=

kj
ϕirϕis

(
∂ϕir

∂kj
ϕis + ϕir

∂ϕis

∂kj

)
. (26)

Using the definition of R in Eq. (13), and note Eq. (24) and
Eq. (25), Eq. (23) result in:

η(R/kj) ◦R =

{
[1]n×n − 1

n
RRT

} n∑
r=1

n∑
s=1

µrsΦr ◦Φs ◦{
η[(Φr ◦Φs)/kj ] + η[µrs/kj ] · [1]n×1

}
. (27)

As a result, sensitivity of the normalized AMV to the local
stiffness can be expressed by:

η(R/kj) = Θ

n∑
r=1

n∑
s=1

µrsΦr ◦Φs ◦{
η[(Φr ◦Φs)/kj ] + η[µrs/kj ] · [1]n×1

}
; (28)
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where Θ =
{
R◦(−1) ⊗ [1]1×n

}
◦
{
[1]n×n − 1

nRRT
}

,
R◦(−1) is the Hadamard inverse35 of R, ‘⊗’ is the Kronecker
product symbol.

From expression of the sensitivity of normalized AMV to
the local stiffness in Eq. (28), the sensitivity of the modal pa-
rameters (frequency and mode shape) to the local stiffness is
required, which can be obtained by Eq. (24) and Eq. (25). As
from Eq. (24) and Eq. (25), these two sensitivities are both
determined by the partial derivative of the modal parameters
(frequency and mode shape) to the local stiffness.

For a given structure, the partial derivative of frequency ωr
n

to the local stiffness kj is expressed by:36

∂ωr
n

∂kj
=

1

2ωr
n

ΦT
r

(
∂K

∂kj
− (ωr

n)
2 ∂M

∂kj

)
Φr; (29)

and the partial derivative of mode shape Φr to the local stiff-
ness kj is expressed by:

∂Φr

∂kj
=

n∑
i=1

αiΦi; (30)

where:

αs =

 1
[(ωr

n)
2−(ωs

n)
2]Φ

T
s

(
∂K
∂kj

− (ωr
n)

2 ∂M
∂kj

)
Φr, s ̸= r;

− 1
2Φ

T
r

∂M
∂kj

Φr, s = r.

(31)
As the small damage is assumed that the mass will not

change for the damage occurs, ∂M
∂kj

= 0. Thus,

∂ωr
n

∂kj
=

1

2ωr
n

ΦT
r

(
∂K

∂kj

)
Φr; (32)

∂Φr

∂kj
=

n∑
i=1

αiΦi; (33)

where:

αs =

{
1

[(ωr
n)

2−(ωs
n)

2]Φ
T
s

(
∂K
∂kj

)
Φr, s ̸= r;

0, s = r.
(34)

From Eq. (32) and Eq. (33), the partial derivative of the
modal parameters (frequency and mode shape) to the local
stiffness are determined by the modal parameters and the par-
tial derivative of the stiffness matrix to the local stiffness ∂K

∂kj
.

As a result, the sensitivity of the normalized AMV to the lo-
cal stiffness, the value of η(R/kj) in Eq. (28) can be obtained
using the modal parameters and the partial derivative of the
stiffness matrix to the local stiffness ∂K

∂kj
.

3. DAMAGE LOCALIZATION

A 12-story shear frame structure, as shown in Fig. 1, is used
as a numerical simulation model to study the detectability of
the AMV. It is assumed that the mass of each story is central-
ized on its floor and the stiffness of each floor is supplied by the
braces between them. The stiffness in z direction is assumed
to be much larger than the stiffness in x direction, such that the
movement in x direction only needs to be considered.

Figure 1. A 12-story shear frame structure.

Therefore, this shear frame structure can be expressed as a
12-DOF discrete system with the mass matrix:

M = diag[m1,m2, . . . ,m11,m12]; (35)

and the stiffness matrix:

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . . . . . . . .
−k11 k11 + k12 −k12

−k12 k12

 .

(36)
For each floor, the mass mi is 1 kg and the stiffness coeffi-

cient ki is 20,000 N/m. The mass proportional damping coef-
ficient α is 0.002 and the stiffness proportional damping coef-
ficient β is 0.001. As the mass matrix and the stiffness matrix
are known, the 12th natural frequency of the structure can be
easily obtained as 44.66 Hz. As the white noise that covers
all the natural frequencies of the structure is used to deduce
the expression of auto correlation function of the response in
Eq. (9), 0 ∼ 50 Hz white noise that also covers all the natural
frequencies is used as the excitation in this paper. The excita-
tion force has a duration of 16 s with the sample frequency as
1,024 Hz and the magnitude is 1 N that is applied on the top of
the structure, as shown in Fig. 1.

