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The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance.
This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degener-
ation of any electrical and mechanical components present in a wind turbine. In this paper, two different failure
states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classi-
fiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for
supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it

reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.

1. INTRODUCTION

In response to global warming and increased energy con-
sumption, renewable sources of electricity are becoming in-
creasingly popular. Wind energy production has grown by
about 25 % in the past few years, and researchers and engineers
have developed new techniques to maintain wind power plants.
Through advanced monitoring and fault diagnosis, wind tur-
bines can be made more reliable, safe, and profitable. Main-
tenance of wind turbines' have traditionally relied on spectral
analysis and fault trees. However, through new technologies
and advances such as connectivity, smart, and data generation,
a shift is occurring towards artificial intelligence (AI). Data
is becoming increasing available to the industry at this point,
which affects important decisions in areas such as scheduling?
,maintenance management® and quality improvement.*

The impact of machine learning has been amplified in these
areas due to new hardware and cloud-based solutions® . Wind
turbines have many components working together, and vibra-
tion is a major cause of system failure. As well as gear and
bearing defects, vibrations are usually an indication of me-
chanical or electrical faults. Bearings suffer wear mainly from
their rolling elements, since their surface position changes con-
tinuously with respect to their load, due to the result of their
rotation speed.

Aside from geometric imperfections, vibrations can also be
caused by faults such as exterior and interior raceways, compo-
nent failures, cage failure, and imbalances and misalignments.

There have been several studies on vibrations in structures
and in rotating machines. The process used to detect bearing
failure because of mechanical failure through frequency spec-
tral analysis has been applied in many of the studies to date.
Various diagnostic techniques have traditionally been used to
detect faults in wind turbine generators and their structures in
studies of wind turbines® . According to AI”, in this case Ma-

chine Learning, this type of methodology has worked perfectly
and continues to work perfectly, but there are some limitations
and drawbacks. With a series of maintenance methodologies, it
is possible to anticipate, detect, and classify a malfunctioning
component of a machine autonomously. With respect to Dhi-
man,® machine learning reduces response times and virtually
eliminates error possibilities.

The availability of data management and analysis allows for
feedback learning and flexible offshore implementation, ac-
cording to Kreutz’ . By analysing and preventing failures, Al
methodology protects you against all types of failures that you
desire to monitor. To implement these methods on an actual
system without causing costly errors, they must be validated.
The use of prototypes or test benches to develop new tech-
niques, carry out studies, etc., is convenient when validating
fault diagnosis techniques, and the prototypes are used to un-
derstand how these systems operate. Wind turbines that go
down can cause considerable losses due to two factors: first,
the cost of replacing them, and second, the energy that can-
not be produced while they are offline, which may occur dur-
ing peak energy production times. Due to the high repair and
maintenance costs, especially in offshore wind farms, fault de-
tection and diagnosis techniques are essential for the early de-
tection of faults and stopping of the machine. Additionally,
due to the lower costs associated with downtime and defec-
tive products, it is becoming increasingly important to manage
maintenance activities efficiently. Through the application of
algorithms designed to anticipate and prevent potential prob-
lems, we have developed a prototype that is able to detect, su-
pervise, and anticipate failures compared to existing systems.
In this paper, we propose a feature learning method for de-
tecting different bearing failures autonomously using vibration
analysis. We present an algorithm for monitoring and diagnos-
ing faults in a prototype wind turbine in this article. A review
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of the literature is given in the next section. Next, we discuss
the data collection process and the data set. Next, we evalu-
ate the classification results. The study concludes with some
relevant conclusions.

2. WORKING METHODOLOGY

Wind turbine failures due to vibrations in bearings are diag-
nosed and monitored using different methods, obtaining mul-
tiple characteristics of each bearing, and, therefore, the gen-
eral characteristics of any individual bearing do not necessar-
ily correspond to the fault characteristics. Of another bearing,
following the same or different methodology. Using the char-
acteristics extracted from vibration measurements, this study
shows how machine learning can be used to improve accuracy
and predict possible breakages.

