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In order to track the performance degradation trend accurately, a novel degradation feature extraction technique
is proposed based on improved base-scale entropy. A unified base scale is proposed and a new symbol standard
is defined to overcome the disadvantages of the base-scale entropy method, so as to symbolize signal amplitude
to characterize information amount under different degradation conditions quantitatively. A lifetime dataset of
rolling bearing from the IMS Bearing Experiment Center is introduced. For instance, analysis and some entropy-
based techniques including fuzzy entropy, approximate entropy and sample entropy are imported for comparison.
The results show that the improved basic-scale technique is able to characterize information amount of the signal
amplitude distribution, so that the characterizing performance degradation degree of bearing shows a proportional
relationship. When comparing the entropy-based techniques, the improved base-scale entropy technique has a
faster calculation speed and better algorithm stability.

1. INTRODUCTION

Rolling bearings are key supporting components for a gear-
box, motor and other equipment. Its overall health condition
directly influences the operating status of the equipment. Slow
performance degradation or sudden failure will occur under
the long-term influence of the operating environment,1 lead-
ing to downtime or even casualties. The degradation trend
will be tracked accurately if the vibration signals can be mon-
itored online and analyzed effectively. Also a foundation of
Condition-Based Maintenance ( CBM) is able to be utilized,
thus the safety and reliability of the equipments will be im-
proved.2

Feature extraction, known as the foundation of degradation
condition assessment, is the critical step of the CBM technique.
The main target for feature extraction is the mining health in-
dicator which is able to reflect the performance degradation
trend quantitatively and accurately. At present, linear analysis
methods based on time domain, frequency domain and time-
frequency domain analysis are widely used,3–5 some healthy
indicators are proposed including spectral kurtosis,6, 7 spectral
L2/L1 norm,8 kurtosis9 and so on. Considering the nonlinear
and non-stationary character of mechanical vibration signals,
the complexity analysis method based on entropy and fractal
dimension information is frequently employed in feature anal-
ysis of rotating machinery such as bearings and gears. In recent
years, these methods included: modified multi-scale symbolic
dynamic entropy,10 Local Mean Decomposition (LMD) sam-
ple entropy,11 multi scale permutation entropy,12, 13 morpho-
logical fractal dimension14, etc.

As a typical complexity analysis method, base-scale entropy

(BSE) is a typical non-linear analysis technique with the ad-
vantages of a simple calculation and strong anti-interference
ability. It is usually applied in an ECG signal analysis15, 16 cur-
rently. There are still some preliminary applications in the fault
diagnosis field.17, 18 As to the degradation feature extraction
field in this paper, there are relatively few studies. The reason
seems to be that indicators based on the BSE technique have
few relationships with the degradation trend, which means the
BSE value has no apparent increasing or decreasing tendency
when the degradation degree deepens, resulting in the difficulty
in describing the degradation degree accurately.

According to its disadvantages in the degradation feature de-
scription, the BSE technique is improved and named improved
base-scale entropy technique (IBSE) and proposed. A unified
base scale (abbreviated as BS0) is imported in IBSE for signal
amplitude symbolization to characterize information amount
of diverse degradation degree. The validity is analyzed using
the bearing lifetime data of the Intelligence Maintenance Sys-
tem (IMS) as the data source.

The paper is organized as follows: Section 2 introduces
some entropy-based techniques. Section 3 introduces improve-
ment of the base-scale entropy technique. In Section 4, the
technique is verified and the results are discussed. Finally, the
conclusion of this paper is given in Section 5.