The stiffness coefficient ki of the 2nd, 5th, 8th and 11th floor
is reduced by 5% as the simulated damage, respectively. The
displacement responses for the pristine and damaged structure
respectively can be obtained using the Wilson-θ method with
θ = 1.42. After the responses are known, the AMV-based
damage index and the corresponding damage location index
can be obtained using Eq. (14) and Eq. (16), respectively.

The AMV-based damage location index is shown as the
red solid lines in Fig. 2. For comparison, as both uses the
vibration response, the damage detection results using the
MSE-based method11 are also plotted as blue dotted lines in
Fig. 2. The MSE-based damage location index LMSE =
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[LMSE,1, LMSE,2, . . . , LMSE,n]
T is expressed as:

LMSE,i ≈
∑NT

q=1 V
T
q KVq∑NT

q=1(V
d
q)

TKVd
q

·(∑NT
q=1(V

d
q)

TGiV
d
q +

∑NT
q=1(V

d
q)

TKVd
q∑NT

q=1 V
T
q GiVq +

∑NT
q=1 V

T
q KVq

)
; (37)

where i is the measurement location, Vq = V(tq) =
[v1(tq), v2(tq), . . . , vn(tq)]

T is the displacement response vec-
tor with vi(tq) is the displacement response at measurement
location i of time tq , K is the stiffness matrix of the intact
structure, Gi is the geometric portion of the contribution for
the ith element to the stiffness matrix of the structure and NT
is the number of sampling points. The superscript d denotes
the parameter is from the damaged structure.

Additionally, as the flexibility matrix is very popular to for-
mulate the damage indicator, the GFM-based15 damage lo-
cation index LGFM = [LGFM,1, LGFM,2, . . . , LGFM,n]

T is
also used for comparison. It is obtained by solving the linear
equations

n∑
i=1

LGFM,i(F
uKuiF

uMFu + FuMFuKuiF
u) =

mo∑
z=1

1

(ωz
d)

4
Φd

z(Φ
d
z)

T −
mo∑
z=1

1

(ωz
n)

4
Φu

z (Φ
u
z )

T ; (38)

using the least squares method, where F is the flexibility ma-
trix, Kui is the ith element stiffness matrix, M is the mass
matrix, mo is the number of measured modes (in this paper it
is chosen as 1), Φz is the zth mode shape vector, u and d de-
note the parameter is from the intact and damaged structure,
respectively.

The GFM-based damage location index is plotted as green
dash-dotted lines in Fig. 2. As the exact value of the AMV-,
MSE- and GFM-based damage location index is different, in
order for comparison all the damage location indexes are nor-
malized by

L =
L− E(L)

σ(L)
; (39)

where E(L) and σ(L) is the expectation and standard devia-
tion value of the corresponding damage location index, respec-
tively.

As shown in Fig. 2, AMV-, MSE- and GFM-based damage
location index have the similar trend and shape. In Fig. 2(a),
the AMV-based damage location index has a peak value at
floor number 2, which indicates the damage lies in the 2nd floor
according to Eq. (16). Similarly, the detected damage lies in
the 5th, 8th and 11th floor in Fig. 2(b), Fig. 2(c) and Fig. 2(d),
respectively, which is exactly the damage location simulated.
On the other hand, MSE- and GFM-based damage detection
method also has the peak value of the damage location index
at floor number 2, 5, 8 and 11, which indicates the damage also
lies in the 2nd, 5th, 8th and 11th floor, respectively.

As a result, both AMV-, MSE- and GFM-based damage lo-
cation index can locate the damage correctly. It is worth not-
ing that in order to get the MSE-based damage location index,
the stiffness matrix K of the structure is required as shown in

Eq. (38), and in order to get the GFM-based damage location
index, the element stiffness matrix Kui and mass matrix M
are required as shown in Eq. (39), which none is easily ob-
tained in real applications. However, for the AMV-based dam-
age location index, only the displacement response is needed.
The AMV-based damage detection method has the advantage
of simplicity in calculation and a similar detectability as the
MSE- and GFM-based damage detection method.

4. DAMAGE ASSESSMENT (SEVERITY)

4.1. Damage Severity Estimation
Figure 3 is the AMV-based damage location index change

with the stiffness reduction from 0 to 10% with an interval
of 1% for the 2nd, 5th, 8th and 11th floor, respectively. From
these subfigures, the damage location is clearly identified by
the peak value location of the damage location index. And as
the stiffness reduction increases, this peak value also increases.
As the other values do not change much, this peak value is a
clear indicator for the damage severity. If this damage loca-
tion index is monitored, after checking the peak value of it, the
relative change of the damage severity can be observed. Same
phenomenon is found for the MSE- and GFM-based damage
location index that the peak value of the damage location in-
dex increases when the damage becomes severe.

