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As critical components, rolling bearings are widely used in a variety of rotating machinery. It is necessary to
develop a suitable fault diagnosis method to prevent malfunctions and breakages of bearings during operation.
However, the current methods for the fault diagnosis of rolling bearings are too cumbersome to be applied in
practical engineering. In addition, the working condition of rolling bearings is generally tough, complex, and
especially variable. These conditions cause fault diagnosis methods to be less effective. This paper aims to provide
a simple and effective method for the fault diagnosis of rolling bearings under variable conditions. The main
contribution of this paper is as follows: (1) The refined composite multiscale fuzzy entropy (RCMFE) is applied
in bearing fault feature extraction because of its simplicity and high efficiency; (2) The improved support vector
machine (ISVM), based on the whale optimization algorithm (WOA), is proposed to identify the fault pattern
of rolling bearings. The ISVM is proposed in this paper to solve the problem that parameter setting affects the
classification effect of SVM. In the ISVM, the WOA is employed to optimize both the regularization and kernel
parameters of the SVM. Compared with the traditional optimization methods, the WOA has the advantages of
high optimization speed and better optimization ability; (3) Combining the RCMFE and the ISVM to diagnose
bearing fault under variable working conditions. The effectiveness of the RCMFE-ISVM has been validated via
experimental vibration signal of bearings faults under variable working conditions.

1. INTRODUCTION

Rolling bearings are widely used in various industrial ma-
chines such as electric motors, pumps, gearboxes, and turbines.
The faults of bearings are prone to occur spalls or cracks on
surfaces due to their complex working conditions such as high
speed, heavy load, and high temperature. The fault probability
of rolling bearings is 30% in all faults of rotating elements.1

It is necessary to detect where the faults occurred in bearings
because the faults will lead to both equipment shutdown and
safety accidents.

Various methods have been introduced in bearing fault di-
agnosis, such as vibration analysis,2, 3 acoustic emission,4–6

debris analysis,7, 8 and infrared thermal imaging.9–11 Among
those techniques, vibration analysis has served as an efficient
tool for bearing fault detection. Various vibration analysis
methods have been applied to bearing fault diagnosis, such
as autoregressive model,12, 13 spectral kurtosis,14–16 and kur-
togram,17 wavelet transform,18, 19 matching pursuit order track-
ing,20, 21 and empirical mode decomposition.22, 23 However,
the above methods are complex and require a lot of specific
knowledge for their practical application. Moreover, the non-

stationary, non-linear characteristics of the bearing fault sig-
nal and the complex and diverse working conditions will make
fault diagnosis more difficult. Therefore, an intelligent fault di-
agnosis method for bearings that is based on refined composite
multiscale fuzzy entropy (RCMFE) and improved support vec-
tor machine (ISVM) is proposed in this paper.

An important and difficult step in rolling bearing fault diag-
nosis research is fault feature extraction, which directly affects
the effect of fault diagnosis. Time domain analysis and fre-
quency analysis are commonly used feature extraction meth-
ods, which can extract statistical feature parameters such as
energy, root mean square,24 etc. These methods are widely
used in bearing fault diagnosis because of their simplicity and
practicability. However, time and frequency domain analysis
can only be applied to stationary and linear signals. To ex-
tract fault features from non-stationary and non-linear signals,
many methods for time-frequency analysis must be introduced
into bearing fault diagnosis. For example, wavelet transform
(WT) is generally effective to extract the fault feature of the
rolling bearing.25 However, the certain bands of the defect in-
formation and the selection of the base function are the short-
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comings of WT. Then some self-adaptive time-frequency are
applied to the fault diagnosis of the rolling bearing. For in-
stance, empirical mode decomposition (EMD),26 local mean
decomposition (LMD),27 and ensemble empirical mode de-
composition (EEMD)28 are introduced for feature extraction of
the rolling bearing. The problem of mode aliasing has always
puzzled the application of EMD. Although LMD and EEMD
can alleviate this shortcoming, they have not been completely
overcome. To address this shortcoming, Konstantin proposed a
signal processing method called variational mode decomposi-
tion (VMD).29 VMD was quickly introduced into bearing fault
feature extraction and produced good results. VMD is intro-
duced into bearing fault feature extraction and there is no ob-
vious mode aliasing,30 but VMD needs to set the mode num-
ber artificially. Whether the mode number is appropriate or
not will affect the effect of fault feature extraction. In addi-
tion, the feature extraction process of the above methods is
mostly complex, which limits their application in engineering
practice. Therefore, it is necessary to explore a simple and ef-
fective feature extraction method in engineering practice. Re-
cently, the nonlinear dynamic analysis method has been widely
used in bearing fault feature extraction due to its simple and ef-
fective characteristics, such as fractal,31 sample entropy,32 and
fuzzy entropy.33 However, these methods are all single scale
analysis methods, which cannot describe the complex charac-
teristics of vibration signals. Therefore, multi-scale analysis
methods are introduced into bearing fault diagnosis, such as
multi-scale sample entropy34 and multi-scale fuzzy entropy.35

