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The frequency parameters of an Axially Functionally Graded (AFG) bar for viscoelastic and point mass boundary
conditions are studied in this paper. The structures with functionally graded materials under axial loads can be
modelled as AFG bars. Those may be considered as support elements with spring and dashpot in the vibration
isolation. Keeping the ratio of force frequency and natural frequency at a certain level is ensured to control the
natural frequency therefore dynamic amplification factor with different material combinations. Various boundary
conditions are attained by changing the spring and damping coefficients of viscoelastic support elements and the
ratio of rod mass to tip mass. Researchers assume that the beam material properties in directions of length and
thickness change exponentially, individually, or both in their studies. There are a few studies on the AFG rods
in the existing studies. Analysis is carried out via the finite element method for the non-dimensional frequency
parameters of the bar in MATLAB. The energy equations of the motion are obtained in the frame of axial bar
theory considering the material properties of the bar vary longitudinally according to the power-law distribution.
The effects of material distribution, spring, damping and tip mass values on the bar’s frequency parameters and
structural behaviour have been extensively investigated.

1. INTRODUCTION

With the developing technology, the material properties
needed in structures are changing. One of the advanced ma-
terials that respond to these needs is functionally graded ma-
terials that provide unidirectional or bidirectional material ex-
change. Functionally Graded Material (FGM) can be defined
as a particulate composite whose combination is determined
by the volume fraction coefficient with the change of more
than one material in one or more directions. Structural anal-
ysis of plates, bars, beams and shells with FG material has be-
come very important because of their use. Dynamic and static
analyses of plates with unidirectional and bidirectional mate-
rial changes have been carried out by finite element method us-
ing different order deformation theories.1–6 There is less work
on the analysis of FG beams and especially bars than on the FG
plates and shells. Generally, material properties are considered
as varying along the thickness direction in the studies on FGM
beams. Also, some of the researchers assumed that the mate-
rial properties of the beam vary exponentially in both axial and
thickness directions called Bi-directional functionally graded
materials (BDFGMs). The AFG materials are useful for the
static deviation exceeding a certain level or buckling load that a
particular purpose. The best functional classification that com-
bines axial direction and thickness is estimated. It can be also
considered as a spring element at the supports with different
material combinations. The transition from soft to hard mate-
rial is appropriately provided by the material distribution co-
efficient “n” in the axial direction. Keeping the ratio of force
frequency and natural frequency at a certain level is ensured to
control the natural frequency therefore dynamic amplification
factor.

In the literature, there are studies on beam structures made
of axially functional graded materials in which the material

properties change in the longitudinal and thickness direction.
Besides, a modelling approach that includes only longitudinal
direction for rods is rare.15, 28

The following publications can be given as similar in
terms of method and boundary conditions for material change
throughout the thickness. Sankar7 investigated the elasticity
solution of functional grade beams under harmonic force based
on the view of the Euler-Bernoulli beam theory.

Demir and Oz8 studied the natural frequencies of a FG
beam for the viscoelastic supports within the framework of
the Euler–Bernoulli beam theory by using the finite element
method. The material properties of the beam were consid-
ered to vary through thickness according to the power-law dis-
tribution. The various stiffness and damping coefficients to
viscoelastic support elements were applied to attain different
boundary conditions. The effects of various material distribu-
tion and boundary conditions were discussed in detail.

Demir and Altinoz9 studied the harmonic response analysis
of a spring supported FG beam within the framework of Tim-
oshenko beam theory by using the finite element method. The
effect of the spring values, the material properties and material
distribution on the force transmissibility was investigated.

Zenkour and El-Shahrany10 analyzed the vibrational behav-
ior of a laminated composite beam on Winkler-Pasternak’s
medium. A higher-order shear deformation theory with an ex-
ponential shape function was used to model the proposed sys-
tem using Hamilton’s principle and Navier’s approach. The
natural frequencies, deflections, and suppression time of the
studied system were computed for different thickness ratios,
ply orientations, number and location of the magnetostrictive
layers, foundation stiffness, velocity feedback gain value, and
external force.

Garg et.al.11 analyzed bending and free vibration analy-
ses of functionally graded carbon nanotube-reinforced (FG-
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CNTR) sandwich beams by using the finite element-based
higher-order zigzag theory. The effect of different gradation
laws which govern the distribution of CNTs across the thick-
ness of face sheets is investigated. The influence of the core’s
thickness on stresses and displacements is also analyzed. They
showed that the thickness of the core and CNT gradation law
significantly affect the mechanical behaviour of the sandwich
FG-CNTRC beam.

Garg et.al.12 investigated the bending of sandwich FGM
beams under combined hygro-thermo-mechanical loadings
considering temperature and moisture-dependent material
properties using the finite element-based HOZT. The stress dis-
tribution across the thickness of the beam and upward displace-
ment of the sandwich FGM beam was reported.

The articles for AFG beams can be given as follow; the free
vibration of an FGM beam on an elastic foundation and spring
supports was investigated by Duy et al.13 The material proper-
ties and thickness of the beam were assumed to range in width
and length directions obeying the exponential law. An ana-
lytical formulation and finite element formulation were used
to obtain the natural frequencies of the FGM beams. They
showed the effect of spring supports on the natural frequencies
of FGM beams.

The response analysis of a simply-supported AFG beam
which was loaded harmonically was analyzed in accordance
with the theory of Euler–Bernoulli by Simsek et al.14 The
boundary conditions were considered unique spring elements
under the combination of thermal and structural effects.

Longitudinal free vibration analysis of AFG microbars was
investigated on the basis of strain gradient elasticity the-
ory with comparing with classical theory (CT) for clamped–
clamped and clamped-free boundary conditions. The influ-
ences of additional material length scale parameters, material
ratio, slenderness ratio and the ratio of Young’s modulus on
natural frequencies of axially FG microbars were shown para-
metrically by Akgoz.15 The material properties of microbars
were considered to be smoothly varied along the axial direc-
tion.

The free vibration of an AFG pile embedded in the Winkler-
Pasternak elastic foundation was analyzed within the frame-
work of the Euler-Bernoulli beam theory by Cetin and Sim-
sek.16 In their study, the material properties of the pile varied
continuously in the axial direction according to the power-law
form, the effects of material variations and the parameters of
the elastic foundation on the fundamental frequencies were ex-
amined.

Wadi et. al.17 calculated the static deflection of axially FG
cantilever beam using Rayleigh and Finite Element methods
considering Beam Theory of Euler-Bernoulli under the con-
dition of Clamped – Free and Free –Clamped boundary con-
dition. They assumed that the material properties changed
along the axial direction of a beam according to the Power-
Law Model. The effects of a number of segment, power law
index and type of applied load on the dimensionless deflection
were studied.

Akgoz and Civalek18 investigated the vibration behaviour of
non-homogenous and non-uniform micro-beams with respect
to the Euler-Bernoulli beam and the modified couple stress the-
ory. Material properties and cross-section of the micro-beam
were assumed to change in the axial direction of the beam.

They showed the impacts of material properties and conic-
ity ratios on natural frequencies of axially FG tapered micro-
beams.

The dynamic characteristics of an FG beam with mate-
rial graduation axially or transversally through the thickness
based on the power-law were investigated.19 The finite ele-
ment method was employed to discretize the model and obtain
a numerical approximation of the motion equation under the
assumptions of the Euler–Bernoulli beam theory. They showed
the effects of different material distributions, slenderness ra-
tios, and boundary conditions on the dynamic characteristics
of the beam.

Huang and Li20 developed a methodology for free vibration
of axially functionally non-uniform graded beams. Aydogdu21

investigated the AFG simply-supported beam using the semi-
inverse method for vibration and buckling.