On the other hand, with just monitoring the AMV-based
damage location index, the exact value of damage severity and
stiffness reduction could not be obtained. In real applications,
one needs to find the damage as early as possible.37 If the
damage is assumed to be very small, the sensitivity of the nor-
malized AMV to the local stiffness can be expressed as:

η(R/kj) =
∆R/R

∆kj/kj
. (40)

Thus, the relative change of the local stiffness prior to and
after damage occurs in the structure can be estimated by:

∆kj/kj =
1

n

[
n∑

i=1

∆Ri/Ri

η(Ri/kj)

]
=

1

n

[
n∑

i=1

Di

η(Ri/kj)

]
.

(41)
For a given structure, the partial derivative of the frequency
and mode shape to the local stiffness can be obtained when the
mass matrix and the stiffness matrix are available or using the
modal testing technique in real application, then the value of
η(R/kj) can be obtained using Eq. (28). The value of Di can
be calculated using the displacement response before and after
damage using Eq. (15). Then, the stiffness reduction can be
estimated using Eq. (41).

The 12-story shear frame structure in Fig. 1 is again taken as
an example. The damage is still simulated by stiffness reduc-
tion in the 2nd, 5th, 8th and 11th floor from 0 to 10%, respec-
tively. The corresponding displacement response is obtained
using the Wilson-θ method. The estimated stiffness reduction
is shown in Tables 1–4 for these cases using Eq. (41). In com-
parison, the estimated severity from the MSE and the GFM-
based damage detection methods are calculated based on the
results from Eq. (37) and Eq. (38) and also shown in Tables 1–
4, respectively. Moreover, the measurement noises are added
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Figure 2. Comparison of the damage detection results. Damage occurs in (a) 2nd floor; (b) 5th floor; (c) 8th floor; and (d) 11th floor.

to the response signals for different cases, the mean value of
estimated stiffness reduction by the AMV-based method from
200 cases is also shown in Tables 1–4.

Table 1 shows the estimated stiffness loss for the case when
the damage is in the 2nd floor. The 1st column is the simu-
lated stiffness loss from 0 to 10% with an interval of 1%. The
2nd, 5th and 6th column is the estimated stiffness loss using
AMV-, MSE- and GFM-based method when there is no noise,
respectively. The 2nd and 3rd column is the estimated stiffness
loss obtained from the AMV-based method when the response
signal is contaminated with 20 dB and 10 dB measurement
noise, respectively. Comparing these results, the value in the
2nd column is very close to the value in the 1st column. The
estimated stiffness loss from the AMV-based method is very
close to the simulated stiffness loss. On the other hand, the
value in the 2nd and 3rd column is also close to the value in
the 1st column, which means the estimated stiffness loss from
the AMV-based method with the noise exists, even when the
measurement noise is as high as 10 dB, it is still close to the
simulated stiffness loss. Additionally, comparing the values
in 2nd and 5th column with the values in 1st column, the esti-
mated stiffness loss from AMV-based method is closer to the
simulated stiffness loss than the MSE-based method. While

Table 1. Estimation of stiffness reduction when damage occurs in the 2nd floor.

Simulated

Estimated
AMV MSE GFM

No SNR = 20 SNR = 10 No No
noise dB dB noise noise

0 0 -0.0026 -0.0019 0 0
0.01 0.0122 0.0146 0.0002 0.0129 0.0099
0.02 0.0248 0.0258 0.0192 0.0261 0.0195
0.03 0.0378 0.0387 0.0440 0.0396 0.0290
0.04 0.0511 0.0518 0.0459 0.0534 0.0382
0.05 0.0649 0.0633 0.0716 0.0675 0.0471
0.06 0.0791 0.0799 0.0816 0.0818 0.0559
0.07 0.0937 0.0942 0.0928 0.0964 0.0644
0.08 0.1088 0.1089 0.1110 0.1113 0.0726
0.09 0.1243 0.1211 0.1300 0.1265 0.0807
0.10 0.1403 0.1394 0.1481 0.1418 0.0885

comparing the values in the 2nd and 6th column with the values
in 1st column, the estimated stiffness loss from the GFM-based
method is closer to the simulated stiffness loss than the AMV-
based method. As a result, for the damage in the 2nd floor, the
GFM-based method has the best estimation results; the AMV-
based method comes in second; and, the MSE-based method
comes in third.