Li et al. summarized the application effect of the existing en-
tropy method in the field of rotating machinery fault diagno-
sis.36, 37 Because sample entropy uses step function to calcu-
late similarity measure function, there will be a sudden change
in measuring similarity. Sample entropy is greatly affected by
the sample length. In addition, the MSE and MFE have short-
comings in coarsening. In order to alleviate these problems,
Azami proposed a new irregular index called RCMFE and ap-
plied it to biomedical signal analysis.38 The RCMFE can ex-
tract the complexity characteristic related with fault informa-
tion from vibration signals of rolling bearing, and the RCMFE
is quickly applied to bearing fault diagnosis and achieved good
results.39, 40 In literature, the RCMFE needs dimension re-
duction to be used as feature parameters.37, 38 The dimension
reduction process may be cumbersome and time-consuming,
which is not conducive to practical engineering application. In
this paper, RCMFE is directly extracted as a feature parameter,
and the process of dimension reduction is omitted.

After fault features extraction, it is necessary to classify fault
features accurately. The commonly used classification meth-
ods mainly include the naive bayesian network (NBN),41 the
K-nearest neighbor algorithm (KNN),42 and the artificial neu-
ral network (ANN).43 However, each of these methods have
their own shortcomings. For instance, the NBN cannot deal
with the change results based on feature combination. The
KNN calls for a large amount of calculation in classifying test
samples. So far, there is no unified and complete theoretical
guidance for the selection of the ANN structure, and it can only
be selected by experience. Over-selection of network structure,
inefficiency in training and over-fitting may result in low net-
work performance and low fault tolerance. If the selection is
too small, the network may not converge. Therefore, how to
choose the appropriate network structure in application is an

important problem.44 The support vector machine (SVM) can
solve the problem of small sample classification, and it can
overcome shortcomings of overfitting and local optimal solu-
tion based on structural risk minimization principle.45 There-
fore, the SVM is applied to early fault detection of bearings.46

However, the setting of the parameters will affect the classi-
fication effect of SVM. Therefore, several optimization meth-
ods are used to optimize the SVM parameters, such as genetic
algorithm (GA),47 particle swarm optimization (PSO), artifi-
cial bee colony algorithm (ABC),48 and so on. But the above
optimization algorithms all have their shortcomings. For ex-
ample, the inappropriate choice of operators and parameters
used in the evolutionary process makes the GA susceptible
to premature convergence. Moreover, the algorithm has other
shortcomings, such as time-consuming computation, difficulty
in dealing with high-dimensional problems, and so on.49 The
PSO algorithm is simple in calculation and fast in convergence,
but it is easy to fall into local optimum.50 The performance of
the ABC is better than other methods, but there are still some
shortcomings of unbalanced search ability and inadequate res-
olution accuracy.51 The WOA is a novel nature-inspired meta-
heuristic optimization algorithm proposed by Mirjalili,52 and
it has been proved that the performance of the method is more
competitive than that of the traditional optimization methods.
Therefore, this paper proposed an improved SVM which em-
ployed the WOA to optimize the parameters of the SVM.

It can be seen from above discussion, there are some prob-
lems in fault diagnosis of bearings with variable conditions.
Those include:

1. The bearing fault data under variable working condi-
tions have the characteristics of non-linearity and non-
stationarity, and the changing working conditions may
cause similar characteristics to the fault, which increases
the difficulty of fault diagnosis.

2. The method needs to be simplified to facilitate the practi-
cal application of engineering.

To cope with the challenges, a novel method based on RCMFE
and ISVM is proposed for fault diagnosis of rolling bearing
under variable working conditions. This method can automati-
cally identify fault patterns and complete diagnosis with small
sample data. The flowchart of the proposed method is shown in
Fig. 1. Firstly, the raw vibration signal is collected from rolling
bearing fault test rig by sensors, then the RCMFE is extracted
as fault features for fault diagnosis. Subsequently, the ISVM
is trained by using training data and obtain the ISVM optimal
model. Finally, the result of fault identification is obtained by
the testing data.

The rest of paper is organized as follows. In Section 2, the
refined composite multiscale fuzzy entropy (RCMFE) is intro-
duced. Section 3 describes the improved support vector ma-
chine (ISVM) based on whale optimization algorithm (WOA)
proposed in this paper. Section 4 and Section 5 investigate the
effectiveness of the proposed method by using experimental
data. The conclusions are drawn in Section 6.
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Figure 1. The flow chart of proposed method.

2. FAULT FEATURE EXTRACTION USING
REFINED COMPOSITE MULTISCALE
FUZZY ENTROPY

2.1. Refined Composite Multiscale Fuzzy
Entropy

Firstly, the concept of fuzzy entropy is introduced in this
section. For the time series y = {y1, y2, . . . , yN}, m dimen-
sional vectors were obtained as follows:36

Umt = {yt, yt+1, . . . , yt+m−1} − yt; (1)

where the yt = 1
m

∑m−1
j=0 yt+j . The distance between Umt1

and Umt2 was defined as the maximum difference between the
corresponding elements, which was calculated as follows:

dt1t2 = d[Umt1 , U
m
t2 ]

= max
{∣∣Umt1+k − Umt2+k∣∣ : 0 ≤ k ≤ m− 1, t1 6= t2

}
.

