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In this paper, a modified conjugate gradient (MCG) algorithm is proposed for solving the force reconstruction prob-
lems in practical engineering. This new method is derived from a stable regularization operator and is also strictly
proved using the mathematical theory. Moreover, we also prove the sufficient descent and global convergence
characteristic of the newly developed algorithm. Finally, the proposed algorithm is applied to force reconstruction
for the airfoil structure and composite laminated cylindrical shell. Numerical simulations show that the proposed
method is highly efficient and has robust convergence performances. Additionally, the accuracy of the proposed
algorithm in identifying the expected loads is satisfactory and acceptable in practical engineering.

1. INTRODUCTION

In recent years, force identification in structural dynamics
has attracted lots of interest of many scholars.1–7 The inverse
force identification by structural vibration data such as dis-
placement responses is particularly suitable for structural me-
chanics and structural health monitoring in the field of mechan-
ical engineering. However, for a great many practical engineer-
ing problems, we have to try our best to know the correspond-
ing information of external loads. For example, after knowing
external force acting on the structure of aircraft wings and wind
turbines, it is possible or convenient to exploit a great many ad-
vanced computational algorithms to ensure their safety. Also,
we often optimize these structures to satisfy the requirements
of industrial development. Moreover, in many cases, it is not
easy to get the accurately applied loads thatact on engineering
structures, so efforts are made to develop indirect computa-
tional inverse technology which computes the excitation loads
with known vibration data, such as displacement responses,
strain data, and acceleration and velocity responses.8–10

Jacquelin et al. analyzed a deconvolution technique and suc-
cessfully used this method to recover an experimental force.11

The finite element method is exploited to reconstruct the mov-
ing loads acting on the bridge deck.12 Gunawan et al. pro-
posed the Two-step B-splines regularization method and used

it to regularize the ill-posed problem of impact load reconstruc-
tion.13 Zhu and Law exploited a new algorithm that is based
on the regularization method and modal superposition and ap-
plied it for the moving force reconstruction.14 A regulariza-
tion method using signal processing techniques was proposed
to deal with force identification.15 The dynamic programming
algorithm was exploited by Law et al. to identify the moving
force.16 Zhang and Ohsaki transformed the force reconstruc-
tion for the prestressed pin-jointed structure into an optimiza-
tion problem and solved it using the method of simulated an-
nealing method.17 Xie et al. proposed an identification method
based on statistical energy analysis to solve the high-frequency
load identification.18 Li et al. presented a new method that
uses wavelet multi-resolution analysis to solve the load identi-
fication.19 A novel load identification method was proposed to
deal with the identification of discontinuous loading.20

However, there are still some shortcomings that exist in the
research study so far. Firstly, the results of most traditional
methods are weak anti-noise in identifying multi-source dy-
namic loads and are still not satisfactory when the noisy level
increases. Additionally, we often use the iterative regulariza-
tion method to obtain the solution of large-scale inverse prob-
lems, but their convergence rate in obtaining a regularized so-
lution is pretty slow and inefficient.21 Furthermore, very few
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references are found about the load identification in the aspect
of large noisy levels.22–24 Therefore, we have to seek new ad-
vanced computational methods to overcome these shortcom-
ings. A new fast and efficient conjugate gradient method is
presented in this paper, also proved by mathematical theory,
and exploited to reconstruct dynamic load in the time domain
from measured displacement responses.

This paper proceeds as follows. Section 2 devotes to the
establishment of the new fast and efficient conjugate gradient
algorithm. The sufficient descent characteristic and global at-
tractivity of the proposed method are strictly proved in Section
3. In Section 4, we present numerical studies to investigate the
stability, accuracy, and effectiveness of the newly developed
method. The performances of the proposed method under dif-
ferent measurement noisy levels are investigated in detail. Fi-
nally, the last section presents the conclusions of this paper.

2. THE CONSTRUCTION OF A NEW FAST
AND EFFICIENT CONJUGATE GRADIENT
ALGORITHM

Firstly, the following unconstrained optimization problem is
investigated:

min
x∈Rn

f(x); (1)

in which f : Rn → R is a continuous and differentiable func-
tion. At point xk, its gradient is denoted by g(xk). The corre-
sponding iteration form is given as

xk+1 = dkαk + xk, k = 0, 1, 2 · · · ; (2)

in which αk denotes the steplength and the search direction is
denoted by dk. Usually, the one-dimensional search method is
used to search the stepsize, and the corresponding formula is
defined as

f(dkαk + xk) = min
α≥0

f(dkαk + xk); (3)

where dk represents the search direction given by the following
equation:

dk =

{
−g0,
dk−1βk − gk,

k=0,
k ≥ 1

; (4)

in which βk is a scalar, and scientific and reasonable choices
for this parameter correspond to different kinds of new conju-
gate gradient methods. Herein, a new formula for this parame-
ter is given by

βWDX
k =

{
gTk dk
gαk dk−1

(α ≥ 1) if ‖gk‖ ≥ 1

1 otherwise
. (5)

The corresponding new algorithm is given as the following
steps:
MCG Algorithm
Step 0: Considering x0 ∈ Rn , set k = 0.
Step 1: Obtain βk using the formula Eq. (5).
Step 2: Compute dk on the basis of Eq. (4). When ‖gk‖<ε ,
then stop.
Step 3: Generate αk exploiting Eq. (3).
Step 4: Renewing next point according to Eq. (2). We will
stop it when ‖gk‖ < ε and f(xk) > f (xk+1) or else go to
Step 0 with k = k + 1.