2. BASIC THEORY

In this section, some entropy-based techniques are elabo-
rated for contrasting comparison in the following sections.
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2.1. Approximate Entropy
Approximate entropy can be used to measure the complexity

and irregular nature of the system. The measurement formula
is defined as ApEn(m, r, N), where m is the embedding di-
mension and r means the similarity tolerance, N represents the
number of time series points. Assuming that the original time
series are x(1),x(2),. . . ,x(N), the approximate entropy can be
calculated in the following steps:

(1) Converting time series to an m-dimensional vector as fol-
lows:

X(i) = [x(i), x(i+ 1), x(i+ 2), ..., x(i+m+ 1)],

1 ≤ i ≤ N −m+ 1. (1)

(2) Defining the maximum value of the absolute difference
between each vector as the distance d. For example, distance
between vectors X(i) and X(j) is defined as d[X(i), X(j)] as
follows:

d[X(i), X(j)] = maxk=1,...,m−1 |x(i+ k)− x(j + k)|
i ≥ 1, j ≤ N −m+ 1, i 6= j.

(2)

(3) When the similarity tolerance r is given, Mm(i) represents
vector x(i) meeting d[X(i), X(j)]<=r, and Cm

r (r) is defined as
follows for i=N-m+1.

Cm
r (i) =

Mm(i)

N −m+ 1
. (3)

(4) Calculating natural logarithm of Cm
r (i) and find the av-

erage value.

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
r (i). (4)

(5) Changing the above dimension from m to m+1, and re-
peating steps (1) to (4) to get Cm+1

r (i) and φm+1
i (i).

(6) Calculating the Approximate entropy as follows.

ApEn(m, r,N) = φm(r)− φm+1(r). (5)

2.2. Sample Entropy
The sample entropy is an improved algorithm of approxi-

mate entropy, which is able to determine the irregular degree
of time series in a certain dimension. The specific algorithm of
the sample entropy is as follows:

(1) Time series x(1), x(2),. . . ,x(N) are formed into m-
dimensional vectors.

Xm(i) = [x(i), x(i+ 1), ..., x(i+m− 1)];

1 ≤ i ≤ N −m+ 1. (6)

(2) Defining the largest difference among the vectors as dis-
tance d.

d[Xm(i), Xm(j)] = max |x(i+ k)− x(j + k)|
1 ≤ k ≤ m− 1; 1 ≤ i, j ≤ N −m+ 1, i 6= j.

(7)

(3) Given a threshold r, counting the number of d[xm(i),
xm(j)]<r (called the number of template matches), making a
ratio of the number and N-m-1as follows.

Bm
i (r) = 1

N−m−1num{d[Xm(i), Xm(j)] < r}
1 ≤ j ≤ N −m, j 6= i.

(8)

Calculating average value as follows.

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r). (9)

As shown above: Am
i (r) and Am(r) can be also calculated

following the formula.

Am
i (r) = 1

N−mnum{d[Xm+1(i), Xm+1(j)] < r}
1 ≤ j ≤ N −m, j 6= i.

(10)

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r). (11)

(4) The sample entropy of this sequence is calculated as fol-
lows:

SampEn(m, r,N) = lim
N→∞

{−ln[Am(r)/Bm(r)]}. (12)

The precise value can be estimated as follows when N takes
a finite value.

SampEn(m, r,N) = −ln[Am(r)/Bm(r)]. (13)

2.3. Fuzzy Entropy
On the basis of the sample entropy algorithm, the fuzzy en-

tropy is proposed and has the character of stable results and
strong noise resistance. The algorithm is as follows.

(1) Reconstructing the phase space of the sequence
{µ(i):1≤i≤N} into an m-dimensional vector where
i=1,2,. . . ,N-m

Xm
i = {µ(i), µ(i+ 1), ..., µ(i+m− 1)− µ0(i)}. (14)

µ(i) is defined as mean value as the following formula.

µ0(i) =
1

m

m−1∑
j=0

µ(i+ j). (15)

(2) Defining the largest difference between two vectors as
the distance dmij .

(3) Defining the similarity of the vectorsXm
i andXm

j based
on the fuzzy function.