(2)

The similarity between Umt1 and Umt2 was defined by using
the fuzzy function, which was shown as follows:

µ(dmij , n, r) = exp
(
− (dt1t2)

n/r
)
; (3)

where n was the power of fuzzy entropy and r was the toler-
ance. Then the function φm was defined as follows:

φm(y, n, r) =

1

N−m

N−m∑
t1=1

1

N−m−1

N−m∑
t2=1,t1 6=t2

exp
(
− (dt1t2)

n/r
)
. (4)

Similarly, for dimension m + 1, repeat the above computa-
tion and obtain the φm+1. The fuzzy entropy was defined as
follows:

FuzEn(y,m, n, r) = lim
N→∞

(
lnφm − lnφm+1

)
. (5)

When N was a finite number, the above expression was ex-
pressed as follows:

FuzEn(y,m, n, r) = lnφm − lnφm+1 = − ln
(
φm+1/φm

)
.

(6)
Then the “coarse-graining” process was applied to

the original time series. For the original time series
{x1, x2, . . . , xb, . . . , xC} whose length is C, the embedding
dimension m and similarity tolerance r are given in advance,
and a new coarse-grained vector was established based on the
original time series. And the standard deviation σ was pro-
posed as measurement in the coarse-graining process

σyi
(τ) =

√√√√√1

τ

iτ∑
b=(i−1)τ+1

xb − 1

τ

iτ∑
b=(i−1)τ+1

xb

,
1 ≤ i ≤

[
C

τ

]
= N ; (7)

where the τ was time scale factor. Therefore, the u-th coarse-
grained time series zτu = {σyu,1τ , σyu,2τ , . . . , σyu,pτ} was
generated and it is shown as follows:

σyu,j
τ =

√√√√√1

τ

u+τj−1∑
b=u+τ(j−1)

xb − 1

τ

u+τj−1∑
b=u+τ(j−1)

xb

. (8)

The different time series z(τ)u , (u = 1, 2, . . . , τ ) were ob-
tained for different scale factor. The φτ,km, (k = 1, 2, . . . , τ )
and φτ,km+1, (k = 1, 2, . . . , τ ) are computed separately for a
deterministic scale factor τ and embedding dimension m. Fi-
nally, the refined composite multiscale fuzzy entropy was ob-
tained as follows:

RCMFE (x, τ,m, n, r) = − ln
(
φτ

m+1
/
φτ

m
)
; (9)

where the φτ
m+1

and φτ
m

were the mean values of φτ,km+1

and φτ,km on 1 ≤ k ≤ τ respectively.
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Figure 2. Schematic illustration of the coarse-graining procedure.

The “coarse-graining” process is a concept introduced by
Costa to describe the basis and implementation of multiscale
entropy method.53 Given a one dimensional discrete time se-
ries, {x1, x2, . . . , xb, . . . , xC}, a coarse-grained vector corre-
sponding to the scale factor τ was constructed as follows. The
original times series are divided into nonoverlapping windows
of length τ firstly. Then average the data points inside each
window. The “coarse-graining” process is illustrated as Fig. 2.
The coarse-grained vector corresponding to the scale factor τ
can be calculated as follows:

yτj =
1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ C/τ. (10)

2.2. Parameters Selection of RCMFE
According to the description of RCMFE in the previous sec-

tion, RCMFE has some parameters that need to be set, such
as time delay, similarity tolerance and embedding dimension.
Therefore, to make the RCMFE better reflect bearing fault
characteristics, it is necessary to select appropriate parameters
of RCMFE. In this paper, Euclidean distance, and standard de-
viation were used to analyze the influence of parameters on
RCMFE. Euclidean distance was used to measure the influence
of parameters on RCMFE’s ability to reflect faults, and stan-
dard deviation is used to measure the influence of parameters
on RCMFE’s stability at different scales.

In this section, an evaluation index based on Euclidean dis-
tance was proposed to evaluate RCMFE’s ability to reflect fault
characteristics. The evaluation index was calculated as fol-
lows:

FCID =

N∑
k=1

 M∑
i=1

M∑
j=1

(RCMFE ik − RCMFE jk)/2

 ,
i 6= j; (11)

where the N was scale number, and the M was the number of
fault states. The FCID was standardized to ranges 0 to 1. The
larger the FCID , the stronger the ability of reflect faults for
RCMFE , and vice versa. The smaller the standard deviation,
the better the stability of RCMFE , and vice versa. Therefore,
the selection criterion of RCMFE parameters was to make the
FCID as large as possible and the standard deviation as small
as possible.

3. THE IMPROVED SUPPORT VECTOR
MACHINE BASED ON WHALE
OPTIMIZATION ALGORITHM

3.1. Description of Whale Optimization
Algorithm

The WOA is a novel meta-heuristic optimization algorithm
that is inspired by the bubble-net hunting strategy for hump-
back whale. The optimization method consists of three stages:
encircling prey, bubble-net attacking method and search for
prey.

