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Pre-buckling vibration and buckling behaviour of composite skew plates subjected to linearly varying in-plane edge
loading with different boundary conditions are studied. The total energy functional of the skew plate mapped from
physical domain to computational domain over which a set of orthonormal polynomials satisfying the essential
boundary conditions is generated by Gram-Schmidt orthogonalization process. Using Rayleigh-Ritz method in
conjunction with Boundary Characteristics Orthonormal Polynomials, the total energy functional is converted into
sets of algebraic equations for static stability problems and ordinary differential equation for free vibration problem.
Pre-buckling vibration frequencies of the stressed skew plate are obtained by solving associated linear eigen value
problem for free vibration and solution of the eigen value problem for static case results critical buckling load.
From different parametric study, it is observed that the pre-buckling vibration frequency and critical buckling load
increase with the increase of skew angle and edge restraint.

NOMENCLATURE
a, b Plan-form dimension of plate
a/b Aspect ratio of plate
N̄ξξ and N̄ηη Applied edge forces along ξ and η axes
Nxcr Buckling load
u, v In-plane displacement
w Out-of-plane displacement
x, y, z Cartesian coordinates
ϕ1, ϕ2 Rotations of the reference surface

about the ξ2 and ξ1 axes
Mxx, Myy , Mxy Moment resultant
Nxx, Nyy , Nxy Force resultant
Pxx, Pyy , Pxy Additional moment resultant
S Strain energy
Φ Stress function
Ns Static load factor
Nt Dynamic load factor
Sm Membrane energy
Sb Bending Energy
Sab Additional bending energy
Ss Shear energy
ψ Skew angle
ω∗ Non-dimensional fundamental frequency
ω Fundamental frequency
Π Total potential energy

1. INTRODUCTION

Composite skew plates are widely used as structural ele-
ments in many engineering applications such as aircraft wings,
marine structures, ship structures, and bridges. These compos-
ite plates are generally preferred because of their high strength-
to-weight ratio and ability to be moulded according to any de-
sired orientation. In a complex structural system, the loading
coming on it may not be uniform. For a few simple examples,

the web of an I- beam, aircraft wings, and the stiffened plates
in ship structures are generally subjected to other than uniform
in-plane loading. There is literature available on the stability of
rectangular plates subjected to non-uniform in-plane loading.
But so far as authors’ knowledge, studies on the pre-buckling
vibration and static stability of a skew plate under non-uniform
or linearly varying in-plane loading is not available in the open
literature.

Literatures are available on stability and vibration studies
of skew plates under uniform in-plane loading. Durvasula
worked on buckling problems of simply supported skew plates
with in-plane stresses represented in terms of orthogonal com-
ponents using the Rayleigh-Ritz method (RRM), employing
a double Fourier sine series in oblique coordinates.1 Liew
and Lam used two-dimensional orthogonal plate functions as
an admissible deflection function for the study of the flexu-
ral vibration of skew plates with the RRM.2 Authors followed
the Gram-Schmidt orthogonalization process to generate two-
dimensional orthogonal plate functions. Wang et al. performed
the buckling analysis using the RRM with pb-2 Ritz functions,
which consist of the product of a two-dimensional polynomial
function and a basic function.3 The first five frequencies have
been determined for the transverse vibration of a rectangular
or a skew plate under different boundary conditions by us-
ing boundary characteristic orthogonal polynomials (BCOP)
in two variables by Singh and Chakraverty.4 Wang presented a
B-spline RRM based on first-order shear deformation (FOSD)
plate theory for a buckling study of composite skew plates.5