Tables 2–4 show the estimation results for the case when the
damage is in the 5th, 8th and 11th floor, respectively. Compar-
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Figure 3. AMV-based damage location index change with damage severity.

Table 2. Estimation of stiffness reduction when damage occurs in the 5th floor.

Simulated

Estimated
AMV MSE GFM

No SNR = 20 SNR = 10 No No
noise dB dB noise noise

0 0 0.0009 0.0012 0 0
0.01 0.0127 0.0151 0.0151 0.0095 0.0099
0.02 0.0257 0.0269 0.0207 0.0192 0.0196
0.03 0.0388 0.0383 0.0320 0.0292 0.0290
0.04 0.0521 0.0536 0.0433 0.0394 0.0383
0.05 0.0655 0.0679 0.0592 0.0498 0.0473
0.06 0.0790 0.0817 0.0757 0.0604 0.0560
0.07 0.0927 0.0895 0.0910 0.0713 0.0646
0.08 0.1065 0.1051 0.1127 0.0824 0.0729
0.09 0.1203 0.1193 0.1194 0.0937 0.0810
0.10 0.1342 0.1346 0.1416 0.1053 0.0889

ing these values in different columns, the results are similar as
Table 1 that the estimated stiffness loss from the AMV-based
method is also very close to the simulated stiffness loss even
when the measurement noises exist, which shows this AMV-
based methodology has a very good noise tolerance to esti-
mate the damage severity. Moreover, comparing these results
in four tables, when the damage is smaller (same damage loca-

Table 3. Estimation of stiffness reduction when damage occurs in the 8th floor.

Simulated

Estimated
AMV MSE GFM

No SNR = 20 SNR = 10 No No
noise dB dB noise noise

0 0 0.0001 -0.0009 0 0
0.01 0.0089 0.0091 0.0091 0.0060 0.0099
0.02 0.0180 0.0176 0.0176 0.0121 0.0196
0.03 0.0273 0.0275 0.0275 0.0185 0.0290
0.04 0.0367 0.0365 0.0355 0.0250 0.0382
0.05 0.0464 0.0462 0.0491 0.0316 0.0473
0.06 0.0562 0.0558 0.0564 0.0385 0.0560
0.07 0.0663 0.0669 0.0652 0.0456 0.0646
0.08 0.0766 0.0765 0.0775 0.0528 0.0730
0.09 0.0871 0.0871 0.0863 0.0603 0.0811
0.10 0.0979 0.0975 0.0968 0.0680 0.0891

tion, less stiffness reduction or same stiffness reduction, closer
to the top of the structure), the relative error of the estimated
and simulated stiffness loss is also smaller. That is because
Eq. (41) is only valid and more accurate when the damage is
very small. Therefore, this AMV-based damage severity esti-
mation procedure is suitable for the small/early damage case.

Additionally, the estimation results of the MSE-based
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Table 4. Estimation of stiffness reduction when damage occurs in the 11th

floor.

Simulated

Estimated
AMV MSE GFM

No SNR = 20 SNR = 10 No No
noise dB dB noise noise

0 0 -0.0061 0.0088 0 0
0.01 0.0096 0.0081 0.0120 0.0021 0.0097
0.02 0.0196 0.0205 0.0247 0.0042 0.0193
0.03 0.0299 0.0332 0.0322 0.0064 0.0286
0.04 0.0405 0.0413 0.0426 0.0086 0.0377
0.05 0.0515 0.0517 0.0563 0.0110 0.0466
0.06 0.0629 0.0647 0.0688 0.0134 0.0553
0.07 0.0747 0.0761 0.0680 0.0158 0.0639
0.08 0.0870 0.0868 0.0903 0.0184 0.0721
0.09 0.0997 0.0998 0.1042 0.0210 0.0802
0.10 0.1129 0.1170 0.1174 0.0237 0.0881

method in Tables 1–4 were compared as the damage is close to
the top of the structure, that is, the damage is smaller, the esti-
mated stiffness loss is farther away from the simulated stiffness
loss. While this is not the case for the GFM-based estimation
results, it is nearly the same in these four tables in that it can
estimate the stiffness loss very close to the simulated ones. On
the other hand, when the damage is near the top of the struc-
ture, the estimated stiffness loss from the AMV-based method
is closer to the simulated stiffness loss than the GFM-based
method. As a result, when comparing these results among 2nd,
3rd and 4th columns, the AMV-based method has better estima-
tion results than the MSE- and GFM-based methods especially
for the real small damages.