Ghayesh investigated the mechanics and vibrations of ax-
ially functionally graded (AFG) microbeams with the frame
of various beam formulations considering linear and nonlinear
formulations.30–33

The response of the bi-directional functionally graded
(BDFG) Timoshenko beam was investigated by Simsek22 for
free and forced vibrations. A moving load was considered an
external force. The material properties of the beam varied ex-
ponentially in both axial and thickness directions. The formu-
lations of the system were in the frame of Timoshenko beam
theory (TBT) and Euler–Bernoulli beam (EBT) theory. The ef-
fects of the material distribution, the velocity of moving load,
aspect ratio and various boundary conditions on the dynamic
responses of the BDFG beam were examined.

Keleshteri and Jelovica23 analyzed the nonlinear vibration
behaviour of shear deformable bidirectional porous beams
with non-uniform porosity distribution in the frame of Reddy
beam theory considering von Karman geometrical nonlinear-
ity. They proposed a new porosity distribution to maximize
the natural frequencies of the porous beam. They showed the
effect of geometrical parameters and porosity distributions on
the vibration behaviour.

Keleshteri and Jelovica24 studied the nonlinear free and
forced vibration behavior of functionally graded porous beams
considering high-order bidirectional porosity distributions.
Nonlinear free and forced vibration behavior of bidirectional
porous beams under axial loads are investigated based on the
Reddy beam Effects of beam’s aspect ratio, porosity distribu-
tions, beam’s shear deformation and porosity volume fraction
on the nonlinear free and forced vibration behavior of func-
tionally graded porous beams are studied. It is observed that
the method of multiple scales is accurate when the amplitude
of vibration and axial load are both small, otherwise, it might
significantly underestimate the amplitude of vibration.

Keleshteri and Jelovica25 reformulated Reddy and Euler–
Bernoulli beam theories by using a new function and reduced
order of the governing equation in the Generalized differential
quadrature (GDQ) method for Buckling and vibration behav-
ior of isotropic, FG and porous beams. Therefore, there is no
need extra steps to use for any boundary condition.

The studies for FG beams with point mass can be given
as follows; the resonance frequencies were studied for a ro-
tating functional graded clamped beam with point mass by
Ramesh and Rao.26 The materials of the beam consisted of
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metal and ceramic. A FG beam with material graduation ax-
ially or transversally through the thickness was based on the
power-law form. The variation was symmetrically from the
core at the midsection to the outer surfaces. The Rayleigh-
Ritz method was used to investigate the resonance frequencies
of the beam. For modelling the point mass in the system, the
Dirac delta function was used. The influence of the material
variation, the location and values of a point mass on the res-
onance frequencies of vibration of the FG beam were investi-
gated. The values of the point mass and its location were found
to influence the natural frequencies.

Moukhliss et al.27 constructed the axial FGM model for a ta-
pered beam. The linear free vibration analysis was performed
with discrete mass placement at different points.

In the only study found with the pure axial rod formulation,
the FGM modelling was created for a rod in the axial direction
and its analysis under a moving heat load was performed by
Abouelregal et al.28

Studies generally focus on material variation in its thickness
or both along the beam and its thickness. Two studies15, 28 of
the literature include the modeling only in the axial direction
of the AFG structure, for microbeam and, rods under thermal
loading. As a contribution to the literature, the effect of the
spring, damping and point mass elements at the boundaries and
material distribution on the natural frequencies of the bar is ex-
amined and their effects on the structural dynamics are investi-
gated. The bar modeled by assuming that the material change
of the structure under axial loading changes functionally in the
axial direction.

In this paper, an AFG bar is considered as support elements
with spring and dashpot for vibration isolation. The functional
variation of the material only in the x-axis direction of a bar
with the axial load can be assumed as an axial rod. The free
vibration of a viscoelastic point supported AFG bar with two-
point masses at the ends within the framework of the bar theory
is studied. The bar material properties constantly change fol-
lowing the power law in the axial direction. The various values
of stiffness and damping are investigated for viscoelastic sup-
port. The values of stiffness (κ) and damping (µ) for the vis-
coelastic support are taken as zero for free-free boundary con-
ditions. κ = ∞, µ = ∞ values are set providing for clamped
boundary condition. The equations governing the motion of
the system were developed by the Lagrange method. The re-
sults are compared with the exact results of the bar obtained
for the particular cases of the problem examined. The effects
of various material distributions, the ratio of Young’s modulus
of right and left ends and boundary conditions are discussed
in detail. Tables and graphs are used to represent parametrical
results to understand the vibration behaviour of axially graded
bars.

2. THEORY AND FORMULATIONS

The model consisted of a viscoelastic point supported AFG
bar with two masses at the ends. The l length bar had the phys-
ical properties of h thickness and b width can be seen in Fig. 1.
The subsequent formulations were made with the assumption
that deflections occur only in the axial direction and on the x-
axis. The Cartesian coordinate system was positioned at the
left starting point of the bar, as illustrated in Fig. 1, where m1,

Figure 1. An AFG viscoelastic-supported bar with tip masses.

m2 is point mass at the left and right ends k1, k2 are spring co-
efficients, c1, c2 are damping coefficients EL, ER is Young’s
modulus of left and right surface material, respectively, and ρL,
ρR are densities of left and right surface material, respectively.

It was assumed that the material properties E(x), and ρ(x)
of the FG bar vary longitudinally as a function of the power-
law distribution as in Eq. (1) where by taking the exponent n to
be zero, a functional was created such that the material change
will be in the material property on the left along the x-axis and
with increasing n, the material on the right will be dominant in
the content:

P (x) = (PL − PR)
(
1− x

L

)n
+ PR; (1)

where PL is material properties of the left surface of the bar,
PR is material properties of the right surface of the bar, and n
is the power-law exponent.

With this acceptance, the distribution of material and the
mechanical properties (elastic modulus and mass density)
along the rod depend on the power-law exponent.

The displacement of any point and the unit strain depending
on it in the axial direction can be written as in Eq. (2);

εxx =
∂u(x, t)

∂x
=

∂u0(x, t)

∂x
. (2)

The stresses of the axial bar:

σxx = E(x)εxx. (3)

The strain energy caused by axial deformation of a finite ele-
ment can be formulated as in Eq. (4):

V (e) =
1

2

∫ L

0

∫
A

E(x)ε2xxdAdx. (4)

Assuming cross-sections constant:

A =

∫
A

dA. (5)

The kinetic energy of the AFG bar due to axial displacement
is:

E
(e)
K =

1

2

∫
V

ρ(x)(u̇(x, t))2dV ; (6)

where u̇(x, t) was the time derivative of the axial displacement
of any point on the element.
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A two-node finite element of length l has 1 degree of free-
dom at each node, 2 totally for the bar model. The nodal dis-
placements for the element are given as follows:{

d(e)
}
=
[
d
(e)
i (t), d

(e)
j (t)

]T
. (7)

The axial displacement of any point can be expressed in Eq.
(8) by matrix notation:

u(x, t) = [N ]x

{
d(e)
}T

; (8)

where [N ]x is shape functions for axial displacement.

[N ]x =
{
1− x

L

x

L

}
. (9)

E(x), ρ(x) can be rewritten to obey Eq. (1) and substitute into
Eq. (4) and Eq. (6), the energy functions can be rewritten for
an element as follows in Eq. (10) and Eq. (11):

V (e) =
1

2
A

∫ L

0

E(x)
[
([N ′]x {d})

2
]
dx; (10)

E
(e)
k =

1

2
A

∫ L

0

ρ(x)

[(
[N ]x

{
ḋ
})2]

dx. (11)

Eqs. (10) and (11) are rewritten as:

V (e) =
1

2

(
{d}T AxxA [N ′]

T
x [N ′]x {d}

)
; (12)

E
(e)
K =

1

2

({
ḋ
}T
[∫ L

0

Aρ(x) [N ′]
T
x [N ′]x dx

]{
ḋ
})

;

(13)
where:

N ′ =
dN

dx
; (14)

Axx =

∫ L

0

E(x)dx; (15)

Axx =
(EL − ER)L

n+ 1
+ ERL. (16)

Terms between generalized displacements and velocity com-
ponents in strain and kinetic energy expressions include the
element stiffness and mass matrices:

[K]
e
=
[
AxxA [N ′]

T
x [N ′]x

]
; (17)

[M ]
e
=

[∫ L

0

ρ(x)A [N ′]
T
x [N ′]x dx

]
.

