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Residual Useful Life (RUL) prediction is a key step of Condition-Based Maintenance (CBM). Deep learning-based
techniques have shown wonderful prospects on RUL prediction, although their performances depends on heavy
structures and parameter tuning strategies of these deep-learning models. In this paper, we propose a novel Deep
Belief Network (DBN) model constructed by improved conditional Restrict Boltzmann Machines (RBMs) and
apply it in RUL prediction for hydraulic pumps. DBN is a deep probabilistic digraph neural network that consists
of multiple layers of RBMs. Since RBM is an undirected graph model and there is no communication among
the nodes of the same layer, the deep feature extraction capability of the original DBN model can hardly ensure
the accuracy of modeling continuous data. To address this issue, the DBN model is improved by replacing RBM
with the Improved Conditional RBM (ICRBM) that adds timing linkage factors and constraint variables among
the nodes of the same layers on the basis of RBM. The proposed model is applied to RUL prediction of hydraulic
pumps, and the results show that the prediction model proposed in this paper has higher prediction accuracy
compared with traditional DBNs, BP networks, support vector machines and modified DBNs such as DEBN and
GC-DBN.

1. INTRODUCTION

As the power source of the whole hydraulic system, hy-
draulic pump plays a pivotal role in the hydraulic system.1

The performance of the hydraulic pump directly affects the
safe operation of the whole system, so it is necessary to search
for a method to accurately realize residual useful life predic-
tion (RUL) prediction of the hydraulic pump.2 By virtue of
the remaining life prediction of the hydraulic pump, the sys-
tem failure caused by hydraulic pump failure can be effectively
avoided. At the same time, it can provide a favorable guaran-
tee for the targeted performance inspection plan and the main-
tenance strategy.3

Deep learning is a new research direction in the field of ma-
chine learning, which is developed on the basis of Artificial
Neural Networks (ANN). Deep belief network (DBN) is a clas-
sic deep learning model proposed by Hinton, the founder of
deep learning theory in 2006.4 DBN model is composed of
multiple Restrict Boltzmann Machines (RBMs). RBM con-
sists of two layers of neurons, a hidden layer and a visible

layer, which are fully and symmetrically connected between
layers, but not connected within layers. Using unsupervised
learning, each RBM is trained to encode in its weight matrix
a probability distribution that predicts the activity of the visi-
ble layer from the activity of the hidden layer. The advantage
of DBN rests on the unsupervised layer-by-layer pre-training
with the Contrastive Divergence (CD) algorithm, on which su-
pervised learning and inference can be efficiently performed.5

Compared with the traditional shallow learning model, DBN
has recently become a popular approach in machine learning
for its promised advantages such as fast inference and the abil-
ity to encode richer and higher order network structures.6 With
the development of machine learning, DBN has been success-
fully utilized in machine vision recognition,7 biometric detec-
tion,8 data prediction9 and so on. Roy et al.11 proposed a text
recognition method based on DBN and recurrent neural net-
work, which further improved the recognition accuracy. Mo-
hamed et al.12 proposed a voice recognition method based on
DBN, and used TIMIT data to verify that this method had bet-
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ter recognition effect. LEE et al.13 applied convolution DBN to
the field of image recognition. By compressing the input layer
data according to the probability index, the model has transla-
tion invariant property, and supports bottom-up and top-down
probabilistic inference.

DBN has achieved good application effect in the field of pat-
tern recognition10 and RUL prediction.23–25 Zhao et al. pro-
posed a fusion RUL prediction approach based on Deep Be-
lief Network (DBN) and Relevance Vector Machine (RVM)
where DBN is responsible for extracting degradation features
of Lithium-ion batteries.23 Zhang et al. proposed a remain-
ing useful life estimation model based on multi-objective deep
belief networks ensemble.24 Sun et al. proposed a deep be-
lief echo-state network (DBEN) model to address the issue
of slow convergence and local optimum.25 Compared with
the traditional shallow learning method, DBN can train the
model through bottom-up layer by layer learning, and then ap-
ply top-down feedback learning to adjust the parameters of the
model, so as to realize fast and effective independent learning
of data. For high-dimensional degradation characteristics of
the hydraulic pump, the DBN model can learn and extract the
deep correlation information in the input characteristics, retain
key features of information at the same time effectively and
reduce the interference of high-dimensional degradation char-
acteristics contained in the component. The complicated im-
plicit function approximation has a very good effect, thus the
DBN model is very suitable for application to the hydraulic
pump fault prediction field. However, using data discretization
method to extract feature data leads to the limited ability of
DBN gradient descent, which limits the application of DBN to
the prediction of temporal data to some extent. To solve this
problem, Taylor22 put forward the Conditional Restrict Boltz-
mann Machine (CRBM) on the basis of RBM. CRBM can ef-
fectively utilize the temporal association information of the in-
put data by adding the temporal join factor, so the DBN model
can deal with the prediction of time series data stably.13 Zhang
et al.14 applied CRBM to forecast stock data and get better
prediction results. Chen et al.15 proposed a continuous RBM
to predict water quality parameters in the Huai River and ob-
tained good results.