3.1.1. Encircling Prey

Humpback whales can identify their prey and encircled
them. It was assumed that the current optimal whale group’s
individual position (candidate solution) was the target prey lo-
cation (target prey or close to the best target prey), and its posi-
tion updating mathematical expression was shown as follows:

Xj+1 = Xj −A×D; (12)
D = |C×X∗j −Xj |; (13)

where A and C were coefficient vectors, X∗ was the position
vector of the best solution obtained so far, X was the position
vector, and the j was the current iteration.

The coefficient vectors A and C were computed as follows:

A = 2a× r− a; (14)
C = 2r; (15)

where a was linearly decreased from 2 to 0 over the course of
iterations and r was a random vector in [0, 1].

3.1.2. Bubble-net Attacking Method

Based on the foraging behaviour of the humpback whale,
the mathematical model was established as follows:

1. Shrinking encircling mechanism: this behaviour was
achieved by reducing the value of a in the Eq. (14). It
should be noted that the range of variation of A also
shrinks with the decrease of a. The set of random num-
bers A is between [−1, 1], and the search position of the
new whale group can be defined at any position between
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the current whale group’s individual location and the best
whale group’s individual location.

2. Spiral updating position: The mechanism first calculated
the distance between the whale group and the prey, and
then created a spiral mathematical model between the
whale group and the location of its prey to mimic the spi-
ral movement of the humpback whale as follows:

Xj+1 = D′ebl cos(2πl) +X∗j ; (16)

where D′ = X∗j−Xj was the distance between i-th whale
to the prey, b was a constant for defining the shape of the
logarithmic spiral, l was a random number in [−1, 1].

The humpback whales swim around the prey within a
shrinking circle and along a spiral-shaped path simultaneously.
To simulate the synchronization behaviour, it was assumed that
a 50% probability was used as the selection threshold in the
process of updating the individual location of the whale group.
That is, either the shrinking encircling mechanism was cho-
sen, or the spiral updating position strategy was selected. The
mathematical model is shown as follows:

Xj+1 =

{
Xj −A×D p < 0.5

D′ebl cos(2πl) +X∗j p ≥ 0.5
; (17)

where p was a random number in [0, 1].

3.1.3. Search for Prey

The humpback whales also search for prey randomly. The
method based on the variation of A vector was used to search
for prey. The whales can randomly search prey according to
their positions. Therefore, A took a random value greater than
1 or less than −1, and forced whales to deviate from their prey
to search for other more suitable prey to enhance the algo-
rithm’s search ability, enabling WOA to perform global search.
The mathematical model is shown as follows:

Xj+1 = Xrand −A×D; (18)
D = |C×Xrand −Xj |; (19)

where Xrand was a random position vector chosen from the
current population.

3.2. ISVM Classification Model
The support vector machine classification model used in this

paper was a soft interval nonlinear support vector machine.
Given a training data set D = {xi, yi}ni=1, where xi ∈ Rn

was the i-th input feature vectors, yi ∈ {+1,−1} was the class
label of xi, n was the number of all samples. Using linear soft
interval support vector machines to construct optimal classifi-
cation hyperplanes should be satisfied:{

w · xi + b ≥ +1− ξi yi = +1

w · xi + b ≥ −1 + ξi yi = −1
. (20)

Two constraint conditions are merged into:

yi[(w · xi) + b]− 1 + ξi ≥ 0, i = 1, 2, . . . , n; (21)

where the w was weight vector, b was a scalar, and the ξi ≥ 0
was slack variables. And in the case of nonlinearity, it was

necessary to map the input xi to a new high-dimensional fea-
ture set ϕ(xi) through a nonlinear mapping ϕ. Therefore, the
classification constraint was converted to as follows:

yi[(w ·ϕ(xi)) + b]− 1 + ξi ≥ 0, i = 1, 2, . . . , n. (22)

The objective function was

min
1

2
wTw + C

n∑
i=1

ξi; (23)

where C was the regularization parameter, which determined
the trade-off between experience risk and complexity. To solve
the problem the following Lagrange function was constructed

L(w, b, ξ,α,β) =
1

2
wTw + C

n∑
i=1

ξi −
n∑
i=1

βiξi −

n∑
i=1

αi[yi((w ·ϕ(xi)) + b) + ξi − 1];

(24)

where αi ≥ 0, βi ≥ 0 were Lagrange multipliers. The partial
derivatives of w, b and ξi, and they were equal to 0, which can
be obtained as follows:

L(w, b, ξ,α,β) =

n∑
i=1

αi −

1

2

n∑
i=1

n∑
j=1

αiαjyiyj [ϕ(xi) · ϕ(xj)]. (25)

According to the Karush-Kuhn-Tucker (KKT) condition, the
solution of the optimization problem must also be satisfied as
follows:{

αi[yi((w ·ϕ(xi)) + b) + ξi − 1] = 0

βiξi = 0 ⇒ (C − αi)ξi = 0, i = 1, 2, . . . , n
. (26)

According to the Mercer condition, kernel function
K(xi,xj) can replace the inner product in the feature space.
Therefore, the soft interval nonlinear support vector machine
can be transformed into the following dual two programming
problem:

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

s.t.