The 2× 2 stiffness and mass matrices for an element:

[M ]
e
=

[
A.IA − 2A.IB

L + A.ID
L2

A.IB
L − A.ID

L2

A.IB
L − A.ID

L2
A.ID
L2

]
; (18)

[K]
e
=

[
A.Axx

L2 −A.Axx

L2

−A.Axx

L2
A.Axx

L2

]
;

where:

IA =

∫ L

0

ρ(x)dx =
(ρL − ρR)L

n+ 1
+ ρRL; (19)

IB =

∫ L

0

ρ(x)xdx =
(ρL − ρR)L

2

(n+ 1)(n+ 2)
+ ρR

L2

2
;

ID =

∫ L

0

ρ(x)x2dx =
(ρL − ρR)L

3

(n+ 1)(n+ 2)(n+ 3)
+ ρR

L3

3
.

To assemble the global system matrices for the finite ele-
ment model; the kinetic energy of the bar and masses, strain
energy of the bar and potential energy of the supports and
damping of the supports related to the dissipation function can
be expressed in the following form:

EK =
1

2

{
ḋ
}T

[M ]
{
ḋ
}
+

1

2
m1ḋ

2
1 +

1

2
m2ḋ

2
y; (20)

V =
1

2
{d}T [K] {d} ; (21)

Vs =
1

2
k1d

2
1 +

1

2
k2d

2
y; (22)

CS =
1

2
c1ḋ

2
1 +

1

2
c2ḋ

2
y. (23)

Subscript y represented the global degrees of freedom of the
system, y = m + 1; m represented the total element number,
nn represented the total node number of the model; nn = m+
1; k1 and k2 were the stiffness coefficients of the supports,
c1 and c2 were the damping coefficients of the supports. The
function of the problem for the complete system according to
the energy can be written as:

F = EK − (V + Vs). (24)

The generalized force for damping QD can be acquired from
the dissipation function by differentiating Cs with respect to ḋh
where h = 1, . . . y:

QD = −∂Cs

∂ḋh
; (25)

where ḋh is the generalized velocities concerning the nodes.
Then, by applying the Lagrange method (Eq. (26)):

∂F

∂dh
− d

dt

∂F

∂ḋh
+QD = 0; (26)

the equations for the complete system are acquired as in
Eq. (27):

[[K] + [Ks]] {d}+[Ds]
{
ḋ
}
[[Ms]+[M ]]

{
d̈
}
= {0} ; (27)

The rod stiffness was represented by the [K] matrix, the
support stiffness was represented by the [Ks] matrix, the mass
was represented by the [M ] matrix and the damping was repre-
sented by the Ds matrix. The matrices have y× y dimensions.
Ks11 ̸= 0 and Ksyy ̸= 0 corresponding to the viscoelastic sup-
port values were the only nonzero elements of the [Ks] matrix.
Ds11 ̸= 0 and Dsyy ̸= 0 corresponding to the viscoelastic sup-
port values are the only nonzero elements of the [Ds] matrix.
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The time-dependent changes of the displacements can be
represented at the nodal points as in Eq. (28):

{d(t)} =
{
d̄
}
eiωt. (28)

In Eq. (28), the amplitudes
{
d̄
}

including the phase angle,
were complex variables. In order to investigate the natural fre-
quencies of the viscoelastic supported FG bar, Eq. (28) was
substituted for Eq. (27) and can be rewritten in the consequent
form:(

[K] + [Ks] + iω[Ds]− ω2[[Ms] + [M ]]
) {

d̄
}
= {0} .

(29)
The natural frequency parameters in the dimensionless form

are calculated numerically for damped and undamped systems
which are supported viscoelastic at the ends. For brevity, the
coefficients of k1, k2 springs and c1, c2 dashpots are taken as
having equal values at the two supports denoted by ks and cs to
investigate the resonance frequencies of the FG bar. The values
of m1 and m2 masses at the ends are also taken as having equal
values denoted by ms.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical results are given in the dimensionless form
to make a comparison with the other studies. The non-
dimensional spring coefficient κ and the non-dimensional
damping coefficient µ, the mass ratio β and the non-
dimensional resonance frequency λ are the parameters given
in Eq. (30):

κ =
ksL

ELA
; µ = cs

√
1

ρLA2EL
; (30)

β =
ms

ρLAL
; λ2 =

ρLω
2L2

EL
.

The fundamental frequency equations of the viscoelastic
supported bar with tip masses can be rewritten compactly as
follows:(

[K] + κ[Ks] + iµ[Ds]− λ2[[M ] + β[Ms]]
) {

d̄
}
= {0} .

(31)
The frequency parameters are calculated from the eigen-

values acquired from the solution of the linear homogeneous
equations given in equation Eq. (31) as follows in Eq. (32):

λy = a+ ib. (32)

3.1. Model Verification
A short investigation is made for the free vibration of a

clamped-clamped bar (κ = ∞) and free-free bar (κ = 0)
by neglecting the effect of damping. The calculated results
are compared with the natural frequencies which are obtained
from the closed solutions15, 29 for the bar. The value of
1 × 10100 is substituted for the non-dimensional spring co-
efficient to simulate infinite support stiffness for the clamped
boundary condition. The value of 0 is substituted for the non-
dimensional spring coefficient κ to simulate zero support stiff-
ness for the free-free boundary condition. Free-free, viscoelas-
tic and clamped-clamped boundary conditions were obtained
by varying the dimensionless spring and damping coefficient

Table 1. Material properties of components.

E (GPa) ρ (kg/m3)

Aluminium 70 2700

Alumina (Al2O3) 380 3800

values between 0 and infinity. By changing the spring and
damping values of the viscoelastic support, different boundary
conditions are obtained.

The ratio of Young’s modulus can be defined as in Eq. (33):

Eratio =
ER

EL
. (33)

The ratio of mass densities is taken as in Eq. (34):

ρratio =
ρR
ρL

. (34)

The material properties used in the analysis are given in Ta-
ble 1. The distribution of materials varies continuously from
aluminium to alumina, from the left to the right surface.

A homogenous bar condition is obtained when Young’s
modulus ratio equals 1. The beam is homogenous when
Eratio = 1 and there is no material variation inside the beam,
so n does not have any effect on the frequency parameters.
Non-dimensional frequencies of a homogenous bar for the
free-free and clamped-clamped boundary conditions are shown
in Table 2. The calculated values agree with Rao29 and Akgoz
and Civalek15 very well.

3.2. The Frequency Parameters of the
Bar with the Viscoelastic Boundary
Conditions

The frequency parameters of the bar are studied for var-
ious values of stiffness and damping parameter. Effects
of viscoelastic boundary conditions on the first three fre-
quency parameters are investigated for the non-dimensional
spring coefficient κ = 1, 10, 100, 500, 1000,∞ and µ =
0, 1, 3, 10, 200,∞. Table 3, Table 4 and Table 5 show the varia-
tion of fundamental non-dimensional frequencies with the dif-
ferent non-dimensional damping coefficient µ and power-law
exponent n with the different values of the non-dimensional
spring coefficient κ. For the viscoelastic supported bar condi-
tion, in the name of investigating the changes of parameters is
clearer, β is considered as zero. The evaluations can be written
as:

• The frequency parameters increase with increasing µ val-
ues at the each value of κ for all n values except the values
of κ = 1 and µ = 0, 1 at the first frequency parame-
ter. The variation of the frequency parameters decreases
in high values of µ, κ and the variation is almost zero
in some κ and µ values (Table 3, Table 4 and Table 5).
With the increasing values of κ and µ, boundary condi-
tions change from viscoelastic to clamped. As can be
seen from Table 3, in the first frequency parameters, at
the value of κ = 1; while µ increases from 0 to 1, it is
observed that the frequency parameters in all n values de-
crease but that decrease doesn’t exist in higher κ values.
This is not observed at the second and third frequency
parameters. When κ = 1 and µ = 0 at the lower fre-
quency parameter; rigid-body motion is dominant in the
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Table 2. Non-dimensional frequencies of a free-free and clamped-clamped homogenous bar and the validation studies.