2.1. Machine Learning

In wind turbine fault detection, machine learning focuses
mainly on two tasks: the first is the detection of anomalies,
and the second is the classification of faults. By detecting fail-
ures promptly or anticipating them, this technique allows for
corrective measures to be taken in a very short period, improv-
ing the system’s reliability and security.

In the world of machine learning, there are two types of
methods: supervised and unsupervised. The most common
machine learning case, by far, is supervised machine learn-
ing.'® With supervised learning, the output of your algorithm is
already known while the output is unknown with unsupervised
learning. To get in, on the way out, you only need to figure out
the process. In most cases, the algorithms are “taught” from
training data sets. Unsupervised learning, on the other hand,
is a more complex process, because it relies only on the input
data and binary logic that all computer systems use. No refer-
ences whatsoever. To apply any type of learning, the data must
first be classified.!!

Different classification algorithms can be applied to this
problem, where they take the functionality of an object and
identify it by a limited number of categories or classes from
the input information received from that object.

As aresult, a classifier works in two phases:

* To achieve optimal performance, it must be trained, which
means receiving a large amount of sample data and its
correct classification, to adjust its parameters.

* When the algorithm has already been trained, it provides
an output based on the input data it receives

2.2. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine
learning method based on statistical learning theory. It is a use-
ful method for classification and regression in cases of small
samples, such as fault diagnosis. A simple case of two classes
is considered, which can be separated by a linear classifier.
Figure 1 shows triangles and squares representing these two
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Figure 1. Optimal hyperplane for binary classification by SVM.

kinds of sample points. The hyperplane H is one of the planes
of separation that separate the two classes. H; and Hs (shown
by dashed lines) are the planes that are parallel to H and pass
through the sample points closest to H in these two classes.
The margin is the distance between H; and Hs. The SVM
attempts to place a linear boundary between the two different
classes H; and Hs, and orient it in such a way that the mar-
gin is maximized, resulting in the smallest generalization error.
The closest data points that used to define the margin are called
support vectors.

A quadratic function is minimized under linear inequality
constraints by reducing it to convex optimization'? . Assume
we have a training set of samples [(z;,y;)], where i = 1 to
N, and N represents the total number of samples. To find the
separation plane with the least generalization error out of each
linear separation plane, we need to determine how to divide
the input samples into two classes. It is possible to divide the
samples into two classes: triangular and square. A triangle
class has a y; = —1 label. A square class has a y; = +1 la-
bel. For non-separable data, slack variables are not considered
(nor P 0). Using the following optimization problem, you can
obtain the hyperplane for f(x) = 0 from the given data.

N
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Minimize §||w\| —I—C'iz_;@-; (D
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where C' is a constant representing the error penalty. Introduc-
ing Lagrange multipliers to the optimization problem above
leads to the following result:
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Using the sequential minimum optimization (SMO) algo-
rithm, the dual problem that results from SVM derivation can
be efficiently solved. SMO breaks down the general QP prob-
lem into QP subproblems.

Subject to {
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Figure 2. K-NN diagram with different samples.

2.3. K-Nearest Neighbour (KNN)

Learning algorithms based on these principles can help users
determine how several instances within a data set experience
similar characteristic.'> Learning occurs while the test data
is tested, so that rather than create a model from learning with
training data, the model is created automatically. Lazy learning
is another name for this algorithm type.

Its operation is very simple, for a given training group of
classified instances T = [(z1,41), (2,92),--., (ZN,yN)]s
where x; is the vector of characteristics of the unlabelled in-
stance, y; is the label y1 = c¢1,¢2,...,¢cx,2 = 1,2...N.
Using a given distance metric, the k-NN algorithm finds the
k closest instances to a training sample (z,y). Ny, represents
the area where these k instances are located. As a result, it is
possible to calculate the test sample label x from the decision
rules:

y = argmaz,; Z I(yi=c¢j), ©1=12,...N;
@i Nx(x) &)

where I is the indicator function.

According to Fig. 2, by analysing what an unclassified in-
stance’s closest neighbours are, we can extract its tags.