Although CRBM has increased the application of temporal
association information, there is still a lack of constraints be-
tween the CRBM hidden layers, which makes it difficult for
the DBN model to extract the depth association features in the
input data and affects the prediction results.16 To solve this
problem, we added constraint variables between the hidden
layer units on the basis of CRBM to adjust the activation prob-
ability between the hidden layers, and optimized the training
process of CRBM. A novel RUL prediction model based on
the ICRBM-DBN was established as a result. In order to ver-
ify the prediction accuracy of the ICRBM-DBN model for the
time series data, performance of the ICRBM-DBN model is
evaluated on the whole lifetime data of hydraulic pumps. The
experimental results show that the proposed method is feasi-
ble and compared with the RBM-DBN, BP neural networks
and Support Vector Machine (SVM), the predicting accuracy

Figure 1. The structure of DBN model.

is satisfactory, which is able to meet the requirements of CBM.
The structure of this article is organized as follows. In Sec-

tion 2, the basic theory and mathematical formulas of DBN are
introduced in detail. In Section 3, the RUL prediction model
based on ICRBM-DBN is proposed to improve the accuracy
of prognostics. In Section 4, the performance of the proposed
approach is shown on the whole lifetime vibration data of hy-
draulic pump. In Section 5, conclusions are noted.

2. DEEP BELIEF NETWORK

DBN proposed by Hinton et al. is the most widely used in
deep learning. DBN is composed of an input layer, a middle
layer and an output layer, in which the middle layer is com-
posed of multiple RBMs,17 the network structure of DBN is
shown in Fig. 1. Figure 1 is a typical DBN model consisting of
three layers of RBMs. RBM is a typical energy model consist-
ing of visible and hidden layers.18 The first input layer vi can
be regarded as the visual layer of RBM1, and the hidden layer
hi together constitute the first layer RBM. RBM1 extracts the
corresponding information from the visual layer and passes it
to the hidden layer of RBM1. At this time, the hidden layer of
RBM1 can be seen as the visual layer of the next RBM. Then,
the data of the RBM2 visual layer can be further extracted and
passed to the hidden layer of RBM2, and so on, the last hidden
layer of RBM is the output data of the DBN model. Thus, a
DBN model consisting of multi-layer RBMs is implemented.

RBM is the core of the DBN model. It is a kind of energy
model that obtains the dependencies between input parame-
ters by associating the input parameters with a suitable energy
function. For the energy models, the magnitude of energy is
inversely proportional to the probability of combinations of
parameters. This means that if a combination of parameters is
considered to have a greater probability of rationality, it should
also have a smaller energy. Therefore, for the given set of pa-
rameter data, the configuration combinations of the parameters
that minimize the corresponding energy values are obtained by
training the model continuously.
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Assuming that m and n are respectively the unit numbers of
the hidden layer h and the visual layer v, where hi and vj are
the ith unit vectors of the hidden layer and the jth cell vectors
of the visual layer respectively. The probability distribution of
the hidden layer element hi can be defined as:

P (hi = 1|ν) = sigmoid

 vis∑
j=0

Wijνj + bi

 ; (1)

where, sigmoid = 1
1+e−x , Wij is the weight matrix between

the hidden layer element and the visual layer element, bi is
the offset of hidden layer elements. In Eq. (1), the activation
probability of the hidden layer elements is modeled according
to the S type by the sigmoid function, and Wij is constantly
updated based on the input data. The probability distribution
of the visual layer element is determined by the hidden layer
data, and its probability distribution is defined as:

P (νj = 1|h) = sigmoid

(
hid∑
i=0

Wijhi + cj

)
; (2)

where, cj is the offset of the visual layer element. According
to the above probability distribution, the joint probability dis-
tribution between the hidden layer and the visual layer can be
defined as:

p(ν, h) = exp(−E(ν, h))/Z; (3)

where, Z =
∑
ν,h exp(−E(ν, h)) is a normalized function,

the RBM energy function can be defined as:

E(ν, h)=−
vis∑
j=1

hid∑
i=1

Wijνjhi−
vis∑
j=1

cjνj−
vis∑
i=1

bihi; (4)

In Eq. (4), E(ν, h) is the system energy of the RBM. Ac-
cording to the energy model theory, when the model energy is
the minimum, the RBM is the most stable. Therefore, the opti-
mal parameters of the RBM model can be obtained by solving
the minimum value of E(ν, h).

In training RBM, the method of calculating the minimum
gradient for the log likelihood function is usually used to solve
the DBN model parameters, the RBM weight update model is
defined as:

∆wij=Edata(νjhj)−Emodel(νjhi); (5)

where,Edata(νjhi) is the energy value expectation of train-
ing samples, Emodel(νjhi) is the expectation defined by the
model. In the process of solving minw(−lgP (ν, h)), due to
the existence of normalization factor, its computational com-
plexity is high, and it is difficult to accurately solve the DBN
model parameters. Hinton proposed an approximate solution
called the Contrastive divergence (CD) algorithm. The CD
algorithm calculates the model parameters by single-step or
multi-step Gibbs (Gibbs Chain) sampling, completes the above
two expectations updates, and achieves the fast learning of
RBM.

In summary, the DBN model is trained by greedy algorithm
layer by layer, and the training process of DBN model is shown

Figure 2. The training process of DBN model

in Fig. 2. First of all, RBM in the first layer uses CD algo-
rithm to train the input feature data, and the model parame-
ters of RBM in the first layer are obtained. Then, the hidden
layer of RBM in the first layer is used as the visual layer of
the next RBM, and continues to train until the top of the DBN
model. Finally, the DBN model uses the labeled input charac-
teristic data to reverse trimming model parameters, and opti-
mizes the model parameters by supervised training. When the
model output error is less than a predetermined threshold, the
model training is completed.

3. THE THEORY OF ICRBM-DBN

3.1. ICRBM

Since RBM cannot effectively utilize the temporal associa-
tion information in time-series data, the gradient descent abil-
ity of RBM is limited. This limits the application of the RBM-
DBN model in the prediction of time-series data. On the ba-
sis of RBM, Montufar proposed a CRBM based on RBM.19

CRBM is an extension of RBM, which inherits many good fea-
tures of RBM, including simple reasoning process and effec-
tive training process, and the structure of CRBM is shown in
Fig. 3. In CRBM, two kinds of connections are added to share
temporal association information in time-series data. One kind
of connections are the autoregressive connections between the
visual layer of the previous n time RBM and the current RBM
visual layer. The other kind of connection is the autoregressive
connections between the visual layers of the previous n time
RBM and the current RBM hidden layer.

By adding the above two kinds of connections, CRBM can
make full use of the temporal association of the input data and
improves the ability to deal with the time-series data. However,
there is a lack of connection between each CRBM hidden layer
units, which results in an unstructured weight model for the
DBN model. This problem affects the prediction accuracy of
the DBN model. To overcome this problem, a constraint vari-
able between the CRBM hidden layers is added to adjust the
activation probability between the hidden layers and optimize
the training process of the CRBM. The new improved CRBM
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Figure 3. The structure of CRBM.

Figure 4. The structure of ICRBM.

is also called ICRBM, and its structure is shown in Fig. 4.
In Fig. 4, each CRBM visual layer unit has and addition of

constraint variable (represented by a star). By the constraining
variables, the ability to connect and pass information between
the units in the same layer is accomplished. In addition, the
constraint variable of each unit is connected to the correspond-
ing unit in the hidden layer. In the course of ICRBM training,
each constraint variable can transfer information to other units
of the same layer, change the weights of the variables of other
units, and finally achieve the purpose of optimizing the output
of the DBN model.