3. GLOBAL CONVERGENCE

The validity and convergence of new parameter βWDX
k will

be investigated in the following part. To prove the good defini-
tion of the corresponding new algorithm for the new parameter,
we will investigate its global convergence.
Theorem 3.1. Considering the conjugate gradient algorithm
based on the new parameter βWDX

k , Eqs. (3) and (4), then we
have that there is C > 0 such that

gTk dk ≤ −C‖gk‖
2
; (6)

when k ≥ 0.

Proof. Firstly, we can easily obtain the assertion when
k = 0. Secondly, the statement that the sufficient condition is
also true for k ≥ 1 will be strictly proved.

Using Eq. (4), we can get

gTk+1dk+1 =

gTk+1(−gk+1+βk+1dk) = −‖gk+1‖2+βk+1g
T
k+1dk. (7)

We also easily obtain that gTk+1dk = 0 according to the exact
line search. Then, we can obtain that

gTk+1dk+1= −‖gk+1‖2.

Therefore, we can assert that dk+1 is a feasible direction.
Thus, the proof of Theorem 3.1 is completed.

(H1). For the level set Rn, there is a lower bound
for f ; For x0 given, there exists a neighborhood N of
Γ= {x ∈ Rn|f(x0) ≥ f(x)} in which f is continuously dif-
ferentiable.

(H2). There is L > 0 such that

‖g(y)− g(x)‖ ≤ L‖y − x‖,∀x, y ∈ N ;

i.e., g(x) is Lipschitz continuous.
Exploiting (H1) and (H2), we can get the following asser-

tions [25, 26]:
Lemma 3.1 Suppose (H1)-(H2) are satisfied. Considering any
conjugate gradient method by Eq. (4), in which αk meets the
precise minimization rule and dk represents a descent search
direction. Therefore,

∞∑
k=0

gTk dk

‖dk‖2
<∞.

Based on Lemma 3.1, we get the the following results.
Theorem 3.2. Let (H1)-(H2) and the descent condition are
satisfied. Considering the conjugate gradient method given by
Eqs. (2) and (4), in which αk is obtained based on Eq. (3).
Therefore, we have that either

lim
k→∞

‖gk‖=0;

or
∞∑
k=0

(gTk dk)
2

‖dk‖2
<∞.

Proof. Actually, the conclusion can be proved using the
contradiction method. Therefore there is a positivie parameter
ε which satisfies

ε ≤ ‖gk‖. (8)
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According to Eq. (4), we can get

βk+1dk = dk+1 + gk+1.

So,

β2
k+1 ‖dk‖

2−‖gk+1‖2−2gTk+1dk+1 = ‖dk+1‖2 . (9)

Therefore,

‖dk+1‖2
(gTk+1dk+1)2

=
β2
k+1‖dk‖

2

(gTk+1dk+1)2
− ( 1
‖gk+1‖ + ‖gk+1‖2

gTk+1dk+1
)2

+ 1
‖gk+1‖2 ≤

β2
k+1‖dk‖

2

(gTk+1dk+1)2
+ 1
‖gk+1‖2

= 2
‖gk+1‖2 .

(10)
Then, we obtain

K∑
i=0

2

‖gi‖2
≥ 2

‖gk‖2
≥ ‖dk‖2

(gTk dk)2
. (11)

So,
ε2

2K
≤ (dkgk)2

‖dk‖2
. (12)

By using Eqs. (8) and (12), we have

∞∑
k=0

gTk dk

‖dk‖2
=∞;

which immediately contradicts the conclusion of Lemma 3.1.
Therefore, Theorem 3.2 is fully proved.

4. APPLICATION

To validate the effectiveness and stability of MCG in recon-
structing multi-source loads acting on an airfoil structure, the
force reconstruction problem is investigated in the following
subsection. Noticing the linear and time-invariant assumptions
with regard to load identification, the corresponding convolu-
tion equation can be expressed as:27

y(t) =

∫ t

0

p(τ)G(t− τ)dτ ; (13)

in which y(t) denotes the displacement response, G(t) repre-
sents the kernel of the impulse response, and p(t) represents
the external dynamic force.

The corresponding equally spaced intervals can be obtained
using the discretization of the time period, and then we give
Eq. (13) in matrix form as:28–30

G(t)P (t) = Y (t); (14)

or given by
y1

y2

...
ym

 =


g1

g2 g1

...
...