Dm
ij = µ(dmij , n, r) = exp(−

dm
n

ij

r
). (16)

Among them, the fuzzy function is an exponential function,
and n represents the boundary gradient of the function, r means
the boundary width of the function.

(4) Defining the function as follows.

φm(n, r) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij ). (17)

(5) Repeating step 1 to step 4 above and generating an m+1
dimensional vector, the function is defined as follows.

φm+1(n, r) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j=1,j 6=i

Dm+1
ij ).

(18)
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(6) The fuzzy entropy can be calculated as follows.

FuzzyEn(m,n, r,N) = lim
N−∞

(lnφm(n, r)− lnφm+1(n, r)).

(19)

The precise value can be estimated as follows when N takes
a finite value.

FuzzyEn(m,n, r,N) = lnφm(n, r)− lnφm+1(n, r). (20)

2.4. Root Mean Square
The root mean square ( RMS) is also called the effective

value. Assuming the time series is x(1),x(2),. . . ,x(N), then the
root mean square of the series is calculated as follows:

Xrms =

√∑N
i=1X

2(i)

N
=

√
X2(1) +X2(2) + ... +X2(N)

N
.

(21)

3. IMPROVEMENT OF BASE-SCALE
ENTROPY

3.1. Base-Scale Entropy
The named base-scale entropy technique is able to describe

the complexity of time series19 and the principle is summarized
as follows.

Supposing u is a one-dimensional time series with length
N, it is transformed into an m-dimensional vector X following
phase space reconstruction firstly.

X(i) = [u(i), u(i+ L), ..., u(i+ (m− 1)L)]. (22)

In the formula above, m is the vector dimension and L rep-
resents delay factor meeting i+(m-1)L≤N. The value of L is
usually set as 1 and then X is a m*(N-m+1) structuring matrix.

Secondly, each m-dimensional vector in matrix X is se-
quentially symbolized to form an m-dimensional symbol se-
quence S.

Si(Xi) = {s(i), s(i+ L), ..., s(i+ (m− 1)L)}. (23)

In the formula above, s means the four symbols meeting s ∈
A : A = 0, 1, 2, 3 and the symbolic rules are as follows.

Si(Xi) =


0 : ū < ui+k ≤ ū+ a×BS
1 : ui+k > ū+ a×BS
2 : ū− a×BS < ui+k < ū
3 : ui+k ≤ ū− a×BS

. (24)

In the formula, parameter a is defined as a base scale pa-
rameter which is important to split the difference of the main
tendency and detail. Parameter u is the average value of the
ith m-dimensional symbol sequence. BS means the base scale
of the ith m-dimensional symbol sequence which is defined as
mean root value of the adjacent points. The calculation method
of BS is as follows.

BS(i) =

√∑m−1
j=1 [u(i+ j)− u(i+ j − 1)]2

m− 1
. (25)

Thirdly, the distribution probability P of different symbol
sequence is counted as follows in which π is some arrangement
mode of the symbol sequence with a maximum value of 4m.

The parameter t is the symbol vector’s serial number meeting
1≤t≤N-m+1, and # represents the count number of π.

p(π) =
#(ut, ut+1, ..., ut+m−1)

N −m+ 1
, 1 ≤ t ≤ N −m+ 1.

(26)

Finally, base-scale entropy of u is calculated as follows.

bse(m) =
−
∑
p(π)log2p(π)

log2(4m)
. (27)

In general, parameter m is set as integer between 3 and 7,
and the value of bse is proportional to the complexity of time
series.

3.2. Improved Base-Scale Entropy
In the calculation process of BSE technique, a×BS is intro-

duced as the symbol standard in formula (24), that means we
should calculate BS for each m-dimensional vector and choose
a proper parameter a for symbol sequence construction, which
will bring a huge calculation amount and instability factors.

The IBSE is introduced by changing the symbol standard
above. The calculation process of IBSE is summarized as fol-
lows.

Transforming time series into an m-dimensional vector X
following the phase space reconstruction firstly.