Three basic concepts make up the k-NN algorithm: how
many instances were measured, the classification decision rule,
and how many measured instances there were.

3. SYSTEM DESCRIPTION

In this section, we describe the industrial environment
within which the system will operate and list each component
it comprises. It also describes the distribution of the sensors.
The document also discusses the features of a data acquisition
card, which measures signals and its connections.

3.1. Prototype

The prototypes for small wind turbines, as shown in Fig. 3,
are very useful for diagnosing problems with the components.

Figure 3. Component distribution in the prototype.

Figure 4. Position of the accelerometers in the system.

As an example, it can be used to identify deterioration and wear
on its parts and determine what effects it has.'* This system
was designed to allow for easy interchange of parts without
having to wait for deterioration to occur and can thus test diag-
nostic techniques without waiting for deterioration.

We measured the vibration of the generator, gearbox, and
bearings. For a generator, vibration sensors should be po-
sitioned at the fast shaft coupling to measure the vibrations.
Considering the multiplier, the techniques used for monitoring
the machine state and the design of the machine required that
each stage have its own sensor, allowing measurements to be
taken of how the signal propagates between devices as well as
how component failures affect vibrations. The following dis-
tribution of 10 accelerometers was thus decided, based on the
above considerations:

3.2. Data-Connection Acquisition Card

Vibrations were measured by accelerometers. They came
with 2-pin MIL-C-5015 NI connectors ideal for general pur-
pose accelerometers. The acquisition card PCI-4472B'> was
used, optimized for vibration measurements. As explored pre-
viously, the acquisition system relies on two PCI-4472B mod-
ules because the prototype had a total of 8 inputs and ten ac-
celerometers.
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Table 1. Comparative of KNN and SVM algorithms.

KNN SVM
Advantages| Robustness to nosy data | Can handle high-dimensional
Can be used for both features

classification and regression |[Robust to overfitting and noise
Easy to implement High sorting accuracy
Good overfitting Fast sorting speed
Limitations | Needs a lot of storage space Binary classifier
The selection of & influences No physical meaning
the classification Low efficiency for big data
Great computation
Slow sorting speed

ADQUISICION DE DATOS

@ PROTOTIPO DE SIMULACION ai2

DE AEROGENERADORES

Figure 6. System Vibration Detection.
4. RESULTS

In this section, we compare traditional methods with artifi-
cial intelligence methods. Traditionally, vibrational motion is
measured using spectral analysis. The simulation executes suc-
cessfully. In the image below, you can see the output of 10 ac-
celerometers around the wind turbine prototype. The prototype
can be rotated at 5 different speeds between 0 and 1500 rpm.
In this case, a medium speed of 300 rpm is used. For each
sensor analysed, an average of 5000 samples are obtained and
graphically represented using a sampling frequency of 1 KHz.

Using automated learning systems, wind turbine failures can
be tracked, diagnosed, and prevented using traditional vibra-
tion analysis methods. Automated learning systems can track,
prevent, and diagnose wind turbine failures. To make a cor-

Figure 7. Broken bearing.

rect prediction, the algorithm must first be trained to get feed-
back, so that it can analyse and classify the data independently
once it has experienced feedback. To ensure that we get reli-
able results, this section describes how to train and teach the
algorithm. During training, two states of analysis were simu-
lated, breakage and imbalance, and we think that has sufficient
feedback for prediction. The algorithm was trained about eight
times.
The faults and conditions introduced are:

* Bearing break failure
¢ Imbalance

A final comparison is conducted between the two states for
each of the two classification methods, the first Support Vector
Machines (SVM) Fig. 8 and the second K-Nearest Neighbour
(KNN) Fig. 9. We divided it into 4 phases to obtain it. In
the first phase, the data was obtained via the PCI-4472B ac-
quisition card, then filtered and processed. For the analysis to
be stable, it is essential to transform the signal into something
non-random. When applying machine learning algorithms to
these types of signals, appropriate conditioning and efficient
processing are crucial to extracting patterns from them. For
this method to function correctly, another key aspect is that the
signal’s time variation makes it difficult to process and to learn
from. For the algorithm to function correctly, this first stage of
signal conditioning and filtering is crucial. In this first point,
the signal processing should be such that the algorithm reads
invariant characteristics in time.