. . .
gm gm−1 · · · g1




p1

p2

...
pm

4t.
Considering the static characteristic of the structure before

the force is applied, we can assert that y0 = 0, g0 = 0, and
then G is the lower triangular matrix.

Figure 1. The finite element model of the airfoil.

In order to reconstruct P (t), it is very necessary to get the
value of G(t) and y(t). Exploiting the finite element method,
we can compute the response at any point and the numerical
Green’s function. More importantly, it is not easy to get the
dynamic force P (t) by a direct inverse operation. In the fol-
lowing part, the proposed method will be used to solve this
kind of ill-posed inverse problem about force reconstruction of
an airfoil structure and a composite laminated cylindrical shell.

4.1. An Airfoil Structure
A practical engineering problem is investigated to deter-

mine vertical forces acting on an airfoil structure as shown
in Fig. 1. The density, Poisson’s ratio, and elastic modulus
of the airfoil structure are ρ = 8.3 × 103kg/m3, ν = 0.3,
E = 3.8 × 1011MPa, respectively. On the outer surface of
the airfoil structure, there is a vertical concentrated force. The
corresponding displacement responses can also be vertically
obtained. In addition, one side of the airfoil structure is fixed.
The arrows in Fig. 1 denote the corresponding points at which
the dynamic loads are acting on the airfoil structure.

The corresponding dynamic forces are expressed as the fol-
lowing formulas:

F1(t) =

{
q1 sin( 2πt

td
), 0 ≤ t ≤ 2td

0, t < 0 and t > 2td

F2(t) =


4q2t/td, 0 ≤ t ≤ td/4
2q2 − 4q2t/td, td/4 < t ≤ 3td/4
4q2t/td − 4q2, 3td/4 < t ≤ td
0, t > td

.

in which the parameters qi(i = 1, 2), td are 1000N, 800N, and
0.004s, respectively. The time histories of these two forces are
drawn by the software MATLAB in Figs. 2 and 3, respectively.
Moreover, the numerical method is used to simulate the re-
sponse of the test data. Figures 4 and 5 show the displacement
responses at nodes 391 and 640, respectively. For the simula-
tion of a practical noisy measurement, the noisy response can
be expressed as

Yerr = rand(−1, 1) · std(Ycal) · lnoise + Ycal,

where Ycal and std(Ycal) represent the computer generated
response and its standard deviation, respectively. lnoise and
rand(−1, 1) represent the noisy level and a random number
between [−1, 1].

To investigate the reverse computing ability of Landweber,
the original conjugate gradient method (FRCG), and MCG,
different noise levels such as 5%, 10%, 20% and 50% are con-
sidered. The other parameters are: α = 6 and ε = 0.33. The
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Figure 2. The vertical concentrated sine load acting on the outside surface.
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Figure 3. The vertical concentrated triangle load acting on the outside surface.
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Figure 4. The corresponding vertical displacement response at node 391.

proposed algorithm is used to reconstruct the sine and trian-
gle loads. The performances of the traditional Landweber it-
eration regularization method, FRCG, and MCG will be com-
pared based on the following relative error

F̃ = ‖FReal − FIdentified
FReal

‖. (15)

and

FAverage =
1

n

n∑
i=1

∣∣FReal(i)− FIdentified(i)

max{Fj}
∣∣ ∗ 100; (16)
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Figure 5. The corresponding vertical displacement response at node 640.

where i = 1, 2, · · · , n, j = 1, 2.

As shown in Fig. 6, under the condition of 5% noise level,
Landweber, FRCG, and MCG make good performances in
identifying the dynamic force. Landweber’s and FRCG’s
performances are slightly worse than MCG’s. Their rela-
tive deviations are displayed in Fig. 7. It can be found
from these figures that Landweber’s and FRCG’s errors are
much greater than MCG’s, which shows the superiority of
MCG. Furthermore, as can be seen from Table 1, this con-
clusion can also be drawn. This is mainly due to the ad-
vantage of MCG. As shown in Table 1, most deviations of
Landweber and FRCG respectively mainly focus on the range
of 11.58%, 9.80%, while most deviations of MCG concen-
trate in the range of 10.84%. Furthermore, Landweber’s max-
imal deviation and average deviation in identifying the sine
force are 7.46%, 0.91%, respectively. FRCG’s maximal de-
viation and average deviation in identifying the sine force
are 9.80%, 2.46%, respectively. The average deviation and
maximal deviation of MCG in identifying the sine force are
0.88%, 5.22%, respectively. Additionally, this table also shows
that Landweber’s average and maximal deviation in trian-
gular force recognition are 0.79%, 11.58%, respectively, and
FRCG’s average and maximal deviation in triangular force
recognition are 1.58%, 8.30%, respectively. Those of MCG
are 0.76%, 10.84%, respectively. At the same time, the itera-
tive numbers of Landweber and FRCG are 49 and 26, respec-
tively, while the iterative number of the proposed method is 23.
In a word, these results above illustrate that the newly devel-
oped MCG method achieves good performance and gives sta-
ble, effective, and satisfactory results in reconstructing multi-
source dynamic loads. Therefore, at other different noise lev-
els, we just compare the performances of the proposed method
and the Landweber method in the next part.