{∑n
i=1 yiαi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n
. (27)

After solving the above problem, the optimal classification
function was obtained as follows:

f(x) = sgn

[
n∑
i=1

αiyiK(xi,x) + b

]
. (28)

In this paper, the kernel function of the support vector ma-
chine was a radial basis function (RBF) which shown as fol-
lows:

K(xi,x) = exp
(
γ ‖xi − x‖2

)
, γ > 0; (29)
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Figure 3. Flow chart for optimization of SVM parameters by WOA.

Figure 4. Fault bearing: (a) inner race fault, (b) outer race fault.

where γ was the kernel parameter.
Therefore, the regularization parameter C and RBF kernel

parameter γ are two parameters that can affect the classifica-
tion efficiency of SVM. In this paper, the WOA is used to opti-
mize these parameters. A fitness function is proposed to evalu-
ate the optimization effect of the algorithm which is shown as
follows:

Ffit(Ci, γi) = 1− 1

1 + avc(Ci, γi)
; (30)

where avc(Ci, γi) ∈ [0, 1] is the cross validation accuracy of
SVM using the parameters Ci and γi. The flow chart for opti-
mization of SVM parameters by WOA is shown as Fig. 3.

Figure 5. Waveform of raw signals: (a) outer race fault, (b) inner race fault,
(c) normal state.

4. CASE STUDY 1

In this section, the fault data provided by Society for Ma-
chinery Failure Prevention Technology (MFPT) was used to
verify the effectiveness of the proposed method. The fault data
sets contained the data of outer race fault, inner race fault and
normal state. The location of outer race fault and inner race
fault are shown in Fig. 4. Figure 5 displays the time domain
waveform of raw signals for outer race fault, inner race fault
and normal state. The rotation frequency was 25 Hz in the ex-
periment. There were seven working conditions for the outer
race fault data, including 25, 50, 100, 150, 200, 250 and 300 lbs
of load. There were seven working conditions for the inner
race fault data, including 0, 50, 100, 150, 200, 250 and 300 lbs
of load. The load of normal state data was 270 lbs. The data
of the above each mode was divided into 84 samples, a total
of 252 samples, half of which were used as train data, and the
rest were used as test data.

The influence of parameters on RCMFE was analyzed be-
fore applying the proposed method to fault diagnosis. Firstly,
the influence of different time delay d on RCMFE was ana-
lyzed. The analysis result of different time delay d on RCMFE
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Figure 6. Analysis results of RCMFE parameters: (a) different time delay d, (b) different embedding dimension m, (c) different similarity tolerance r.

Table 1. Input parameters of WOA in ISVM.

Parameter Value
Number of whales population 50

Maximum number of iterations 100
Parameter lower bound 0.0001
Parameter upper bound 100

Number of cross validation 3

was displayed in Fig. 6(a). As shown in Fig. 6(a), the abscissa
was standard deviation and the ordinate was FCID. After stan-
dardization of FCID and standard deviation, the ranges of val-
ues both were 0 to 1. According to the description of parameter
selection in Section 2, when FCID was 1 and standard devia-
tion was 0, the optimal result was obtained. Therefore, several
concentric circles were drawn with (0, 1) as the centre of the
circle, and scattered points calculated with different parame-
ters fell into the concentric circle. The closer the scatter point
was to the centre of the circle, the better the parameter was. As
can be seen from Fig. 6(a), when time delay d took 1, the scat-
tering point fell at the centre of the circle, which showed that
the result was the best. So, the time delay is set to 1. More-
over, it was found that the greater the value of d, the worse the
ability to reflect fault characteristics and stability of RCMFE.

The influence of embedding dimension m on RCMFE was
analyzed in this section. The analysis results for different
embedding dimension m on RCMFE are shown in Fig. 6(b).
When m equals 1, the value of FCID reached the maximum,
but the standard deviation reached the maximum simultane-
ously. Therefore, for the sake of stability, m cannot take 1.
The standard deviation was very small and stable when m was
in the range of 2 to 9, and the value of FCID was the largest
when m was 2. Therefore, the embedding dimension m was
set to 2.

The influence of different similarity tolerance r on RCMFE
was analyzed in this section. The analysis results of differ-
ent similarity tolerance r on RCMFE are shown in Fig. 6(c).
When r increased gradually from 0.01, the distribution of scat-
ters first approached the centre of the circle, and then gradually
moved away. It can be found from the graph that the scatter
point at r = 0.03 was closest to the centre of the circle. There-
fore, the similarity tolerance was set to 0.03 in the case.