X(i) = [u(i), u(i+ L), ..., u(i+ (m− 1)L)]. (28)

Secondly, each m-dimensional vector is sequentially sym-
bolized to form an m-dimensional symbol sequence S as the
following standard in which parameter s meets s ∈ A : A =
0, 1, 2, 3, 4, 5.

Si(Xi) = {s(i), s(i+ L), ..., s(i+ (m− 1)L)}. (29)

Si(Xi) =


1, |u(i)| ≤ BS0

2, BS0 < |u(i)| ≤ 2×BS0

3, 2×BS0 < |u(i)| ≤ 3×BS0

4, 3×BS0 < |u(i)| ≤ 4×BS0

5, 4×BS0 < |u(i)|

. (30)

BS0 is the base scale for IBSE method in the formula above.
It is a fixed parameter during the whole computing process
compared with the BSE method in which a×BS is a variable
for each m-dimensional vector. The proposed IBSE technique
has advantages of a small calculation amount and strong anti-
noise ability.

On the basis above, the third and final step will be applied
and the improved base-scale entropy of u will be calculated as
ibse, the value of which describes the degradation degree.

4. INSTANCE ANALYSIS

In this section, we chose a typical lifetime vibration signal
of rolling bearing, extracting the degradation feature, calculat-
ing the health indicators based on BSE and IBSE techniques,
and analyzing the effect of the health indicators in describing
degradation degree.

International Journal of Acoustics and Vibration, Vol. 26, No. 1, 2021 43



Z. Chen, et al.: A NOVEL DEGRADATION FEATURE EXTRACTION TECHNIQUE BASED ON IMPROVED BASE-SCALE ENTROPY

Motor

Accelerometer Radial load Thermocouple

Bearing1 Bearing2 Bearing3 Bearing4

Figure 1. Schematic of accelerated test bench.
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Figure 2. Time domain waveform of lifetime dataset.

4.1. Bearing Lifetime Test
A rolling bearing lifetime dataset from the University of

Cincinnati’s IMS is introduced for instant analysis. The
schematic diagram of accelerated life test bench is shown in
Fig. 1.20

In the test bench, four sets of double-row cylindrical rolling
bearings are installed on the shaft, and the type is Rexnord
ZA-2115 with 16 rollers in each row. The rolling group pitch
diameter is 75.501mm and the rolling element diameter is
8.4074mm with pressure angle is 15.17◦. The speed of the
shaft ran at 2000 rpm and a radial load of 2721.554 kg is loaded
on the shaft by a spring device. Each bearing block is equipped
with two high-sensitivity PCB acceleration sensors to collect
vibration signals. The sampling frequency is 20kHz, the sam-
pling time of each group is 1s and sampling interval ran for ten
minutes, which means we will make a signal sampling every
ten minutes.

The test bench ran from 11:16:18 on February 12 to
06:22:39 on February 19, and it was found that 1# bearing was
faulty with an outer ring failure when the test stopped auto-
matically. A group of vibration signals was collected including
982 groups of sampling signals. The remaining 2#—4# bear-
ings are intact. The lifetime dataset is introduced for instant
analysis and the time domain waveform is shown in Fig. 2. It
was clear that the amplitude of the signal will increase with
the sampling time and the phased pattern was apparent. It was
necessary to extract a health indicator to describe the whole
degradation process quantitatively.

4.2. Vibration Signal Symbolization
In this section, part of the time-domain waveform was taken

as an example for symbolic analysis as seen in Eq. (30). The
parameter of BS0 is assumed as 0.1 in IBSE technique. The di-
vision of the original signal’s amplitude following the standard
grid is shown in Fig. 3(a), and the results of the symbolizations
are shown in Fig. 3(b).