Non-dimensional Dimensionless Dimensionless natural frequencies15 Present study

coeficient natural frequencies29 (Calculated with classical theory, from Table 2)

wnk = kπc
L

, k = 1, 2, . . . Eratio = ER
EL

= 1

λ2 = ρLω2L2

EL
c =

√
E
ρ

ρratio = ρR
ρL

= 1

Boundary conditions

Non-dimensional Clamped- Free- Clamped-Clamped Clamped- Free-

frequencies Clamped Free Clamped Free

λ1 3.14159 3.14159 3.1416 3.14159 3.14159

λ2 6.28318 6.28318 6.2832 6.28319 6.28319

λ3 9.42477 9.42477 9.4248 9.42498 9.42498

system. When κ=1 and µ=1 at the lower frequency pa-
rameter; elastic body motion begins to take effect in the
system. This is caused by the transition from a free-free
boundary condition (µ = 0 and κ = 0) to a clamped
boundary condition (µ = ∞ or κ = ∞). Between these
two regions the system behaves as viscoelastically sup-
ported. The rigid-body motion is dominant in the region
where κ = 1 changes with µ = 0 and µ = 1 values while
the frequency parameters decrease with increasing n. Be-
cause the density of the bar increases with the increasing
n. While n increases 0 to 10, the material constituent
changes Aluminium to Alumina (Al2O3). The changing
values of n change the material density and also the mass
of the bar. While the density of the bar increases the elas-
ticity of the bar decreases in that region. Elastic body mo-
tion depends on Young’s modulus (E(x)) and the area (A)
for axial displacement. The material variation coefficient
n is more effective in the elastic body motion. Therefore
the increasing n values, increase the stiffness of the bar
and also frequency parameters. In the rigid body motion
region, n is less effective on the variation of the stiffness
of the bar.

• The frequency parameters increase with increasing κ val-
ues at the values of µ = 0, 1 for all n values (Table
3, Table 4 and Table 5). The frequency parameters de-
crease with increasing κ values up to a minimum fre-
quency value then starts to increase, for all n values and
the values of µ = 3, 10, 200. The increasing point of fre-
quency parameter shifts forward with increasing µ (Table
3, Table 4 and Table 5). As the spring value of the bound-
ary condition increases, its elastic effect becomes domi-
nant. This effect occurs at different spring values depend-
ing on the increasing damping value and the change in
natural frequency values occurs accordingly.

• The elastic body motion is dominant in the region where
κ ≥ 10 changes with µ ≥ 3 for the first frequency. The
elastic body motion is also dominant for all values of κ,
µ for the second and third frequency parameters. There-
fore, the frequency parameters increase with increasing n.
Because of the stiffness increase of bar instead of density
increase of bar is dominant in that region.

• When the values of κ and µ are 0, the boundary condi-
tion corresponds to the free-free state. For this bound-
ary condition, the frequencies correspond to the elastic
mode. As the values of k and c start to increase from

zero, the boundary conditions change from elastic sup-
port to clamped support for both ends. Therefore, for
small values of µ and κ, rigid modes are effective. For
free-free and large values of µ and κ, elastic modes are
more effective, hence the effect of the material distribu-
tion coefficient on the natural frequencies.

3.3. The Frequency Parameters of the Bar
with the Variations of Eratio, κ and n

The effect of variations of Eratio, κ and n on the frequency
parameters is investigated for the first three mode frequencies.
The ratio of Young’s modulus of the two end materials is ex-
amined as a variable. The ratio of mass densities is taken as 1
in line with the general trend in the literature8, 15 to analyze the
effect of changing values of Young’s modulus ratio. Figs. 2, 3
and 4 show the variation of the first three non-dimensional fre-
quencies with the different Eratio and power-law exponent n
with the different values of dimensionless spring values κ. The
evaluations can be written as:

• When Eratio < 1, the frequency parameters correspond-
ing to the n = 0 value remain as an upper limit and the
frequency parameters decrease with increasing n from 0
to 10 (Fig. 2). Decrement of the frequency parameters
with the increasing n increases, while Eratio decreases
from 1 to 0.25 (Fig. 2, Fig. 3, Fig. 4). When Eratio > 1,
the frequency parameters corresponding to the n = 0
value remain as limit inferior and the frequency param-
eters increase with increasing n from 0 to 10 (Fig. 2). In-
crement of the frequency parameters with the increasing
n increases while Eratio increases from 1 to 10 (Fig. 2,
Fig. 3, Fig. 4). The distribution of the material along
the bar, the Young’s modulus from big to small or from
small to big, the frequency parameters increase or de-
crease, with the frequency parameter in the homogeneous
state of the material being the limit. The left side and right
side of the bar have different Young’s modulus and if the
ratio of those is greater than 1, the rigidity of the structure
increases. Therefore the frequency parameters increase
with increasing Eratio.

• It is observed that the frequency parameters gradually de-
crease when the springs are considered as support condi-
tions at κ = 1 after free-free boundary conditions. While
κ > 1 the frequency parameters increase with increasing
spring constants (Fig. 2, Fig. 3, Fig. 4).
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Figure 2. 1st frequency parameters for the changes of κ and power-law expo-
nent n with different values of Eratio.

• When κ is zero, the boundary condition is free-free for
the bar and the vibration mode of the structure is elas-
tic. When κ = 1, springs join the structure as a bound-
ary condition, the vibration type of the bar is closer to the
rigid mode. For the lower spring constants where the rigid
body motion is dominant, frequency parameters decrease
and the effect of the power-law exponent n on frequency
parameters is little amount because of the rigid body mo-
tion of the bar with the springs. The elastic displacements
decrease and the effect of the power-law exponent value n
on the frequency parameters also decreases (Fig. 2, Fig. 3,
Fig. 4). The elastic-body motion of the bar increases for
the second and third frequency parameters. It can be seen
from the increasing effect of power-law exponent n on the
frequency parameters (Fig. 2, Fig. 3, Fig. 4).

• After the value of κ = 500, the variation of the frequency
parameters depending on parameter n is a little amount
(Fig. 2, Fig. 3, Fig. 4).

3.4. The Frequency Parameters of the Bar
with the Tip Masses

The effect of tip masses on the first three frequency parame-
ters is studied. The mass ratio β is a variable that is defined as
the ratio of bar mass to the point mass. The material properties
used in the analysis are given in Table 1. Table 6, Table 7 and
Table 8 show the variation of the first three non-dimensional
frequencies with the different mass ratio β and power-law ex-
ponent n with the different values of dimensionless spring val-
ues κ. The evaluations can be written as:

• The frequency parameters decrease with increasing mass
ratio β for each κ, n values. While κ = 0 and κ > 1 elas-
tic body motion is dominant. Rigid body motion is domi-
nant for κ = 1. The frequency parameters decrease while
the values of support increase in the transition from the
elastic body motion (κ = 0, free-free boundary condition)
to the rigid body motion (κ = 1, viscoelastic support con-
dition). As a result of the increase in mass with increasing

Figure 3. 2nd frequency parameters for the changes of κ and power-law ex-
ponent n with different values of Eratio.

n value, the frequency parameters decrease. As opposed
to this, the increasing trend in the frequency parameters
is observed in the elastic region with increasing κ spring
values and n power-law exponent values. In the elastic re-
gion, it shows that the change in the stiffness of bar due to
E is more effective on the frequency parameter than the
change in the mass of bar due to n. The rigid body motion
effect and elastic body motion effect on the frequency pa-
rameters is similar to the Eratio − κ− n relation and the
effects (Section 3.3). For the κ values where elastic body
motion is more dominant and for the free-free boundary
conditions, the effects of power-law exponent value n on
the frequency parameters are dominant.