After parameters analysis of RCMFE, the proposed method
was employed to diagnose the bearing fault data mentioned
above. Then the RCMFE of all the samples were extracted
as the fault feature of bearings. The feature vector composed
of RCMFE was used as the input of the ISVM, and then the

Figure 7. Diagnosis results of proposed method.

bearing fault diagnosis was carried out. The WOA parameter
settings in the ISVM are shown in the Table 1. After optimiza-
tion, the optimized C and γ were 6.6872 and 0.0073, respec-
tively. The diagnosis result is presented in Fig. 7. As shown in
the Fig. 7, the fault diagnosis results were in good agreement
with the actual state. After calculated, the recognition accu-
racy of bearing fault pattern was 100%. It is illustrated that the
proposed method was effective for fault diagnosis of rolling
bearings.

To verify the advantage of RCMFE in fault detection for
rolling bearings, two typical and popular feature parameters
of multiscale fuzzy entropy (MFE) and multiscale sample en-
tropy (MSE) were selected as the fault features. The param-
eters of MFE and MSE were consistent with RCMFE. After
calculation, the feature vectors of MFE and MSE were used
as input for the ISVM, respectively. The diagnosis results of
using MFE and MSE as fault feature are presented in Fig. 8.
As shown in Fig. 8(a), two samples are misdiagnosed. One in-
ner race fault sample is misdiagnosed as outer race fault and
the other outer race fault sample is misdiagnosed as normal
state. After calculation, the recognition accuracy of the bear-
ing fault pattern with using MFE-ISVM was 98.4127%. As
shown in Fig. 8(b), three samples are misdiagnosed. Two in-
ner race fault samples are misdiagnosed as outer race fault,
and the other outer race fault sample is misdiagnosed as in-
ner race fault. The recognition rate of using MSE-ISVM was
97.6190%. Therefore, it is illustrated that the performance of
RCMFE in bearing fault diagnosis was more competitive than
the performance of MFE and MSE.

To further verify the advantages of the WOA in the ISVM,
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Figure 8. Diagnosis results of MFE-ISVM and MSE-ISVM: (a) MFE-ISVM, (b) MSE-ISVM.

Table 2. Optimization results of methods.

Method Optimal fitness Recognition rate Optimal value of C Optimal value of γ Number of iterations Runtime
WOA-SVM 0.5 100% 6.6872 0.0073 2 5.174758 s
GA-SVM 0.5 99.2063% 0.4856 39.5706 4 8.784553 s
PSO-SVM 0.5 100% 30.9112 0.0001 4 6.685555 s
ABC-SVM 0.4979 100% 8.3482 9.0499 3 6.815424 s

Figure 9. Iterative process of several optimization methods.

three traditional optimization methods of genetic algorithm
(GA), particle swarm optimization (PSO) and artificial bee
colony algorithm (ABC) were applied to optimize the param-
eters of the SVM. The input parameters of the three algo-
rithms were consistent with the WOA. The performance of
these methods is displayed in Table 2. The optimization it-
eration process of these methods is presented in Fig. 9. As
shown in Fig. 9, the fitness functions reached maximum and
kept unchanged when the four optimization methods iterated
to a certain number of times. However, the WOA was faster
than the other algorithms in searching for the optimal solu-
tion. The optimal solution was found in the second iteration.
It shows that the performance of WOA was more competitive
than other traditional optimization methods.

To prove the effectiveness of the ISVM, three traditional
classification method of naive bayesian network (NBN), arti-
ficial neural network (ANN) and K-nearest neighbors (KNN)
were employed to classify the bearing faults combined with
RCMFE. Figure 10(a) displayed the diagnosis result of using
the NBN as the classification method, and there were twelve
samples being misdiagnosed by using this method. Three

Table 3. The recognition rate of different classification methods.

Method Number of correct Number of Recognition
identification samples test samples rate

RCMFE-ISVM 126 126 100%
RCMFE-NBN 114 126 90.48%
RCMFE-ANN 120 126 95.24%
RCMFE-KNN 118 126 93.65%

of the normal state samples were misdiagnosed as outer race
faults, and nine of the outer race fault samples were misdiag-
nosed as the normal state. The diagnosis result of using ANN
as the classification method is presented in Fig. 10(b). There
were six samples of outer race fault being misdiagnosed as in-
ner race fault in the Fig. 10(b). The diagnosis result of using
the KNN as a classification method is shown as Fig. 10(c). As
shown in Fig. 10(c), eight samples were misdiagnosed. Two
samples of normal state were misdiagnosed as outer race fault
state, and six samples of outer race fault state were misdiag-
nosed as normal state. The recognition rates of these meth-
ods were presented in Table 3. It can be found from Table 3
that the recognition rates of the ISVM were higher than other
traditional classification methods. It is illustrated that the per-
formance of the ISVM was more competitive than other tradi-
tional methods.

The influence of different numbers of training samples on
diagnostic recognition rate was analyzed. As shown in Fig. 11,
with the decrease of training samples, the recognition rate of
the ISVM decreased, but all recognition rates remained above
95%. In contrast, with the decrease of training samples, the
overall recognition rate of other methods decreased more se-
riously. It demonstrates that the ISVM proposed in this paper
was more robust to training samples than other methods. The
ISVM can still maintain a high recognition rate in the case of
small samples, which was more suitable for practical applica-
tion.