As the noise level increases, the identified results slowly get
worse, which can be shown in Figs. 8, 9, 10. Their relative
deviations are respectively displayed in Figs. 11, 12, 13. It
is also noted that the identified results under different noise
levels are still good and also acceptable in engineering. These
results also show that the proposed algorithm has a powerful
identification ability.

As shown in Table 2, under 10% of noise level, most de-
viations of Landweber mainly focus on the range of 10.22%,
while those of MCG concentrate in the range of 9.56%. Ad-
ditionally, the maximum and mean error of Landweber are
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Table 1. The identified force at five time points at noise level 5%.

Landweber method MCG method FRCG method
Timepoint Realforce Identifiedforce Error (%) Identifiedforce Error (%) Identified force Error (%)

Sine 0.001 1000 977.21 2.28 1003.1 0.31 1006.9 0.69
Triangle 0.0006 480 497.29 2.16 492.91 1.61 468.48 1.44

Sine 0.003 -1000 -982.62 1.74 -979.9 2.01 -1037.5 3.75
Triangle 0.001 800 707.37 11.58 713.25 10.84 733.58 8.30

Sine 0.0045 707.11 709.79 0.27 707.68 0.06 756.17 4.91
Triangle 0.0016 320 309.59 1.30 312.52 0.94 300.1 2.49

Sine 0.0063 -453.99 -460.98 0.70 -448.52 0.55 -445.51 0.85
Triangle 0.0033 -560 -568.11 1.01 -569.87 1.23 -565.14 0.64

Sine 0.0073 -891.01 -896.88 0.59 -877.55 1.35 -861.86 2.91
Triangle 0.0038 -160 -135.04 3.12 -134.83 3.15 -157.41 0.32

Error (%) Maximum Average Maximum Average Maximum Average
Sine 7.46 0.91 5.22 0.88 9.80 2.46

Triangle 11.58 0.79 10.84 0.76 8.30 1.58
Iterative steps 49 23 26
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Figure 6. The identified sine and triangle force at noise level 5%; the number
of iterations: NLandweber = 49, NMCG = 23.

6.37%, 1.63%, respectively, and they are much greater than
those of MCG in identifying the sine force. Furthermore, the
maximal error and average error by MCG are 9.56%, 0.93%,
respectively, and they are less than those of Landweber in iden-
tifying the triangle force. Besides, the iteration number of
Landweber is 62, while that of MCG method is 30.

As shown in Table 3, under 20% of noise level, most devi-
ations of MCG concentrate in the range of 13.16%, which is
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Figure 7. The relative deviations for the identified sine and triangle force at
noise level 5%.

smaller than Landweber. Additionally, the average and maxi-
mal error of Landweber in identifying the sine force are 3.78%,
13.74%, respectively, which are greater than those of MCG
(3.32% and 13.16%, respectively). Moreover, in identifying
the triangle force, it can also be shown that the average and
maximal errors by Landweber are 2.16%, 8.98%, respectively,
while those of the present method are 1.76%, 10.21%, respec-
tively. However, the average error is less than that of Landwe-
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Table 2. The identified force at five time points at noise level 10%.

Landweber method MCG method
Timepoint Realforce Identifiedforce Error (%) Identifiedforce Error (%)

Sine 0.001 1000 1024.8 2.48 997.68 0.23
Triangle 0.0006 480 492.02 1.50 482.14 0.27

Sine 0.003 -1000 -993.7 0.63 -1041.2 4.12
Triangle 0.001 800 718.26 10.22 723.55 9.56

Sine 0.0045 707.11 689.39 1.77 730.58 2.35
Triangle 0.0016 320 330.82 1.35 305.01 1.87

Sine 0.0063 -453.99 -453.61 0.04 -455.63 0.16
Triangle 0.0033 -560 -587.92 3.49 -583.57 2.95

Sine 0.0073 -891.01 -886.26 0.48 -897.66 0.67
Triangle 0.0038 -160 -151.99 1.00 -147.24 1.60

Error (%) Maximum Average Maximum Average
Sine 6.37 1.63 5.13 1.46

Triangle 10.22 0.97 9.56 0.93
Iterative steps 62 30
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Figure 8. The identified sine and triangle force at noise level 10%; the number
of iterations: NLandweber = 62, NMCG = 30.

ber’s. At the same time, the iteration number of Landweber
is 102, while the iteration number of the proposed method
is 33.