• The mass ratio β effect on the frequency parameters de-
creases with increasing κ values. Especially, when κ =
∞, for the all β values, frequency parameters converge to
the same value. Because of the additional masses act like
a support for the higher values of spring constant (Table 6,
Table 7 and Table 8).

4. CONCLUSION

In this study, AFG bars were concentrated on as a contri-
bution to the limited literature studies. AFG bars can be also
considered as support elements like spring and dashpot in the
vibration isolation. The functional variation of the material
only in the x-axis direction of a bar with the axial load can be
assumed as an axial rod. The free vibration of a viscoelastic
point-supported AFG bar with tip masses within the frame-
work of the bar theory is studied. The defined dimension-
less viscoelastic support values, tip mass values, the ratio of
Young’s modulus of the two materials and the effects of mate-
rial distribution on the frequency parameters were examined in
detail.

As a result of the evaluations, the following conclusions
were obtained:
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Figure 4. 3rd frequency parameters for the changes of κ and power-law expo-
nent n with different values of Eratio.

• The frequency parameters increase with the increasing
values of κ, µ and n for the viscoelastic supported FG
bar at frequencies where the elastic body motion of the
bar and hence its elastic mode is more dominant.

• The power-law exponent n has a decreasing effect on the
first frequencies where the rigid body motion of the bar
and hence its rigid mode is more dominant.

• If the AFG rod is added to the system as an isolation el-
ement such as a spring, damping element, etc., it should
be taken into account that n, which affects the material
distribution, has a different effect on the rigid mode and
elastic mode frequencies.

• The values of frequency parameters increase with increas-
ing the values of the ratio of Young’s modulus Eratio and
κ. However, the power-law exponent n has an increasing
effect on the frequency parameters when Eratio > 1, it
has a decreasing effect on the frequency parameters when
Eratio < 1. Therefore, which of the young modules on
the right and left side is larger will affect the dynamic be-
havior of the system.

• The frequency parameters decrease with the increasing tip
masses. However, increase with increasing the power-law
exponent n. Therefore power-law exponent n can be used
like stiffness κ to control the natural frequency value of
the system.

• In general, considering the boundary conditions, as the
support values change, the boundary conditions change
between free-free, viscoelastic support and fixed support,
and the vibration forms also act as rigid body motion,
elastic body motion or a combination of them according
to increasing spring, damping and tip mass values. The
transition from the elastic body motion to the rigid body
motion is important for the effect of the material distri-
bution, the values of the coefficients of the viscoelastic
support, the ratio of Young’s modulus and the tip masses
on the frequency parameters. The effects of the material

distribution coefficient n and the effects of Eratio on fre-
quency parameters are affected by the transition between
elastic-rigid motions.

In future work, variable sectioned FG bar with material
damping will be studied using finite element method.
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∞ 3.14159832 3.14159832 3.14159832 3.14159832 3.14159832 3.14159832
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500 3.980275495 3.98028978 3.980199796 3.980490632 4.000097599 4.007946587
1000 3.994062869 3.994023891 3.994068414 3.994002276 3.99948349 4.007946587
∞ 4.007946587 4.007946587 4.007946587 4.007946587 4.007946587 4.007946587
n=1
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 1.256524604 1.028394574 4.917569306 5.120856617 5.133637781 5.133732414
10 3.267015683 3.293871387 3.632403931 5.000722815 5.13342591 5.133732414
100 4.824510375 4.82542833 4.829706616 4.875731257 5.130661323 5.133732414
500 5.068574624 5.068900744 5.068463134 5.069504463 5.121021517 5.133732414
1000 5.100940961 5.10121415 5.100982776 5.101000972 5.117611959 5.133732414
∞ 5.133732414 5.133732414 5.133732414 5.133732414 5.133732414 5.133732414
n=2
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 1.228281838 1.008480617 5.244514146 5.523891349 5.538444045 5.538651085
10 3.29521361 3.316578677 3.604845822 5.384402671 5.538481527 5.538651085
100 5.134554192 5.135189525 5.141729706 5.206449259 5.535296045 5.538651085
500 5.452468664 5.452185602 5.452694186 5.453624788 5.523622125 5.538651085
1000 5.495215231 5.4951562 5.495284811 5.4950302 5.518780959 5.538651085
∞ 5.538651085 5.538651085 5.538651085 5.538651085 5.538651085 5.538651085
n=3
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 1.214337726 0.999720594 5.363599012 5.700027991 5.715592033 5.715664482
10 3.297802499 3.316352277 3.569509416 5.551046586 5.715220928 5.715664482
100 5.263126176 5.263936648 5.27159016 5.345711639 5.711796379 5.715664482
500 5.618566917 5.61882712 5.618434522 5.619847118 5.69966917 5.715664482
1000 5.666705339 5.666273289 5.666366098 5.666625101 5.693918111 5.715664482
∞ 5.715664482 5.715664482 5.715664482 5.715664482 5.715664482 5.715664482
n=10
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 1.188413882 0.984430132 5.465021267 5.999174034 6.016604273 6.016472435
10 3.28901954 3.302653064 3.485607203 5.830975995 6.015923065 6.016472435
100 5.470339521 5.471249901 5.481005262 5.57441465 6.012554594 6.016472435
500 5.897937952 5.897970555 5.897758373 5.899604384 5.998466142 6.016472435
1000 5.956613385 5.956883241 5.956230401 5.956358109 5.991433574 6.016472435
∞ 6.016472435 6.016472435 6.016472435 6.016472435 6.016472435 6.016472435
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Table 4. 2nd frequency parameters for the changes of µ and power-law exponent n with different values of κ.