3.2. The Update Rules of ICRBM
ICRBM is composed of three layers based on a history layer,

a current layer, and a hidden layer. As can be seen from Fig. 3,
the visual unit of historical frame can be connected to the vi-
sual layer and the hidden layer of the target frame via the au-
toregressive model (AR). The input value of the previous n
visual units can be regarded as a supplementary input to the
current visual unit, which directly affects the dynamic updat-
ing of the offsets in the current visual unit and the hidden unit.
The update formulas are defined as:

b nowi=bi+
∑
k

hid∑
q

αt−qki ν
t−q
k ; (6)

c nowj=cj+
∑
k

hid∑
q

βt−qkj νt−qk ; (7)

where, b nowi is the dynamic offset of the ith hidden layer
unit, c nowj is the dynamic offset of the jth visual layer unit,
αkit−q is the connection weight between the visual layer unit of
t− q frame and the hidden layer unit of the target frame, βkjt−q
is the connection weight between the visual layer unit of t− q
frame and the visual layer unit of the target frame.

In the framework of ICRBM, an additional constraint vari-
able is added to each visual layer units, and implicit output
layer units have been connected with the visual layer unit cross
variables, while the variables will cross layer unit to transmit
information to the visual units of the same layer. When the out-
put of the hidden layer element is higher than the set threshold,
the constraint variable g1 of the unit is activated, and then the
information is passed to the adjacent constraint variable g2. At
this point, when the output of the hidden layer unit correspond-
ing to the variable g2 has exceeded the threshold, the constraint
variable g2 is activated and the information continues until the
last cell is passed. In order to simplify the computation, the
direction of signal transmission is set to one-way transmission.
The update rules for the hidden layer unit is defined as:

hi=sigmoid(h′i+a×gi); (8)

where hi is the updated output of hidden layer, gi is a constraint
variable, a is a tune parameter which requires manual settings
to control the effect of horizontal variables on the output of the
ICRBM. The larger a is the greater the impact is on the hidden
layer, and vice versa. The original output h′i of the hidden layer
can be defined as:

h′i=
∑
j

Wijνj+b nowi; (9)

where Wij is the weight matrix between the hidden layer unit
and the visual layer unit, νj is the state of the visual layer unit,
and b nowi is the dynamic offset of the hidden layer unit. In
order to improve the training speed of ICRBM, this paper uses
the activation probability of each unit as the output value di-
rectly. The constraint variable gi is defined as:

gi(t)=

{
1, (h′i > θ ∪ gi−1(t− 1) = 1)

βgi(t− 1), else;
(10)

where θ is the threshold of hidden layer output and β is the
attenuation factor. Once the output of the hidden layer reaches
the set threshold or the previous constraint variable is acti-
vated, the constraint variable of the unit is activated, and the
signal is passed to the next constraint variable. Otherwise, the
constraint variable is not activated and the weight is gradually
attenuated.

3.3. DBN Constructed by ICRBMs
DBN prediction methods are generally divided into static

multi-step prediction method and dynamic multi-step predic-
tion method. The static multi-step prediction method, after
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each prediction, only updates the predicted data according to
the prediction results, and does not update the input data. It
is easy to cause the superposition of prediction errors and af-
fect the prediction accuracy. The dynamic multi-step predic-
tion method not only predicts the data according to the pre-
diction results, but also updates the input vectors of the pre-
diction model by using the predicted data. This ensures the
dynamic adaptation of the model and improves the prediction
accuracy. Therefore, this paper uses dynamic multi-step pre-
diction method to construct DBN prediction model, and the
procedures are detailed in the following.

(1) Initialize connection weights W , learning speed ε and
constraint variable g;

(2) According to the training rule of ICRBM, calculate the
Edata(νjhi) and p(ν, h) until the gradient ofEdata(νjhi)

is less than the set threshold, and stop calculating;

(3) Take the hidden layer of ICRBM1 as the visual layer of
ICRBM2 in the next layer and repeat the step (2) until the
ICRBM training of the last layer is completed. The output
of the last layer of ICRBM is the crude predictive value
of the DBN model;

(4) Update the ICRBM weights until the MSE is less than the
set threshold, and the ICRBM-DBN is trained; and

(5) Make a prediction by the trained ICRBM-DBN based
upon the dynamic multi-steps strategy.