To determine the fault threshold or the prescribed condition
for each fault or condition, feature extraction must be done. Let
us examine each of these phases in more detail. To calculate
the arithmetic mean, each example taken is added together (for
each predetermined issue condition) and separated by the abso-
lute number of tests considered. Principal component analysis
is then used to reduce the size of the data set. In this method,
the number of new variables is reduced to the minimum num-
ber possible to represent the old ones.

We can then make future decisions based on an understand-
ing of our current state, as well as what is happening. Based
on the results of the two previous phases, we can determine the
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Figure 8. Real vs predicted output Support Vector Machines (SVM) algorithm.
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Figure 9. Real vs predicted output K-Nearest neighbour algorithm.

standard deviation of each of the stipulated failure conditions.
The data presented in it demonstrate variation or dispersion.
Several states have a relatively low standard deviation, which
indicates that most points are close to the average, which is
why it should work. These three stages are used by both clas-
sifiers. To classify the data, both methodologies of the two
algorithms are used. Afterwards, the data have been properly
conditioned.

A few training rounds follow this entire process so that the
algorithm can be made self-operating in the future. Several
training sessions are enough for the algorithm to work; it only
needs new data. This new data is analysed and classified using
a specific method to help predict the process being controlled.

Here’s a breakdown of each state. Firstly, both classifiers
follow the same pattern, but in this case, in the SVM algorithm
the results are slightly out of date due to the limitations used in
this case. Eventually, it turns out that the failure was caused by
a broken bearing race, which changed the behaviour of both
algorithms. The KNN produces more grouped data than the
SVM, due to the different techniques used for sorting and clas-
sifying the data, since they do not follow a strict pattern. Fur-
thermore, in both cases, both algorithms are highly accurate
and like the actual and predicted outputs for either failure con-
dition. It is observed that both classifiers produce quite similar
results.

For example, let us focus on the imbalance variable. This
variable is correctly classified in 96 % of cases, while it is in-
correctly classified in 4 % of cases. A total of 95 % of true
positives and just 5 % of false positives were detected. KNN's
achieved a 94 % success rate, while Support Vector Machines
(SVMs) reached 95 %. Due to this, both KNN and SVM are
thought to have many similarities with the wind turbine proto-
type, which enables us to accurately predict the turbine’s fail-
ure.

Regarding the results obtained, it should be noted that
both classifications implemented in this simulation, KNN and
SVM, have been characterized by being quite robust to inter-
ference (noise). In addition, KNN was characterized by allow-
ing it to be implemented as a regression classification, while
SVM by its handling high-dimensional features. Regarding the
classification speed, the SVM was much faster than the KNN,
but as mentioned earlier, both were quite accurate in their pre-
dictions.

5. CONCLUSIONS

To enable the successful and effective function of artificial-
intelligence, data acquisition and classification are vital. Ma-
chine learning improves the accessibility and reliability of fault
detection, monitoring, and diagnosis for wind turbines. This
document examines several approaches to diagnose and pre-
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ventfailures in wind turbine bearings based on vibration anal-
yses and the use of artificial intelligence techniques.

The KNN and SVM models have been used to summarize
the fault diagnosis for bearings from a theoretical and prac-
tical perspective. They both feature high processing speeds,
robustness, and precision, which are important for this kind
of research. Methods such as spectral analysis, which were
traditionally used, are increasingly obsolete due to its advan-
tages and its ease of classification and prediction. Using the
proposed technique, the specified failure conditions could be
predicted highly accurately, allowing it to be applied to other
mechanical components of the prototype to prevent or antici-
pate possible breakdowns.

These possibilities can be used to evaluate, develop, and val-
idate new methods of fault diagnosis and supervision. Using
prototypes of wind turbines before they are installed in off-
shore places is very helpful in terms of reducing costs and time,
and improving accuracy and reliability by verifying, adjusting,
and correcting their design.
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