n = 0

κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 3.673204337 4.331729065 6.243273705 6.279993053 6.283306898 6.283190918
10 5.307354733 5.420839949 5.959298398 6.251508877 6.283124645 6.283190918
100 6.160184824 6.160618489 6.163962295 6.192899623 6.282442508 6.283190918
500 6.258203108 6.258181268 6.258265871 6.258619364 6.27975463 6.283190918
1000 6.270693588 6.270643506 6.270696803 6.270772304 6.278388397 6.283190918
∞ 6.283190918 6.283190918 6.283190918 6.283190918 6.283190918 6.283190918
n = 0.1
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 4.115970356 4.406616597 7.256333141 7.303440017 7.307358108 7.307189941
10 5.873647888 6.021746337 6.863580215 7.268448736 7.307163071 7.307189941
100 7.108303724 7.109113754 7.116362106 7.172618365 7.30626261 7.307189941
500 7.26646373 7.266634706 7.266469241 7.267371593 7.302963546 7.307189941
1000 7.286787228 7.286714885 7.286737998 7.286929678 7.300640948 7.307189941
∞ 7.307189941 7.307189941 7.307189941 7.307189941 7.307189941 7.307189941
n = 0.2
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 4.427171943 4.609834997 7.955311468 8.011535822 8.01577199 8.015930176
10 6.221844029 6.3827339 7.468103059 7.9718037 8.015808194 8.015930176
100 7.747608556 7.74899887 7.759829029 7.844161423 8.014923742 8.015930176
500 7.960603361 7.960644132 7.96066812 7.961845643 8.011034299 8.015930176
1000 7.98817293 7.988315461 7.988064433 7.988179445 8.00820833 8.015930176
∞ 8.015930176 8.015930176 8.015930176 8.015930176 8.015930176 8.015930176
n=1
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 5.438373023 5.491253255 10.14944035 10.26135209 10.26765408 10.26751709
10 7.153150026 7.291199523 9.115191965 10.20188618 10.26749985 10.26751709
100 9.654184467 9.658797356 9.692883714 9.933452862 10.26574416 10.26751709
500 10.13724528 10.13754085 10.13743207 10.14244963 10.26053221 10.26751709
1000 10.20194823 10.20216957 10.2017582 10.20262162 10.25505409 10.26751709
∞ 10.26751709 10.26751709 10.26751709 10.26751709 10.26751709 10.26751709
n=2
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 5.8088865 5.843860982 10.9060705 11.06980046 11.07715921 11.07733154
10 7.442493274 7.558770926 9.452875627 11.0020565 11.07718659 11.07733154
100 10.27878396 10.28487497 10.3316646 10.66319447 11.07562609 11.07733154
500 10.90510022 10.90467998 10.90594246 10.91248896 11.06913839 11.07733154
1000 10.99050908 10.99046414 10.99045997 10.99103119 11.06214823 11.07733154
∞ 11.07733154 11.07733154 11.07733154 11.07733154 11.07733154 11.07733154
n=3
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 5.971771914 6.000610732 11.21849949 11.42338849 11.43106732 11.43145752
10 7.563799549 7.669919253 9.509071198 11.35109614 11.43152422 11.43145752
100 10.5388666 10.54620545 10.59958966 10.97667746 11.42962938 11.43145752
500 11.23733506 11.23809968 11.23802654 11.24636431 11.4220467 11.43145752
1000 11.33346796 11.33292099 11.33359931 11.33456042 11.414899 11.43145752
∞ 11.43145752 11.43145752 11.43145752 11.43145752 11.43145752 11.43145752
n=10
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 6.24963095 6.270756821 11.66785839 12.02421696 12.03251145 12.03302002
10 7.764009786 7.853777485 9.449924965 11.94266096 12.03280078 12.03302002
100 10.96014416 10.9686625 11.0346196 11.5017187 12.03093117 12.03302002
500 11.7961667 11.79576953 11.7974906 11.80792712 12.02284048 12.03302002
1000 11.91329759 11.91351955 11.91394462 11.91507224 12.01484799 12.03302002
∞ 12.03302002 12.03302002 12.03302002 12.03302002 12.03302002 12.03302002
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Table 5. 3rd frequency parameters for the changes of µ and power-law exponent n with different values of κ.

n = 0

κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 6.584679102 7.563824642 9.398467371 9.422830058 9.424940831 9.424987793
10 8.067240786 8.33663695 9.18195677 9.403667987 9.424869417 9.424987793
100 9.24064611 9.242044501 9.25303207 9.32398838 9.424420413 9.424987793
500 9.387399194 9.387449326 9.387522604 9.388547463 9.422502496 9.424987793
1000 9.406133333 9.406120937 9.406108877 9.406280083 9.420860112 9.424987793
∞ 9.424987793 9.424987793 9.424987793 9.424987793 9.424987793 9.424987793
n = 0.1
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 7.561268278 7.888508318 10.92681909 10.95840256 10.96092569 10.96099854
10 9.034421459 9.349507824 10.6400847 10.93520904 10.96099719 10.96099854
100 10.6634406 10.66644457 10.68893253 10.81875575 10.9603172 10.96099854
500 10.89980892 10.89991719 10.90029685 10.90262701 10.95793535 10.96099854
1000 10.93028826 10.93036615 10.93038698 10.93067438 10.95571835 10.96099854
∞ 10.96099854 10.96099854 10.96099854 10.96099854 10.96099854 10.96099854
n = 0.2
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 8.242554587 8.428666227 11.98357586 12.02099473 12.02408327 12.02398682
10 9.672368639 9.987102737 11.63515685 11.99459551 12.02389127 12.02398682
100 11.62329404 11.62806321 11.6618191 11.84888759 12.02335153 12.02398682
500 11.94103599 11.94075039 11.94114858 11.94557903 12.02071605 12.02398682
1000 11.98237743 11.98251879 11.98253891 11.98293486 12.01798953 12.02398682
∞ 12.02398682 12.02398682 12.02398682 12.02398682 12.02398682 12.02398682
n =1
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 10.42674843 10.47291267 15.32115857 15.39788948 15.40143464 15.40142822
10 11.61590863 11.8217715 14.6023762 15.35730796 15.40144347 15.40142822
100 14.49374525 14.5082118 14.60901327 15.09251094 15.40018171 15.40142822
500 15.20614079 15.20643825 15.20763186 15.22253273 15.3968395 15.40142822
1000 15.30308814 15.3035153 15.30348742 15.3051694 15.39207787 15.40142822
∞ 15.40142822 15.40142822 15.40142822 15.40142822 15.40142822 15.40142822
n =2
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 11.21750374 11.24711672 16.49939682 16.61135106 16.6163602 16.61627197
10 12.30369167 12.46224884 15.46071604 16.56639308 16.61623661 16.61627197
100 15.44112031 15.4600565 15.59644789 16.24358284 16.61511467 16.61627197
500 16.3580304 16.35684889 16.3601376 16.38161472 16.61091664 16.61627197
1000 16.48596013 16.48569993 16.48673584 16.48830021 16.60592853 16.61627197
∞ 16.61627197 16.61627197 16.61627197 16.61627197 16.61627197 16.61627197
n =3
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 11.56381225 11.5876303 17.00115619 17.14216434 17.14667931 17.14727783
10 12.60435209 12.74470445 15.73724542 17.09431159 17.14713426 17.14727783
100 15.8379632 15.85856902 16.01330949 16.74273695 17.14644868 17.14727783
500 16.85649504 16.85735509 16.85820869 16.88535822 17.14041366 17.14727783
1000 17.00003218 16.99900482 17.00040543 17.00430392 17.13518204 17.14727783
∞ 17.14727783 17.14727783 17.14727783 17.14727783 17.14727783 17.14727783
n =10
κ µ = 0 µ = 1 µ = 3 µ = 10 µ = 200 µ = ∞
1 12.15320879 12.1709236 17.79502807 18.04454291 18.048597 18.04974365
10 13.115915 13.22775158 15.93927217 17.98937192 18.05035985 18.04974365
100 16.4857437 16.51059158 16.69477066 17.58612958 18.04783376 18.04974365
500 17.69497401 17.69500189 17.69872629 17.7318039 18.04358428 18.04974365
1000 17.86989193 17.87054867 17.87077387 17.87520828 18.0361361 18.04974365
∞ 18.04974365 18.04974365 18.04974365 18.04974365 18.04974365 18.04974365
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Table 6. 1st dimensionless frequencies with different β and power-law exponent n with different values of κ.