Table 4 displays the identified performances of Landweber
and MCG in detail under 50% of the noise level. It shows
that most errors of the present method are less than Landwe-
ber, which owes to the stable and efficient identification of the
proposed algorithm. As shown in Table 4, most of Landwe-
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Figure 9. The identified sine and triangle force at noise level 20%; the number
of iterations: NLandweber = 102, NMCG = 33.

ber’s deviations mainly focus on the range of 32.69%, while
those of MCG concentrate in the range of 26.90%. Addition-
ally, Landweber’s maximum and mean deviations are 32.69%,
9.10%, respectively, much greater than those of MCG in iden-
tifying the sine force. Moreover, in the triangle force identifi-
cation, the average and maximal deviation of MCG are 4.81%,
and 15.27%, respectively, but MCG’s average deviation is less
than Landweber’s. Besides, Landweber’s iteration number
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Table 3. The identified force at five time points at noise level 20%.

Landweber method MCG method
Timepoint Realforce Identifiedforce Error (%) Identifiedforce Error (%)

Sine 0.001 1000 1005.7 0.57 915.48 8.45
Triangle 0.0006 480 476.16 0.48 468.07 1.49

Sine 0.003 -1000 -1028.1 2.81 -1069.2 6.92
Triangle 0.001 800 728.12 8.99 751.99 6.00

Sine 0.0045 707.11 666.44 4.07 664.08 4.30
Triangle 0.0016 320 282.81 4.65 273.89 5.76

Sine 0.0063 -453.99 -463.72 0.97 -488.94 3.50
Triangle 0.0033 -560 -591.35 3.92 -585.15 3.14

Sine 0.0073 -891.01 -932.21 4.12 -1000.9 10.99
Triangle 0.0038 -160 -130.6 3.68 -145.77 1.78

Error (%) Maximum Average Maximum Average
Sine 13.74 3.78 13.16 3.32

Triangle 8.98 2.16 10.21 1.76
Iterative steps 102 33
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Figure 10. The identified sine and triangle force at noise level 50%; the num-
ber of iterations: NLandweber = 120, NMCG = 38.

is 120, while that of the MCG method is 38. This further vali-
dates that the proposed method is much better.

4.2. A Composite Laminated Cylindrical
Shell

Now we will consider a composite laminated cylindrical
shell4 as shown in Fig. 14. We will identify the impact forces
acting on this structure by the proposed method. The mate-
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Figure 11. The identified sine and triangle force at noise level 50%; the num-
ber of iterations: NLandweber = 120, NMCG = 38.

rial properties of the carbon/epoxy and glass/epoxy are shown
in Table 5. The radial impact loads act on the outside sur-
face. The measured displacement responses are along the ra-
dial direction. One end of the shell structure is free, and the
other end is fixed. The arrow in Fig. 14 represents the action
point of impact loads. Similarly, as in Section 4.1, the noisy
responses with 10% of noise level are computed and displayed
in Figs. 15, 16. We reversely compute the impact loads acting
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Table 4. The identified force at five time points at noise level 50%.

Landweber method MCG method
Timepoint Realforce Identifiedforce Error (%) Identifiedforce Error (%)

Sine 0.001 1000 930.56 6.94 975.97 2.40
Triangle 0.0006 480 503.65 2.96 463.91 2.01

Sine 0.003 -1000 -1246.4 24.64 -875.46 12.45
Triangle 0.001 800 759.42 5.07 706.05 11.74

Sine 0.0045 707.11 778.07 7.10 571.92 13.52
Triangle 0.0016 320 286.88 4.14 301.42 2.32

Sine 0.0063 -453.99 -413.97 4.00 -449.66 0.43
Triangle 0.0033 -560 -491.92 8.51 -561.1 0.14

Sine 0.0073 -891.01 -863.44 2.76 -1082.8 19.18
Triangle 0.0038 -160 -130.02 3.75 -170.47 1.31

Error (%) Maximum Average Maximum Average
Sine 32.69 9.10 26.90 8.47

Triangle 14.07 5.07 15.27 4.81
Iterative steps 120 38
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Figure 12. The relative deviations for the identified sine and triangle force at
noise level 20%.

on the composite laminated cylindrical shell structure by the
Landweber, the original conjugate gradient method (FRCG),
and the MCG, and investigate their reverse ability under a noise
level of 10%. Additionally, their identified results will also be
compared by Eqs. (15) and (16).

As shown in Figs. 17 and 18, under the condition of 10%
of noise level, Landweber, FRCG, and MCG perform well in
identifying the impact loads. Their relative deviations are dis-
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Figure 13. The relative deviations for the identified sine and triangle force at
noise level 50%.

played in Figs. 19 and 20. It can be seen from these figures that
Landweber’s and FRCG’s error is much greater than MCG’s,
which shows the superiority of the MCG. As shown in Table 6,
most deviations of Landweber and FRCG mainly focus on the
range of 22.52%, 25.65%, while most deviations of the MCG
concentrate in the range of 20.2%. Furthermore, Landweber’s
maximal deviation and average deviation in identifying the first
impact force are 22.52%, 8.84%, respectively. FRCG’s maxi-
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Table 5. The material properties of composite laminated cylindrical shell.