4.2. Effect of The Modal Orders Considered
In the previous section, the damage severity can be well es-

timated by the AMV-based method using Eq. (41). Note that
all the modal orders are considered in calculating the value of
η(R/kj) in Eq. (28). But in real applications, it is rather diffi-
cult or sometimes even unlikely to get all modal parameters.

According to Eq. (9) and Eq. (28), the value of µrs is the
weight to calculate the AMV and the sensitivity of the normal-
ized AMV to the local stiffness. As the modal order r or/and
s increase, the frequency ωr

n or/and ωs
n will increase, such that

the value of µrs expressed in Eq. (10) will decrease. Figure 4
is the value of µrs calculated using Eq. (10) in this 12-story
shear frame structure case, which shows it decreases rapidly
when the modal order r or/and s increase. As a result, the
value of η(R/kj) is dominated by the lower modal order of
modal parameters from Eq. (28). Such that Eq. (28) can be
rewritten as:

η(R/kj) ≈

Θ

p∑
r=1

p∑
s=1

{
η[(Φr ◦Φs)/kj ] + η[µrs/kj ] · [1]n×1

}
◦

Φr ◦Φs · µrs; (42)

where p is the number of modes to be considered and Θ ={
R◦(−1) ⊗ [1]1×n

}
◦
{
[1]n×n − 1

nRRT
}

.
Table 5 shows the estimated stiffness loss when different

modes are considered for computing the value of η(R/kj)
when the damage is in the 11th floor with/without noise us-
ing the same procedure as in Section 4.1. The 2nd column is
the estimated stiffness loss result that all the modal parameters

Figure 4. Value of µrs.

are considered. While in the 4th/5th, 6th/7th and 8th/9th columns,
only the 1st, the first 2 and the first 5 modes are used to estimate
the stiffness loss. As can be seen from Table 5, as more and
more modes are used, the estimated results are much closer
to the results for all the modes. But even when there is just
the first mode information available and the response is con-
taminated with 10 dB noise, the damage severity can still be
estimated accurately. Therefore, the AMV-based estimation
procedure proposed in this paper is also suitable for the case
when there is just a portion of the modal parameters.

5. CONCLUSIONS

An AMV-based damage detection method used in conjunc-
tion with sensitivity analysis is proposed to assess the damage
severity besides determining the damage location. The method
is compared to two popular methods: MSE method and GFM
method. The simulation shows its advantage that it uses the
vibration response to get the similar detectability to localize
the damage compared to the MSE- and GFM-based methods.
Note that in order to obtain the MSE-based damage location
index, the stiffness matrix of the structure needs to be known
in priori. In order to get the GFM-based damage location in-
dex, both the elemental stiffness matrix and mass matrix are
required.

An estimation procedure based on a sensitivity analysis was
used to estimate the damage severity of the structure. Several
cases show that this AMV-based method has a better estima-
tion result than the MES- and GFM-based method when the
damage is very small. Moreover, even with a high noise level
measurement noise, this methodology can still get the local
stiffness reduction. When just a small part of the modal pa-
rameters is available, the estimated results are still capable of
evaluating the damage severity of the structure. This method is
well suited to the incipient local damage after it appears in the
structure, which would be an effective alarm for early struc-
tural health monitoring.
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Table 5. Estimation of stiffness reduction when different number of modes is used.

Simulated
Number of modes are considered

All modes Only 1st mode First 2 modes First 5 modes
No noise SNR = 10 dB No noise SNR = 10 dB No noise SNR = 10 dB No noise SNR=10 dB

0 0 0.0088 0 0.0032 0 -0.0010 0 -0.0098
0.01 0.0096 0.0120 0.0082 0.0021 0.0092 0.0136 0.0096 0.0041
0.02 0.0196 0.0247 0.0166 0.0179 0.0186 0.0273 0.0194 0.0108
0.03 0.0299 0.0322 0.0252 0.0287 0.0283 0.0330 0.0296 0.0229
0.04 0.0405 0.0426 0.0340 0.0290 0.0384 0.0351 0.0401 0.0377
0.05 0.0515 0.0563 0.0431 0.0505 0.0487 0.0576 0.0510 0.0432
0.06 0.0629 0.0688 0.0525 0.0534 0.0595 0.0628 0.0622 0.0558
0.07 0.0747 0.0680 0.0621 0.0673 0.0706 0.0673 0.0739 0.0655
0.08 0.0870 0.0903 0.0721 0.0714 0.0821 0.1010 0.0860 0.0962
0.09 0.0997 0.1042 0.0823 0.0884 0.0940 0.0905 0.0986 0.0999
0.10 0.1129 0.1174 0.0928 0.0951 0.1063 0.1114 0.1117 0.1096
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