n=0
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 3.1415987 2.1537492 1.4720110 1.3065431 0.7944963 0.6221056 0.4435213
1 1.3113939 1.1119371 0.8821077 0.8086748 0.5335924 0.4261034 0.3085481
10 2.6276796 2.5503343 2.3666566 2.2678728 1.6536241 1.3374055 0.9738771
100 3.0800172 3.0785539 3.0754182 3.0737352 3.0567049 3.0297197 2.8451265
500 3.1290834 3.1290208 3.1288972 3.1288332 3.1283052 3.1277315 3.1260576
1000 3.1353288 3.1353120 3.1352815 3.1352663 3.1351381 3.1350053 3.1346468
∞ 3.1415987 3.1415987 3.1415987 3.1415987 3.1415987 3.1415987 3.1415987
n = 0.1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 3.6535921 2.5300981 1.7371080 1.5430650 0.9399980 0.7363222 0.5251070
1 1.3065431 1.1098650 0.8788545 0.8057436 0.5324144 0.4254594 0.3082903
10 2.8768144 2.7504106 2.4774644 2.3464662 1.6599611 1.3381624 0.9735353
100 3.5539583 3.5508104 3.5439211 3.5401445 3.4987154 3.4226060 2.9694643
500 3.6332094 3.6330751 3.6328004 3.6326601 3.6314684 3.6301347 3.6259920
1000 3.6433717 3.6433382 3.6432695 3.6432344 3.6429491 3.6426485 3.6418138
∞ 3.6535921 3.6535921 3.6535921 3.6535921 3.6535921 3.6535921 3.6535921
n = 0.2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 4.0079469 2.7977464 1.9280199 1.7137743 1.0455324 0.8192567 0.5843965
1 1.3062486 1.1043199 0.8750688 0.8026277 0.5313585 0.4248994 0.3080705
10 3.0138338 2.8507539 2.5231920 2.3763185 1.6609544 1.3376299 0.9730577
100 3.8734239 3.8683870 3.8571977 3.8509691 3.7787691 3.6371355 3.0026628
500 3.9802751 3.9800554 3.9796068 3.9793764 3.9773958 3.9751253 3.9676897
1000 3.9940630 3.9940080 3.9938951 3.9938387 3.9933672 3.9928651 3.9914430
∞ 4.0079469 4.0079469 4.0079469 4.0079469 4.0079469 4.0079469 4.0079469
n =1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 5.1337312 3.6978304 2.5883653 2.3072404 1.4166643 1.1116411 0.7938295
1 1.2565248 1.0694749 0.8556108 0.7871904 0.5265260 0.4223802 0.3070955
10 3.2670152 3.0037538 2.5679201 2.3976320 1.6531648 1.3318498 0.9703630
100 4.8245088 4.8068666 4.7659914 4.7422960 4.4434770 3.9730821 3.0336214
500 5.0685732 5.0677370 5.0659990 5.0650972 5.0569429 5.0466920 5.0048509
1000 5.1009416 5.1007280 5.1002931 5.1000703 5.0981874 5.0960832 5.0895769
∞ 5.1337312 5.1337312 5.1337312 5.1337312 5.1337312 5.1337312 5.1337312
n =2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 5.5386522 4.0446184 2.8520509 2.5457780 1.5680818 1.2313234 0.8797746
1 1.2282823 1.0509874 0.8456743 0.7793581 0.5241045 0.4211198 0.3066072
10 3.2952119 3.0096101 2.5588121 2.3871782 1.6470049 1.3283022 0.9688982
100 5.1345537 5.1087679 5.0484544 5.0132555 4.5831606 4.0130144 3.0345964
500 5.4524675 5.4511888 5.4485185 5.4471223 5.4342683 5.4174730 5.3420976
1000 5.4952150 5.4948869 5.4942171 5.4938737 5.4909334 5.4875871 5.4768144
∞ 5.5386522 5.5386522 5.5386522 5.5386522 5.5386522 5.5386522 5.5386522
n =3
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 5.7156648 4.2008531 2.9728548 2.6554063 1.6381776 1.2868181 0.9196748
1 1.2143373 1.0418794 0.8407671 0.7754869 0.5229005 0.4204912 0.3063631
10 3.2978014 3.0053331 2.5515169 2.3801729 1.6437379 1.3264742 0.9681566
100 5.2631258 5.2329942 5.1623384 5.1210680 4.6290132 4.0236742 3.0341173
500 5.6185670 5.6170381 5.6138368 5.6121599 5.5965776 5.5758653 5.4789964
1000 5.6666917 5.6662981 5.6654939 5.6650819 5.6615312 5.6574571 5.6440889
∞ 5.7156648 5.7156648 5.7156648 5.7156648 5.7156648 5.7156648 5.7156648
n =10
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 6.0164720 4.4735033 3.1869630 2.8502840 1.7636415 1.3862993 0.9912874
1 1.1884111 1.0248888 0.8315569 0.7682039 0.5206194 0.4192979 0.3058992
10 3.2890199 2.9890657 2.5346910 2.3649446 1.6373186 1.3229326 0.9667314
100 5.4703264 5.4316011 5.3406419 5.2876115 4.6884721 4.0347139 3.0321962
500 5.8979372 5.8958849 5.8915666 5.8892946 5.8678621 5.8385179 5.6921419
1000 5.9566011 5.9560716 5.9549821 5.9544237 5.9495683 5.9439134 5.9247209
∞ 6.0164720 6.0164720 6.0164720 6.0164720 6.0164720 6.0164720 6.0164720
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Table 7. 2nd dimensionless frequencies with different β and power-law exponent n with different values of κ.

n = 0

κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 6.2832351 4.5778665 3.8141887 3.6732020 3.3405115 3.2639955 3.2041592
1 3.6732043 2.6130838 1.7997816 1.5985137 0.9731483 0.7619493 0.5432052
10 5.3073547 4.6791954 3.5244612 3.1581357 1.9431357 1.5230123 1.0862559
100 6.1601848 6.1476674 6.1144194 6.0901997 5.4016621 4.3988574 3.1617733
500 6.2582031 6.2577045 6.2566488 6.2560857 6.2505398 6.2423289 6.1640510
1000 6.2706936 6.2705697 6.2703126 6.2701812 6.2697571 6.2673439 6.2626278
∞ 6.2831909 6.2831909 6.2831909 6.2831909 6.2831909 6.2831909 6.2831909
n = 0.1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 7.3072279 5.3584640 4.4830230 4.2909038 3.8927190 3.8009985 3.7287971
1 4.1159704 2.9263592 2.0203713 1.7956632 1.0949749 0.8576336 0.6115919
10 5.8736479 4.9724041 3.6520020 3.2654750 2.0060922 1.5725484 1.1218053
100 7.1083037 7.0808200 6.9986906 6.9355397 5.5411461 4.4305070 3.1748916
500 7.2664637 7.2653657 7.2629748 7.2616921 7.2488739 7.2224416 6.7535116
1000 7.2867872 7.2865044 7.2859457 7.2855998 7.2829406 7.2821307 7.2640619
∞ 7.3071899 7.3071899 7.3071899 7.3071899 7.3071899 7.3071899 7.3071899
n = 0.2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 8.0159407 5.9088194 4.9117814 4.7243217 4.2778074 4.1742650 4.0928492
1 4.4271719 3.1564687 2.1852661 1.9433249 1.1866627 0.9297263 0.6631604
10 6.2218440 5.1501413 3.7461841 3.3477194 2.0566984 1.6125490 1.1505511
100 7.7476086 7.7030742 7.5606056 7.4968980 5.6065469 4.4484429 3.1851215
500 7.9606034 7.9587851 7.9548314 7.9526578 7.9274953 7.8661143 6.9028091
1000 7.9881729 7.9877046 7.9867761 7.9864272 7.9807053 7.9757423 7.9396031
∞ 8.0159302 8.0159302 8.0159302 8.0159302 8.0159302 8.0159302 8.0159302
n =1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 10.2675248 7.7295998 6.4040773 6.1460402 5.5201139 5.3726152 5.2559847
1 5.4383730 3.9606550 2.7802669 2.4858360 1.5233534 1.1951220 0.8606147
10 7.1531500 5.6873509 4.1038732 3.6698866 2.2636697 1.7768091 1.2765289
100 9.6541845 9.4924831 8.8691426 8.4955734 5.7148879 4.5102813 3.2358768
500 10.1372453 10.1302274 10.1139578 10.0993612 9.9331410 9.0299554 7.0805006
1000 10.2019482 10.2001597 10.1964006 10.1942720 10.1750297 10.1333631 9.6156248
∞ 10.2675171 10.2675171 10.2675171 10.2675171 10.2675171 10.2675171 10.2675171
n =2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 11.0773705 8.4191389 6.9675982 6.6803085 5.9772061 5.8102134 5.6778021
1 5.8088865 4.2793500 3.0250091 2.7090586 1.6649288 1.3070729 0.9422234
10 7.4424933 5.8909835 4.2614329 3.8145269 2.3592281 1.8529569 1.3327935
100 10.2787840 10.0457852 9.2370716 8.6937195 5.7510152 4.5379712 3.2577570
500 10.9051002 10.8936907 10.8716793 10.8461708 10.4273806 9.3625039 7.0781304
1000 10.9905091 10.9877723 10.9808769 10.9833234 10.9425031 10.8621849 9.8595881
∞ 11.0773315 11.0773315 11.0773315 11.0773315 11.0773315 11.0773315 11.0773315
n =3
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 11.4313995 8.7286515 7.2198347 6.9189567 6.1793620 6.0030176 5.8629984
1 5.9717719 4.4240762 3.1380810 2.8125932 1.7310362 1.3594281 0.9804735
10 7.5637995 5.9836981 4.3363687 3.8874287 2.4053185 1.8897576 1.3597407
100 10.5388666 10.2461455 9.3483685 8.6950839 5.7678290 4.5515101 3.2690208
500 11.2373351 11.2244562 11.1880697 11.1772565 10.5143573 9.4796325 7.0811896
1000 11.3334680 11.3302037 11.3229681 11.3192404 11.2739997 11.1586482 9.9031954
∞ 11.4314575 11.4314575 11.4314575 11.4314575 11.4314575 11.4314575 11.4314575
n =10
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 12.0330176 9.2690011 7.6581008 7.3970304 6.5773052 6.3331868 6.1790528
1 6.2496310 4.6780924 3.3397009 2.9978988 1.8501043 1.4538652 1.0496221
10 7.7640098 6.1474914 4.4731411 4.0160303 2.4904978 1.9854685 1.4104647
100 10.9601442 10.6133678 9.5071464 9.0211661 5.7984771 4.5768949 3.2897792
500 11.7961667 11.7775901 11.7361787 11.7188210 10.8198305 9.5920208 7.0858051
1000 11.9132976 11.9083168 11.8992884 11.8935527 11.8272679 11.6041047 10.0081207
∞ 12.0330200 12.0330200 12.0330200 12.0330200 12.0330200 12.0330200 12.0330200
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Table 8. 3rd dimensionless frequencies with different β and power-law exponent n with different values of κ.