Material properties of glass/epoxy and carbon/epoxy
Material constants E1 (GPa) E2 (GPa) G12 (GPa) v12 v23 ρ(gcm−3)

Glass/epoxv 38.49 9.367 3.414 0.2912 0.5071 2.66
Carbon/epoxy 142.17 9.255 4.795 0.3340 0.4862 1.90

Figure 14. The finite element model of composite laminated cylindrical shell.
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Figure 15. The corresponding radial displacement response.

mal deviation and average deviation in identifying the first im-
pact force are 25.65%, 8.38%, respectively. The average de-
viation and maximal deviation of MCG in identifying the first
impact force are 20.20%, 7.67%, respectively. Additionally,
this table also shows that Landweber’s and FRCG’s average
and maximal deviation in the recognition of the second impact
force are both larger than MCG’s. At the same time, the iter-
ative numbers of Landweber and FRCG are 160 and 108, re-
spectively, while the iterative number of the proposed method
is 90. Therefore, these results illustrate that the newly devel-
oped MCG method is stable and effective in reconstructing the
impact loads.
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Figure 16. The corresponding radial displacement response.
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Figure 17. The identified first impact load F1 at noise level 10%.
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Figure 18. The identified second impact load F2 at noise level 10%.
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Table 6. The identified impact force at five time points at noise level 10%.

Landweber method LMCG method LFRCG method
Timepoint Realforce Identifiedforce Error (%) Identifiedforce Error (%) Identified force Error (%)

Impact load F1 0.0005 0 76.20 7.62 22.71 2.27 -109.25 10.93
Impact load F2 0.0004 464.49 408.79 6.46 435.44 3.37 486.7 2.58
Impact load F1 0.006 1000 833.06 16.69 863.05 13.70 1156.8 15.68
Impact load F2 0.0016 861.97 836.04 3.01 857.81 0.48 904.58 4.94
Impact load F1 0.0122 78.22 3.16 7.51 11.88 6.63 66.24 1.20
Impact load F2 0.0026 738.58 701.87 4.26 746.47 0.92 839.36 11.69
Impact load F1 0.014 500 361.71 13.83 352.51 14.75 438.25 6.18
Impact load F2 0.0102 22.37 75.13 6.12 79.55 6.63 -26.59 5.68
Impact load F1 0.0169 0 31.56 3.16 6.26 0.63 187.36 18.74
Impact load F2 0.0126 5.95 2.33 0.42 59.35 6.20 -70.60 8.88

Error (%) Maximum Average Maximum Average Maximum Average
Impact load F1 22.52 8.84 20.20 7.67 25.65 8.38
Impact load F2 17.09 6.55 15.56 5.82 17.31 6.19
Iterative steps 160 90 108
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Figure 19. The relative deviations for the identified first impact load F1 at
noise level 10%.

5. CONCLUSION

Dynamic load identification is an important problem in prac-
tical structural engineering. The solution to this problem can-
not be directly dealt with by the traditional inverse matrix
method. In this paper, we have proposed a new fast convergent
conjugate gradient algorithm for the dynamic force reconstruc-
tion of an airfoil structure and a composite laminated cylindri-
cal shell. Numerical performances have shown that the pro-
posed algorithm is a powerful method for dynamic load iden-
tification.

6. ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (51775308), and the Open Fund of Hubei
key Laboratory of Hydroelectric Machinery Design and Main-
tenance (2019KJX12).

REFERENCES
1 Park, S., Choi, S., Oh, S.T., Stubbs, N. and Song,

H.C. Identification of the tensile force in high-tension
bars using modal sensitivities, International Journal
of Solids and Structures, 43(10), 3185-3196, 2006.
https://dx.doi.org/10.1016/j.ijsolstr.2005.06.089

0 0.005 0.01 0.015 0.02
0

2

4

6

8

10

12

14

16

18

 t/s

 %

Landweber Impact load F2

MCG Impact load F2

FRCG Impact load F2

Figure 20. The relative deviations for the identified second impact load F2 at
noise level 10%.

2 Lourens, E., Reynders, E., Roeck, G.D., Degrande,
G. and Lombaert, G. An augmented Kalman filter for
force identification in structural dynamics, Mechanical
Systems and Signal Processing, 27, 446–460, 2012.
https://dx.doi.org/10.1016/j.ymssp.2011.09.025

3 Lage, Y.E., Maia, N.M.M., Neves, M.M. and
Ribeiro, A.M.R. Force identification using the con-
cept of displacement transmissibility, Journal of
Sound and Vibration, 332(7), 1674–1686, 2013.
https://dx.doi.org/10.1016/j.jsv.2012.10.034

4 Wang, L.J., Liu, J.W., Xie, Y.X. and Gu, Y.T.
A new regularization method for the dynamic load
identification of stochastic structures, Computers and
Mathematics with Applications, 76, 741–759, 2018.
https://dx.doi.org/10.1016/j.camwa.2018.05.013