4. RUL PREDICTION BASED ON ICRBM-
DBN

4.1. Prediction Process and Key Steps

There are mainly five steps in the process of RUL predic-
tion for hydraulic pumps, including full life data collection,
feature extraction and preprocessing, selection of training sam-
ples and testing samples, parameter optimization and ICRBM-
DBN model training, ICRBM-DBN prediction and evaluation
as follows.

(1) Full life data collection. Several full life tests of hydraulic
pumps are conducted on our full life test platform and sev-
eral sets of experimental data such as vibration, oil flow,
volumetric efficiency.

(2) Feature extraction and preprocessing. The vibration data
is analyzed by bispectrum and 15 bispectrum entropy fea-
tures corresponding to 15 different frequency bands are
extracted and normalized into [0, 1].

(3) Sample Selection. One hundred sets of vibration data and
volumetric efficiency in the slow degradation stage are
taken as the training data and 40 sets of vibration data
and volumetric efficiency in the rapid degradation stage
are taken as the testing data.

(4) Parameter optimization and ICRBM-DBN model training.
Three kinds of error indexes are applied to optimize the
model parameters and full life data of hydraulic pumps
are applied to train the ICRBM-DBN model. The stacked
ICRBMs are learnt forward unsupervisedly and then the
back fine tuning is conducted supervisedly.

(5) ICRBM-DBN prediction and evaluation. Fifteen bispec-
trum entropy features are taken as the input data. The
volumetric efficiency is taken as the output label data.
Forty data samples are tested to predict the next 40 groups
of volumetric efficiency. The critical moment when the
volume efficiency is less than 85% is taken as the fail-
ure point of hydraulic pumps. The time difference be-
tween the predicted failure point and the real failure point
is taken as the prediction error.

4.2. Full Life Data Collection
In order to verify the effectiveness of the method proposed

in this paper, the ICRBM-DBN is applied in the RUL predic-
tion of hydraulic pumps. The whole lifetime data of hydraulic
pump used in this paper comes from the hydraulic pump full
life test platform, which is shown in Fig. 5. The hydraulic
pump tested is L10VSO28DFR, which has 9 pistons. A new
hydraulic pump is taken for full life degradation experiment
under the accelerated condition where the settled pressure is
27 MPa and the speed is 2780 rp·min-1. The signals are sam-
pled and stored by the cDAQ-9171 system of NI Corporation.
The sampling frequency is 10 KHz and the sampling time is
1 s. The interval time is 20 min. The volumetric efficiency η
is taken as the evaluation parameter of the hydraulic pump.20

When the volume efficiency is less than 85%, the hydraulic
pump is judged to fall into the failure state, and the experi-
mental platform is automatically stopped. In this paper, a new
hydraulic pump is used to conduct full life test and obtain the
whole lifetime data. When the operating time is 575 h, η is less
than 85%. The hydraulic pump is judged to be totally invalid
by the control system and the experimental operating is shut
down automatically. After the experiment, the tested pump is
disassembled, and it is clear in Fig. 6 that the failure mode is
severe loose slipper.

4.3. Feature Extraction and Preprocessing
In order to obtain the feature that can reflect the degra-

dation state of the hydraulic pump accurately, bispectrum
analysis21 of vibration signals is carried out in this paper,
and the bispectrum entropy of different frequency bands is
extracted as the prediction feature. Considering that the
characteristics frequency of the vibration signal are mainly
within 3 KHz, the bispectral entropy in the frequency bands
([0, 200), [200, 400), . . . , [2800, 3000]) are taken as the 15 pre-
diction features in total.26 The DBN model constructed in this
paper takes the 15 prediction features as the input layer vector
of this model, and the hydraulic pump volume efficiency is the
output layer vector. First of all, in order to reduce the predic-
tion error of DBN prediction model, the 15 prediction features

International Journal of Acoustics and Vibration, Vol. 25, No. 3, 2020 377



H. Yu, et al.: A NOVEL DEEP BELIEF NETWORK MODEL CONSTRUCTED BY IMPROVED CONDITIONAL RBMS AND ITS APPLICATION IN. . .

Figure 5. Hydraulic Pump Full Life Test Platform.