n = 0

κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 9.4249457 7.2872558 6.6774136 6.5846723 6.3875124 6.3462446 6.3172316
1 6.5846791 4.7390061 3.8655990 3.7076924 3.3462335 3.2662443 3.2046025
10 8.0672408 6.3041906 4.5345947 4.1695490 3.4455661 3.2956892 3.2111043
100 9.2406461 9.1921138 8.9782326 8.7105524 5.8135190 4.5965189 3.4741809
500 9.3873992 9.3856766 9.3817107 9.3794117 9.3461107 9.1778585 7.0509063
1000 9.4061333 9.4057080 9.4047143 9.4043102 9.3993357 9.3915065 9.2542176
∞ 9.4249878 9.4249878 9.4249878 9.4249878 9.4249878 9.4249878 9.4249878
n = 0.1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 10.9609491 8.5071099 7.7812569 7.6724700 7.4324305 7.3832074 7.3454196
1 7.5612683 5.4943734 4.5027778 4.3206464 3.8979582 3.8029824 3.7293306
10 9.0344215 6.8377050 5.0335588 4.6842813 3.9733445 3.8268027 3.7348619
100 10.6634406 10.5547097 9.9814997 9.3121030 5.9160630 4.7301547 3.9542418
500 10.8998089 10.8959724 10.8866801 10.8809935 10.7511144 9.7417224 7.0771322
1000 10.9302883 10.9293243 10.9272720 10.9261537 10.9128455 10.8860129 9.8668243
∞ 10.9609985 10.9609985 10.9609985 10.9609985 10.9609985 10.9609985 10.9609985
n = 0.2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 12.0240282 9.3611004 8.5500970 8.4250099 8.1578403 8.1017233 8.0590711
1 8.2425546 6.0311339 4.9520551 4.7516000 4.2824680 4.1761147 4.0933481
10 9.6723686 7.2394094 5.4212433 5.1147046 4.3467968 4.1972150 4.0983977
100 11.6232940 11.4406962 10.3671878 9.5455119 6.0349577 4.8873296 4.2281046
500 11.9410360 11.9347102 11.9187754 11.9099159 11.5739487 9.8751597 7.0967716
1000 11.9823774 11.9808333 11.9773710 11.9754262 11.9523797 11.8779231 9.9354188
∞ 12.0239868 12.0239868 12.0239868 12.0239868 12.0239868 12.0239868 12.0239868
n =1
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 15.4014389 12.1461655 11.0304418 10.8534794 10.4719028 10.3911985 10.3297514
1 10.4267484 7.8210803 6.4360451 6.1680420 5.5240631 5.3742040 5.2530904
10 11.6159086 8.7010258 6.7713364 6.3275690 5.5675699 5.3902274 5.2167151
100 14.4937452 13.8306459 11.1789360 10.0621271 6.6818526 5.7483653 5.1557225
500 15.2061408 15.1812129 15.0960166 15.0489267 12.6106775 10.0157568 7.0805008
1000 15.3030881 15.2968934 15.2820513 15.2734750 15.0778251 13.6921264 10.0030414
∞ 15.4014282 15.4014282 15.4014282 15.4014282 15.4014282 15.4014282 15.4014282
n =2
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 16.6162233 13.1835101 11.9421774 11.7425498 11.3100182 11.2182249 11.1482676
1 11.2175037 8.5020954 6.9974646 6.7010189 5.9810081 5.8117523 5.6753663
10 12.3036917 9.2896999 7.1591577 6.8846376 6.0206307 5.8268375 5.6384332
100 15.4411203 14.4948158 11.4078457 10.2667824 6.8296519 6.2806410 5.5702245
500 16.3580304 16.3191321 16.1971428 16.0922591 12.7232963 10.0663194 7.0781307
1000 16.4859601 16.4765174 16.4532338 16.4282647 15.8385204 13.8976981 10.0058765
∞ 16.6162720 16.6162720 16.6162720 16.6162720 16.6162720 16.6162720 16.6162720
n =3
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 17.1472741 13.6447276 12.3451770 12.1347588 11.6688797 11.5805828 11.5065029
1 11.5638122 8.8073037 7.2488777 6.9391678 6.1831133 6.0045406 5.8607306
10 12.6043521 9.5587972 7.4402261 7.2740781 6.2214578 6.0193212 5.8237463
100 15.8379632 14.7659254 11.5120118 10.3655351 6.9748833 6.4193955 5.7518484
500 16.8564950 16.8094121 16.6591915 16.5242355 12.7595601 10.0920059 7.0811899
1000 17.0000322 16.9891796 16.9611083 16.9402771 16.2910422 13.9413354 10.0072923
∞ 17.1472778 17.1472778 17.1472778 17.1472778 17.1472778 17.1472778 17.1472778
n =10
κ β =0 β =0.25 β =0.75 β =1 β =3 β =5 β =10
0 18.0497104 14.4403553 13.0373079 12.9100361 12.3047556 12.1977350 12.1159703
1 12.1532088 9.3376283 7.6858501 7.3523130 6.5304833 6.3346904 6.1770293
10 13.1159150 10.1205238 7.9304311 7.6268959 6.5671320 6.2448683 6.1402240
100 16.4857437 15.1666063 11.7009603 10.5495735 7.3028555 6.7346839 6.0612035
500 17.6949740 17.6152650 17.4133092 17.2139022 12.8192099 10.1417398 7.0858053
1000 17.8698919 17.8549023 17.8140980 17.7885512 16.8897657 13.9959143 10.0100574
∞ 18.0497437 18.0497437 18.0497437 18.0497437 18.0497437 18.0497437 18.0497437
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