5 Wang, L.J., Xie, Y.X., Wu, Z.J., Du, Y.X. and He,
K.D. A new fast convergent iteration regularization
method, Engineering with Computers, 35, 127–138, 2019.
https://doi.org/10.1007/s00366-018-0588-4

6 Wang, L.J., Han, X., Liu, J. and Chen, J.J. An improved
iteration regularization method and application to recon-
struction of dynamic loads on a plate, Journal of Com-

130 International Journal of Acoustics and Vibration, Vol. 26, No. 2, 2021

http://dx.doi.org/10.1016/j.ijsolstr.2005.06.089
http://dx.doi.org/10.1016/j.ymssp.2011.09.025
http://dx.doi.org/10.1016/j.jsv.2012.10.034
http://dx.doi.org/10.1016/j.camwa.2018.05.013


L. J. Wang, et al.: A NEW CONJUGATE GRADIENT METHOD AND APPLICATION TO DYNAMIC LOAD IDENTIFICATION PROBLEMS

putational and Applied Mathematics, 235(14), 4083-4094,
2011. https://dx.doi.org/10.1007/s00366-018-0588-4

7 Naets, F., Cuadrado, J. and Desmet, W. Stable force
identification in structural dynamics using Kalman
filtering and dummy-measurements, Mechanical Sys-
tems and Signal Processing, 50–51, 235–248, 2015.
https://dx.doi.org/10.1016/j.ymssp.2014.05.042

8 Qiao, B.J., Zhang, X.W., Wang, C.X., Zhang, H. and Chen
X.F., Sparse regularization for force identification using
dictionaries, Journal of Sound and Vibration, 368, 71–86,
2016. https://dx.doi.org/10.1016/j.jsv.2016.01.030

9 Zhu, T., Xiao, S.N. and Yang, G.W. Force identifica-
tion in time domain based on dynamic programming, Ap-
plied Mathematics and Computation, 235, 226–234, 2014.
https://dx.doi.org/10.1016/j.amc.2014.03.008

10 Liu, J., Meng, X.H., Jiang, C., Han, X. and Zhang,
D.Q. Time-domain Galerkin method for dynamic
load identification, International Journal for Numeri-
cal Methods in Engineering, 105(8), 620–640, 2016.
https://dx.doi.org/10.1002/nme.4991

11 Jacquelin, E., Bennani, A. and Hamelin, P. Force recon-
struction: analysis and regularization of a deconvolution
problem, Journal of Sound and Vibration, 265(1), 81–107,
2003. https://dx.doi.org/10.1016/S0022-460X(02)01441-4

12 Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L.
Vehicle axle loads identification using finite element
method, Engineering Structures, 26(8), 1143–1153, 2004.
https://dx.doi.org/10.1016/j.engstruct.2004.03.017

13 Gunawan, F.E., Homma, H. and Kanto, Y. Two-
step B-splines regularization method for solving an ill-
posed problem of impact-force reconstruction, Jour-
nal of Sound and Vibration, 297(1–2), 200–214, 2006.
https://dx.doi.org/10.1016/j.jsv.2006.03.036

14 Zhu, X.Q. and Law, S.S. Moving load identification on
multi-span continuous bridges with elastic bearings, Me-
chanical Systems and Signal Processing, 20(7), 1759–1782,
2006. https://dx.doi.org/10.1016/j.ymssp.2005.06.004

15 Djamaa, M.C., Ouelaa, N., Pezerat, C. and Guyader, J.L.
Reconstruction of a distributed force applied on a thin cylin-
drical shell by an inverse method and spatial filtering, Jour-
nal of Sound and Vibration, 301(3–5), 560–575, 2007.

16 Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L.
Moving load identification on a simply supported
orthotropic plate, International Journal of Me-
chanical Sciences, 49(11), 1262–1275, 2007.
https://dx.doi.org/10.1016/j.ijmecsci.2007.03.005

17 Zhang, J.Y. and Ohsaki, M. Force identifica-
tion of prestressed pin-jointed structures, Comput-
ers and Structures, 89(23–24), 2361–2368, 2011.
https://dx.doi.org/10.1016/j.compstruc.2011.07.007

18 Xie, S.L., Zhang, Y.H., Xie, Q., Chen, C.H. and
Zhang, X.N. Identification of high frequency loads us-
ing statistical energy analysis method, Mechanical Sys-
tems and Signal Processing, 35(1–2), 291–306, 2013.
https://dx.doi.org/10.1016/j.ymssp.2012.08.028

19 Li, Z., Feng, Z. and Chu, F. A load identification
method based on wavelet multi-resolution analysis, Jour-
nal of Sound and Vibration, 333(2), 381–391, 2014.
https://dx.doi.org/10.1016/j.jsv.2013.09.026

20 Wang, T. Wan, Z. Wang, X. and Hu, Y. A novel state space
method for force identification based on the Galerkin weak
formulation, Computers and Structures, 157, 132–141,
2015. https://dx.doi.org/10.1016/j.compstruc.2015.05.015