It is clear that the signal amplitude is divided by
the standard grid with array [-4BS0,-3BS0,-2BS0,-
BS0,BS0,2BS0,3BS0,4BS0], and the symbolization results
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(b) The result of symbolization

Figure 3. Vibration signal symbolization.

ran a coarse distribution information of an original sequence.
According to the symbolization definition in Eq. (30), the
amplitude within the interval [-BS0, BS0] are uniformly
symbolized to 1 so that noise interference in the original signal
was able to be filtered out.

4.3. Parameters Influence Analysis
The two key parameters in the IBSE technique include BS0

and m. This section will discuss the influence on IBSE value
taking the 750th group in lifetime dataset as an example, the
waveform is shown in Fig. 4.

Considering that the value of BS0 was able to affect the capa-
bility of the fluctuating filtering components, in this paper, root
mean square (defined as S0) of the signal on initial normal con-
dition was adopted as the unit standard of the base scale. The
relationship between the calculated ibse750 and BS0 is shown
in Fig. 5.

It is apparent that the BS0 is inversely proportional to ibse750.
The larger the value of BS0, the lower the indicator’s value.
The main reason was that BS0 directly determines the symbol-
ization standard. The higher the base scale value, the fewer the
number of symbolized modes and smaller was the distribution
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Figure 4. Waveform of the 750th group.

0 0.8S0 1.2S0 1.6S0 2.0S0 2.4S0 2.8S0 3.2S0 3.6S0 4.0S0
BS0

0

0.1

0.2

0.3

0.4

0.5

0.6

ib
se

75
0

Figure 5. The correlation relation between BS0 and ibse750.

entropy. In order to maintain high distinction for the indica-
tor’s value during the entire degradation process, BS0 was set
as 1.5 times the root mean square of the first group sampling
signal in this paper, (1.5*S0).

The effect of parameter m on IBSE is shown in Fig. 6. The
larger the value of m, the higher the obtained IBSE value. The
value of IBSE tends to be stable when m>16.

However, the distinction of IBSE value will decrease during
some sensitive periods in the whole degradation process and
the calculation amount will increase rapidly. The comparison
of IBSE value when m=4 and m=16 is shown in Fig. 7. As a
result, in order to maintain a high distinction for IBSE value
during the entire degradation process considering the calcula-
tion amount and speed, parameter m is set as m=4 in this paper.

The effect on IBSE of the length of signal is shown in Fig. 8.
It was apparent that the signal length will not influence the
IBSE value, and it was not a key parameter for the IBSE tech-
nique.

4.4. Degradation Feature Extraction Based
on IBSE Technique

Extracting degradation features using the IBSE technique on
the lifetime dataset, the obtained IBSE degradation features are
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Figure 6. Correlation relation between m and IBSE.

0 200 400 600 800 1000
Time/group

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IB

SE
m=4
m=16

Figure 7. The comparison of IBSE value when m=4 and m=16.
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Figure 9. IBSE curve during the degradation process.
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Figure 10. BSE curve during the degradation process.

shown in Fig. 9. It was clear that the IBSE feature increased
as the degree of performance degradation deepened, while the
whole trend of BSE shown in Fig. 10 was opposite to that of
IBSE. Additionally, the IBSE curve shows apparent stages and
low volatility as seen below.

In summary, it is evident from the comparison that this tech-
nique has weak relation with degradation trend, and after the
improvement on the base scale and the symbolization standard,
the IBSE technique was able to clearly reflect the performance
degradation trend effectively.

The main reason for the opposite trend of IBSE and BSE
degradation features was as follows: in the calculation process
of the BSE technique, a×BS was important as the base scale
for each group for which the amplitude distribution character
was measured, so that the value of BS changed accordingly.
During the normal condition stage, the amplitude distribution
was uniform and the obtained BSE value was the highest. As
the degradation degree deepened, the impact and energy gradu-
ally increased and the amplitude distribution gradually became
uneven. The BSE value gradually decreased accordingly. Cor-
respondingly, the unified BS0 was used as the base scale in the
IBSE technique and the amplitude was symbolized based on

Table 1. Quantitative results of different techniques.