Figure 6. Failure of loose slipper.

need to be normalized, and the normalized formula is shown
in Eq. (11):

x̃ =
x− xmin

xmax − xmin
. (11)

4.4. Parameter Optimization and ICRBM-
DBN Model Training

In order to better evaluate the results of the model, the root
mean square error (RMSE), the mean relative error (MRE) and
the mean absolute error (MAE) are used as the accuracy eval-
uation indexes. These three evaluation indexes can accurately
and comprehensively analyze the prediction accuracy and sta-
bility of the ICRBM-DBN prediction model.

In this paper, the depth of ICRBM-DBN prediction model is

Figure 7. The prediction error of different numbers of hidden units.

Figure 8. The prediction error of different numbers of previous frames.

set to 3 layers, in which the visual layer unit is set to 15. At
present, there are no explicit standards for the number of hid-
den layer units. We use RMSE, MRE and MAE as evaluation
criteria to determine the number of hidden layer units through
experiments. As can be seen from the Fig. 7, when the number
of hidden layer units is 12, the model prediction error is the
smallest. In Fig. 8, the effect of different previous frame num-
ber on prediction accuracy is analyzed. When the number of
previous frames is 3, the model prediction error is the smallest.
The experimental result shows that, when the previous frame
number exceeds 3, the prediction error is not reduced but in-
creased with the increase of previous frames. This is because
the original vectors near the target frame have similar informa-
tion, while the farther input vectors cannot effectively evaluate
the current target vectors, resulting in error accumulation.

In the ICRBM-DBN model, the stability of the prediction
model is often determined by the selection of learning rate. If
the value is large, the prediction error of the model increases
dramatically; if the value is small, the learning ability of the
model is poor. In order to guarantee the stability of the pre-
diction model, we calculate the prediction error of the model
under different learning rates, as shown in Table 1. In the table,
when the learning rate is less than 0.001, the prediction accu-
racy is very limited, while the training speed will decline a lot.
Therefore, we will set the model learning rate as 0.001.
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Table 1. The prediction errors of different learning rates.

Learning rates RMSE MAE MRE
0.1 0.0612 0.0536 0.1328

0.05 0.0524 0.0467 0.1047

0.01 0.0482 0.0421 0.0962

0.005 0.0421 0.0385 0.0812

0.001 0.0364 0.0316 0.0738

0.0005 0.0486 0.0412 0.1084

0.0001 0.0401 0.0306 0.0753

Figure 9. The predicting results by ICRBM-DBN.

4.5. ICRBM-DBN Prediction and Evaluation
In this paper, the volumetric efficiency η is taken as the eval-

uation parameter of the hydraulic pump and the threshold is
settled as 85%. Considering the failure mechanism and the
fluctuation tends to curve, the whole changing process of the
volumetric efficiency has been divided into several statuses.
During η ≥ 95%(0 − 145 h), the part is the normal status
(F1); During 95% > η ≥ (145 h − 312 h), the part is initial
degradation stage (F2); During 93% > η ≥ (322 h− 510 h),
the part is slow degradation stage (F3); During 87% > η ≥
(510 h − 575 h), the part is rapid degradation stage (F4). In
the experiment, the degradation of hydraulic pump has conti-
nuity and consistency in F3 and F4. However, there are more
data samples in F3 and the model training needs enough data
samples, so the training samples are selected from the stage of
F3, and the testing samples are selected from the stage of F4.
The threshold is settled according to the 1619th sample, which
is considered as the occurrence time of failure. The prediction
results are shown in Fig. 9 and Fig. 10.

Fig. 9 shows the results predicted by ICRBM-DBN. The
predicting series by the ICRBM-DBN coincide with the real
data and the errors are relatively small. The predicting algo-
rithm reaches the threshold in the 39th sample and the affir-
mation of failure is verified. Therefore, the error of the RUL
prediction is 1 data point, which is 20 min. Fig. 10 shows
the results predicted by RBM-DBN. The predicted curves are
basically consistent with the actual values, and can basically
reflect the actual trend of degradation. And after the 38th sam-
ple, the algorithm reaches the threshold. The error of RUL is 3

Figure 10. The prediction results by RBM-DBN.

Figure 11. The prediction results by BP neural network.

Figure 12. The predicting results by SVM.

data points, which is 60 min., the prediction accuracy of RBM-
DBN is lower compared with ICRBM-DBN. This is mainly
due to the inability of RBM to utilize temporal association in-
formation when processing sequential data, resulting in limited
gradient descent capability. ICRBM-DBN based on the CD
model improves the gradient descent ability and gets higher
prediction accuracy. For further indication of the advantages
of the proposed method, based on the same training data and
predicting data, the BP neural network and SVM method are
taken for comparison. Results are shown in Fig. 11 and Fig. 12.