21 Neubauer, A. On Landweber iteration for nonlinear ill-
posed problems in Hilbert scales, Numerische Mathematik,
85(2), 309–328, 2000. https://dx.doi.org/10.1515/jiip-
2015-0086

22 Wang, L.J., Cao, H.P. and Xie, Y.X. An Improved
Iterative Tikhonov Regularization Method for Solv-
ing the Dynamic Load Identification Problem, Inter-
national Journal for Computational Methods in Engi-
neering Science and Mechanics, 16(5), 292–300, 2015.
https://dx.doi.org/10.1080/15502287.2015.1080318

23 Jayalakshmi, V. and Rao, A.R.M. Simultaneous iden-
tification of damage and input dynamic force on the
structure for structural health monitoring, Structural
and Multidisciplinary Optimization, 55, 1–28, 2017.
https://dx.doi.org/10.1007/s00158-016-1637-5

24 Maes, K., Nimmen, K.V., Lourens, E., Rezayat, A., Guil-
laume, P., Roeck, G.D. and Lombaert, G. Verification
of joint input-state estimation for force identification by
means of in situ measurements on a footbridge, Mechan-
ical Systems and Signal Processing, 75, 245–260, 2016.
https://dx.doi.org/10.1016/j.ymssp.2015.12.017

25 Yuan, G., Lu, S. and Wei, Z. A line search algo-
rithm for unconstrained optimization, Journal of Soft-
ware Engineering and Applications, 3, 503–509, 2010.
https://dx.doi.org/10.4236/jsea.2010.35057

26 Zoutendijk, G. Nonlinear programming computational
methods, in: Abadie J. (Ed.) Integer and nonlinear program-
ming, North Holland, Amsterdam, 1970.

27 Liu, J., Han, X., Jiang, C., Ning, H.M. and Bai, Y.C. Dy-
namic Load Identification for Uncertain Structures Based
on Interval Analysis and Regularization Method, Interna-
tional Journal of Computational Methods, 8(4), 667–683,
2011. https://dx.doi.org/10.1142/S0219876211002757

28 Wang, L.J., Xu, L., Xie, Y.X., Du, Y.X. and Han,
X. A new hybrid conjugate gradient method for
dynamic force reconstruction, Journal Advances
in Mechanical Engineering, 11(1), 1–21, 2019.
https://dx.doi.org/10.1177/1687814018822360

29 Wang, L.J., Cao, H.P., Han, X., Liu, J. and Xie,
Y.X. An efficient conjugate gradient method and
application to dynamic force reconstruction, Jour-
nal of Computational Science, 8, 101–108, 2015.
https://dx.doi.org/10.1016/j.jocs.2015.03.008

30 Wang, L.J., Huang, Y., Xie, Y.X. and Du, Y.X. A
new regularization method for dynamic load iden-
tification, Science Progress, 103(3), 1–15, 2020.
https://dx.doi.org/10.1177/0036850420931283

International Journal of Acoustics and Vibration, Vol. 26, No. 2, 2021 131

http://dx.doi.org/10.1007/s00366-018-0588-4
http://dx.doi.org/10.1016/j.ymssp.2014.05.042
http://dx.doi.org/10.1016/j.jsv.2016.01.030
http://dx.doi.org/10.1016/j.amc.2014.03.008
http://dx.doi.org/10.1002/nme.4991
http://dx.doi.org/10.1016/S0022-460X(02)01441-4
http://dx.doi.org/10.1016/j.engstruct.2004.03.017
http://dx.doi.org/10.1016/j.jsv.2006.03.036
http://dx.doi.org/10.1016/j.ymssp.2005.06.004
http://dx.doi.org/10.1016/j.ijmecsci.2007.03.005
http://dx.doi.org/10.1016/j.compstruc.2011.07.007
http://dx.doi.org/10.1016/j.ymssp.2012.08.028
http://dx.doi.org/10.1016/j.jsv.2013.09.026
http://dx.doi.org/10.1016/j.compstruc.2015.05.015
http://dx.doi.org/10.1515/jiip-2015-0086
http://dx.doi.org/10.1515/jiip-2015-0086
http://dx.doi.org/10.1080/15502287.2015.1080318
http://dx.doi.org/10.1007/s00158-016-1637-5
http://dx.doi.org/10.1016/j.ymssp.2015.12.017
http://dx.doi.org/10.4236/jsea.2010.35057
http://dx.doi.org/10.1142/S0219876211002757
http://dx.doi.org/10.1177/1687814018822360
http://dx.doi.org/10.1016/j.jocs.2015.03.008
http://dx.doi.org/10.1177/0036850420931283

	Introduction
	THE CONSTRUCTION OF A NEW FAST AND EFFICIENT CONJUGATE GRADIENT ALGORITHM
	GLOBAL CONVERGENCE
	APPLICATION
	An Airfoil Structure
	A Composite Laminated Cylindrical Shell

	Conclusion
	Acknowledgements
	REFERENCES