Index techniques Time(s) Variance
1 IBSE 0.049992 1.4331e-05
2 BSE 0.430447 4.3732e-05
3 RMS 0.012839 6.0416e-06
4 fuzzy entropy 0.933219 1.6280e-04
5 approximate entropy 0.674079 3.2514e-04
6 sample entropy 0.355605 8.2597e-04

BS0, which quantitatively measured the information amount of
all of the symbolized pattern distributions. It was found that
the deeper the performance degradation, the more balanced
the symbolization mode distribution. As a result, the value of
IBSE was higher.

4.5. Comparison
In this section, the commonly used entropy-based tech-

niques including approximate entropy, fuzzy entropy, sample
entropy and root mean square were introduced for comparison
with the IBSE technique proposed. Extracting degradation fea-
tures on the whole lifetime dataset and the degradation features
are shown in Fig. 11.

It is apparent that the value of entropy-based techniques is
inversely proportional to degradation degree, which means that
the deeper the degradation degree, the lower the value. The
proposed IBSE and the Root mean square degradation feature
reflect the amplitude distribution and energy accumulation re-
spectively, so that the value is proportional to the degradation
degree. The deeper the degradation degree is, the higher the
value will be. The physical explanation on the inverse trends
reveals that the entropy-based indicators are reflecting the en-
tropy of signal distribution under a different definition quan-
titatively, and the IBSE indicator measures the information
amount and energy accumulation so as to the RMS indicator.

At the time of the 500th group, the rolling bearing showed
a slight degradation tendency. At this time, sensitive changes
occurred on the curves of the approximate entropy, sample en-
tropy, fuzzy entropy, and the IBSE degradation feature, while
the RMS degradation feature failed to reflect the tendency sen-
sitivity because this indicator can only describe the statistical
character.

Quantitative comparisons of different techniques are shown
in Tab. 1. Average calculation time for each group and the
variance of curve’s stable interval [0,500] are imported as the
evaluation standards.

It is clear that the proposed IBSE technique has a faster op-
eration speed than the BSE technique and other entropy-based
techniques. The reason mainly is due to the unified symbolic
standard BS0 in the calculation process. Considering the sta-
bility, the IBSE technique is also superior to the entropy-based
technique. Although the RMS indicator has the best calcula-
tion speed and variance, it is not sensitive to the slight degra-
dation trend of the bearing performance.

As to the influence of parameters BS0 and m, the IBSE
curves at different BS0 are shown in Fig. 12 and the relation-
ship between the IBSE curves and parameter m is shown in
Fig. 13. It is evident that the parameters will not change the
whole evolution trend, which shows a certain stability of the
proposed technique.

5. CONCULUSION
Upon examining the shortcomings of the base-scale entropy

method including the lack of stability and slow calculation
speed, an improved base-scale entropy technique was proposed
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Figure 11. Comparison of different degradation features.
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and applied in the degradation feature extraction for rolling
bearings. The IMS lifetime dataset was introduced for veri-
fication. Some conclusions are as follows.

(1) Compared with the BSE algorithm, the improved base-
scale entropy was able to effectively describe the complexity
of signal symbol sequence. The stronger the signal stability,
the smaller the number of symbol patterns and the lower the
IBSE value were observed. Conversely, the observation was
made that the larger the number of symbol patterns, the larger
the value.

(2) By introducing a unified basic scale BS0, the algorithm’s
sensitivity to noise is able to be reduced and the calculation
speed is accelerated. This can effectively describe the chang-
ing trend of signal symbol patterns.

(3) The value of the IBSE feature will gradually increase
as health condition of the rolling bearing gradually degrades.
This means the proposed IBSE technique was able to track the
performance degradation process to a certain extent, which in
turn lays a foundation for an online degradation feature extrac-
tion.
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