In addition, the influence of the different scale factor on
diagnostic recognition rate was analyzed in this section. As
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Figure 10. Diagnosis results of using different classification methods: (a) NBN, (b) ANN, (c) KNN.

Figure 11. Fault recognition rate of different training samples.

Figure 12. Fault recognition rate of different scale factor.

shown in Fig. 12, the recognition rate increased with the in-
crease of scale factor. When the scale factor was greater than
or equal to 3, the recognition rate reached 100%. It shows that
the fault recognition rate reached the maximum value and re-
mained unchanged after the scale factor was greater than 3. If
the scale factor was too large, the amount of calculation in-
creased. Therefore, it was more appropriate to set the scale
factor at 3 ∼ 6.

5. CASE STUDY 2

In Case 1, three fault patterns of rolling bearings were di-
agnosed by the proposed method and the results show that the
method was effective. However, the data in Case 1 had fewer
fault patterns and it was not difficult to diagnose the faults in
this case. In this section, the fault data of the Case Western

Figure 13. Structure of test rig.

Table 4. Details of different state data.

Pattern Fault level Fault Working conditionnumber (inch) location
1 0.007 Rolling element
2 0.007 Inner race Working condition 1:
3 0.007 Outer race 0 horsepower load, 1797 rpm speed;
4 0.014 Rolling element Working condition 2:
5 0.014 Inner race 1 horsepower load, 1772 rpm speed;
6 0.014 Outer race Working condition 3:
7 0.021 Rolling element 2 horsepower load, 1750 rpm speed;
8 0.021 Inner race Working condition 4:
9 0.021 Outer race 3 horsepower load, 1730 rpm speed.
10 Normal state

Reserve University were also employed to verify the perfor-
mance of the proposed method in the bearing fault detection,
and the test rig is shown in Fig. 13. In the last case, the pro-
posed method was just used to diagnose the data of different
fault pattern. In this case, the data with different fault and dif-
ferent fault degrees was used to verify the effectiveness of the
proposed method in the bearing fault detection. The data con-
tained signals of three fault modes of bearings, such as outer
race fault, inner race fault and rolling element fault. Each fault
pattern has three levels of fault: 0.007 inches, 0.014 inches and
0.021 inches. So, there were nine kinds of fault pattern and one
kind of normal state data. The data for each state hd four work-
ing conditions. The details of the data are shown in Table 4.
Figure 14 displays the time domain waveform of ten patterns
row signal under working condition 1. The data of each state
was divided into 40 samples, a total of 400 samples, half of
which were used as train data, and the rest were used as test
data.
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Figure 14. Waveform of raw signals under working condition 1.

Figure 15. Diagnosis results of proposed method.

The proposed method was employed to diagnose the bearing
fault data mentioned above. The fuzzy power and embedding
dimension of refined composite multiscale fuzzy entropy were
both set to 2, and the tolerance was 0.03. The scale factor of
refined composite multiscale fuzzy entropy was set to 6. Then,
the feature vector composed of RCMFE was extracted as the
input of the ISVM, and the bearing fault diagnosis was carried
out. The WOA parameter settings in the ISVM were consistent
with Case 1. After optimization, the optimized C and γ were
9.3051 and 6.4356, respectively. The diagnosis result was pre-
sented in Fig. 15. As shown in Fig. 15, one sample of fault
state 4 was misdiagnosed as fault state 5. The recognition rate
was 99.5% after calculation, which showed that the proposed
method was effective for bearing fault detection.

As in Case 1, MFE and MSE were used as fault features for
diagnosis and the diagnosis results are presented in Fig. 16. As
shown in Fig. 16(a), there were four samples misdiagnosed. In
details, one sample of pattern 1 was misdiagnosed as pattern 7,
two samples of pattern 4 were misdiagnosed as pattern 2 and
pattern 7 respectively, one sample of pattern 7 was misdiag-
nosed as pattern 2. As shown in Fig. 16(b), there were six
samples misdiagnosed, in which two samples of pattern 4 and
two samples of pattern 7 were misdiagnosed as pattern 2, one
sample of pattern 4 was misdiagnosed as pattern 1, one sam-

ple of pattern 5 was misdiagnosed as pattern 4. After calcu-
lation, the recognition accuracy of bearing fault pattern using
the MFE-ISVM and MSE-ISVM was 98% and 97% respec-
tively. Therefore, it was illustrated that the performance of the
RCMFE in bearing fault diagnosis is more competitive than
the performance of the MFE and MSE.

To prove the optimization efficiency of the WOA, the tradi-
tional optimization methods such as GA, PSO and ABCA were
also applied to optimize the parameters of the SVM. The input
parameters of the three optimization methods were the same
with those of the WOA. The optimization iteration process of
these methods was presented in Fig. 17. As shown in Fig. 17,
the iteration times of the WOA, ABC, GA and PSO to reach the
optimal fitness function were 2, 2, 31 and 6 respectively. The
optimal fitness of the WOA is higher than that of other meth-
ods. The optimization results and recognition accuracy of the
above methods are shown in Table 5. The recognition rates of
the WOA-SVM, GA-SVM and PSO-SVM were 99.5%, while
that of the ABC-SVM was only 85.5%. In addition, the run
time of the WOA-SVM was shorter than the other methods. It
shows that the performance of the WOA was more competitive
than other traditional optimization methods.