Fig. 11 and Fig. 12 show the results predicted by the BP neu-
ral network and SVM method. The shallow learning methods
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Figure 13. The prediction result by DBEN.

Figure 14. The prediction result by GC-DBN.

cannot accurately extract the deep correlation information of
input data, and has the problem of overfitting. Therefore, the
errors between the predicted data and the real data are obvious,
and the prediction curves cannot accurately fit the degradation
process of the hydraulic pump. The prediction curves are al-
most a straight line, and the failure time of the hydraulic pump
cannot be predicted accurately, especially after the 30th sam-
ple.

To further demonstrate good performance of ICRBM-DBN,
two modified DBN models are applied to the same RUL pre-
diction task. One model is the deep belief echo-state network
(DBEN) proposed by Sun et al. in 2017.25 Another model is
a new deep belief network based on RBM with glial chains
(GC-DBN) proposed by Geng et al. in 2018.27 The prediction
results are shown in Figs. 13–14.

For further quantitative evaluation, the Root Mean Square
Error (RMSE), the Mean Relative Error (MRE) and the Mean
Absolute Error (MAE) are selected as the evaluation indexes.
The results of the above 3 methods are shown in Table 2.

Table 2 shows that the prediction accuracy of the proposed
deep learning method is obviously better than the shallow
learning methods. The ICRBM-DBN model proposed in this
paper has the highest prediction accuracy, and the final predic-
tion error is only 20 min, which meets the needs of CBM.

We have carried out several life tests for hydraulic pumps

Table 2. The prediction results by different algorithms.

Algorithms RMSE MAE MRE Error of RUL
prediction

ICRBM 0.023 0.046 0.078 20 min
RBM-DBN 0.032 0.062 0.107 40 min

BP neural network 0.136 0.104 0.173 120 min
SVM 0.186 0.1232 0.184 Failed

DBEN 0.027 0.042 0.084 60 min
GC-DBN 0.075 0.136 0.187 180 min

Figure 15. Pistons inside the failed pump.

of the same type while relying on the hydraulic pump life test
platform. The failure mode varies from loose slipper fault to
slipper wear fault. We utilized another full life dataset acquired
from slipper wear fault which has been shown in Fig. 15 and
Fig. 16.

The full life time is 30630 min. The sampling period is
10 min, and there are 3063 sets of data in the whole life of
the hydraulic pump. The starting point is set as the 3020th set
of data, and the failure point the 3063rd set of data. The pre-
diction result of the proposed method is shown in Fig. 17. The
predicted trend is consistent with the real trend and the predic-
tion error is only one data point. That means the RUL predic-
tion error is only 10 min. The satisfactory result demonstrates
good applicability of the proposed method.

5. CONCLUSIONS

This paper proposes a novel prediction method called
ICRBM-DBN based on deep belief network theory for the
RUL prediction of hydraulic pumps. In order to improve the
capability of deep belief network and increase the prediction
accuracy, the conditional RBMs, serving as the core of the im-
proved DBN model, are added with timing linkage factors and
constraint variables between the same layers. And the updat-
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Figure 16. The comparison between the failed piston and a normal piston.

Figure 17. The prediction result by ICRBM-DBM.

ing rule of ICRBM is also discussed in detail. The bispectrum
entropy features of different frequency bands supply enough
degradation information to reflect and predict the health state
of the hydraulic pump which is indicated by the index of volu-
metric efficiency. The experiment results and the comparisons
are concluded as follows:

(1) The proposed ICRBM model solves the problems of the
traditional RBM model such as inability to extract deep
features and limited gradient descent.

(2) A new prediction model, ICRBM-DBN, is constructed
by multiple ICRBMs under the improved updating rule
of CRBM. Experimental results and comparisons show
that the proposed prediction model of ICRBM-DBN can
achieve a better prediction accuracy compared with the
original RBM-DBN, BP neural network, SVM and modi-
fied DBNs such as DEBN and GC-DBN when conducting
RUL prediction of hydraulic pumps; and

(3) The proposed method provides a useful tool for residual
useful life prediction and the prediction accuracy is ac-
ceptable for the requirements of CBM.
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