To prove the effectiveness of the ISVM, the NBN, KNN and
ANN were employed as classifiers respectively to detect the
bearing. The fault diagnosis results of the above methods are
displayed in Fig. 18. As shown in Fig. 18, most of the misdi-
agnosis samples were concentrated in pattern 4 and pattern 7.
It shows that the RCMFE values had some confusion between
the samples of pattern 4 and samples of pattern 7. The recog-
nition rates of these methods are presented in Table 6. It can be
found from the Table 6 that the recognition rates of the ISVM
were higher than other traditional classification methods. It is
illustrated that the performance of the ISVM was more com-
petitive than other traditional methods.

Like Case 1, the influence of different numbers of train-
ing samples on diagnostic recognition rate was analyzed. As
shown in Fig. 19, with the decrease of training samples, the
recognition rates of all methods showed a downward trend. But
compared with other methods, the ISVM had a gentle down-
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Figure 16. Diagnosis results of MFE-ISVM and MSE-ISVM: (a) MFE-ISVM, (b) MSE-ISVM.

Table 5. Optimization results of methods.

Method Optimal fitness Recognition rate Optimal value of C Optimal value of γ Number of iterations Runtime
WOA-SVM 0.4937 99.5% 9.3051 6.4356 2 5.953217 s
GA-SVM 0.4924 99.5% 5.0071 30.2239 31 11.884228 s
PSO-SVM 0.4924 99.5% 4.490 29.6335 6 9.085092 s
ABC-SVM 0.4924 85.5% 5.5706 23.6695 2 6.815424 s

Figure 17. Iterative process of several optimization methods.

Table 6. The recognition rate of different classification methods.

Method Number of correct Number of Recognition
identification samples test samples rate

RCMFE-ISVM 199 200 99.5%
RCMFE-NBN 193 200 96.5%
RCMFE-KNN 183 200 91.5%
RCMFE-ANN 193 200 96.5%

ward trend, and the recognition rate was always higher than
other methods. It demonstrates that the ISVM proposed in this
paper was more robust to training samples than other meth-
ods. The ISVM can still maintain a high recognition rate in the
case of small samples, which was more suitable for practical
application.

Similarly, the influence of different scale factors on diagnos-
tic recognition rates was analyzed in this section. As shown in
Fig. 20, when the scale factor was greater than or equal to 3,
the fault recognition rate reached 98% and above. It was shown
that when the scale factor was greater than 3, the fault recog-
nition rate tended to be stable. If the scale factor was too large,
the amount of calculation increased. Therefore, the analysis
results were consistent with Case 1, and in this case, it was

more appropriate to set the scale factor at 3 ∼ 6.

6. CONCLUSIONS

In this article, a novel method based on the RCMFE and
ISVM is proposed for rolling bearings fault diagnosis under
variable working conditions. To deal with the non-stationary
and non-linear characteristics of bearing fault vibration signal,
the RCMFE is employed to provide representative features.
Further, the ISVM based on the WOA is proposed to identify
the fault pattern of rolling bearing. The WOA is used to opti-
mize the regularization parameter and the RBF kernel param-
eter of the SVM, which can affect the classification efficiency
of the SVM. After verification of the proposed method using
bearing fault data of the MFPT and Case Western Reserve Uni-
versity, the following conclusions are drawn.

1. The proposed method is a simple and effective tool for
the fault diagnosis of rolling bearings in variable work-
ing conditions. It has the advantages of a simple oper-
ation process, less historical data, and no manual oper-
ation. It can detect the fault of rolling bearing variable
working conditions automatically. It shows that the pro-
posed method is more versatile. These characteristics
show that the proposed method is more suitable for en-
gineering practice.

2. The RCMFE is applied to extract bearing fault features
under variable operating conditions. The experimental
data prove that the RCMFE can effectively reflect the
bearing fault characteristics under variable working con-
ditions. This feature extraction method is simple and does
not need other processing such as dimension reduction,
which is conducive to application in engineering prac-
tice. The performance of the RCMFE in bearing fault
diagnosis is more competitive than other nonlinear dy-
namic analysis methods such as the MFE and MSE. The
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Figure 18. Diagnosis results of different classifiers: (a) RCMFE-NBN, (b) RCMFE-KNN, (c) RCMFE-ANN.

Figure 19. Fault recognition rate of different training samples.

influence of parameter setting on the application of the
RCMFE in bearing fault diagnosis is analyzed, which has
reference significance for the practical application of en-
gineering.

3. The experimental results show that the ISVM proposed in
this paper is an effective classifier for bearing fault diag-
nosis under variable working conditions. The ISVM has
proved to be more effective than traditional classification
methods and requires less training samples. Moreover,
the WOA in the ISVM has a better optimization effect
and a faster convergence speed than traditional optimiza-
tion algorithms such as the GA, PSO and ABC.
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