Mizusawa et al. presented a method for evaluating the buckling
of stiffened skew plates by using theRRM with B-spline func-
tions as co-ordinate functions.6 Taj and Chakrabarti studied
the static and dynamic analysis of functionally-graded skew
plates by using the finite element method (FEM) based on the
third-order shear deformation (TOSD) theory.7 Kitipornchai
et al. followed the principle of stationary total potential en-
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ergy in conjunction with the pb-2 RRM for a buckling anal-
ysis of skew plates of various aspect ratios, skew angles, and
boundary conditions.8 Farag and Ashour used the Kantorovich
method, a fast-converging, semi-analytical method for a vibra-
tion analysis of thin orthotropic skew plates.9 In this method,
the finite strip method is modified to reduce the complexity
of the problem. Ganapathi and Prakash studied the thermal
buckling of functionally-graded simply supported skew plates
using FOSD theory with the FEM.10 The authors considered
linear and nonlinear temperature variation across the thick-
ness. Wang et al. proposed a modified version of the differen-
tial quadrature method (DQM) for analysing the static stability
of different skew plates.11 Numerical results indicate that the
modified DQM is faster in convergence study and gives better
results than the old DQM version. Daripa and Singha worked
on the stability characteristics of composite skew plates sub-
jected to in-plane compressive load using the shear deformable
finite element approach.12 The effect of pre-buckling stresses
at the corner regions of isotropic and composite skew plates
has been studied. Karami et al. followed the DQM for static,
free vibration, and stability analysis of thin trapezoidal com-
posite skew plates.13 The authors used the general transforma-
tion scheme for transferring the variation of the variables in the
computational domain to the physical domain and vice versa.
Zhou and Zheng employed the moving least square (MLS)
method for analysing the vibration characteristic of skew plates
with large skew angles.14 The MLS technique in conjunction
with the Ritz method is applied to derive the governing eigen-
value equation for the skew plate. The boundary conditions of
the plate are satisfied through a point substitution technique
that makes the MLS-Ritz trial function satisfy the essential
boundary conditions along the plate edges. Singha and Gana-
pathi investigated the large amplitude free flexural vibration of
thin laminated composite skew plates within the frame work
of the FEM.15 Lagrange’s equations of motion and von Kar-
man’s geometric nonlinearity is used to derive the governing
differential equation. Taj and Chakrabarti worked on the static
and dynamic analysis of functionally graded material (FGM)
skew plates under mechanical loading by using the FEM. The
authors employed the FEM formulation based on the TOSD
theory.7 Eftekhari and Jafari proposed modified mixed Ritz-
differential quadrature (Ritz-DQ) methodology for a vibration
and buckling study of rectangular skew plates.16 All the natu-
ral boundary conditions are exactly implemented by modified
mixed Ritz-DQ formulation. The method resulted in accurate
solutions for the natural frequencies of thick rectangular plates
involving adjacent free edges and skew plates using a small
number Ritz terms and DQ sampling points. Vibration anal-
ysis of skew plates with different boundary conditions by us-
ing the new version of the DQM is investigated by Wang et
al. (2014).17 The authors observed good convergence of fre-
quency for the simply supported skew plate with a large skew
angle.

There are many research articles available in open literature
on the static stability analysis of rectangular plates subjected
to non-uniform in-plane loading or linearly varying in-plane
loading. Leissa and Kang (2002) and Kang and Leissa (2001,
2005) presented exact solutions for a plate subjected to differ-
ent types of linearly varying in-plane loading with different
boundary conditions.18–20 Zhong and Gu presented the ex-
act solution of the buckling of moderately thick simply sup-

ported plates with symmetric cross-ply laminates under differ-
ent linearly varying in-plane edge loads.21 The authors used
the FOSD theory for obtaining the buckling load for various
aspect ratios of the composite plates. Lai and Xiang presented
the discrete singular convolution method for solving buckling
and vibration problems of rectangular plates with elastically
restrained edges and linearly varying uni-axial in-plane load-
ing.22 Authors presented accurate buckling and vibration solu-
tions of plates having two opposite edges elastically restrained
and the other two sides clamped. Lopatin and Morozov pre-
sented the analytical solution of the buckling problem for an
orthotropic rectangular plate having two parallel edges sim-
ply supported, one edge clamped, and the remaining edge free
(the SSCF plate).23 The plate considered is subjected to a
linearly varying in-plane load, and the solution technique in-
volves the Kantorovich procedure in conjunction with the gen-
eralised Galerkin method. The buckling problems are solved
for isotropic and orthotropic plates with various aspect ratios.
The buckling of thin rectangular plates with nonlinearly dis-
tributed loadings along two opposite plate edges is analysed
using the DQM by Wang et al. (2006, 2007).24, 25 The au-
thors first solved the plane elasticity problem to obtain the dis-
tribution of in-plane stresses, and then the buckling problem
was solved. The DQM was proved an accurate and computa-
tionally efficient numerical method by Wang et al. (2006).26

Authors used this method to study the vibration and buckling
of an SS-C-SS-C rectangular plate loaded by linearly vary-
ing in-plane stresses.26 Tang and Wang analysed symmetri-
cally laminated rectangular plates with parabolic distributed
in-plane compressive loadings along two opposite edges using
the RRM in conjunction with the classical laminated plate the-
ory.27 Stress functions satisfying all stress boundary conditions
are constructed based on the Chebyshev polynomials. It was
observed that double sine series displacement for simply sup-
ported symmetrically laminated plates overestimate buckling
loads. Recently, Kumar et al. studied the parametric resonance
of a composite skew plate under non-uniform in-plane loading
using the RRM in conjunction with BCOP functions.28

So far, to the best of the authors’ knowledge, there is no
work available in open literature on the pre-buckling vibration
and buckling of composite skew plates based on higher-order
shear deformation theory (HSDT) under non-uniform or lin-
early varying in-plane loading. In the present investigation, the
pre-buckling vibration and buckling of composite skew plates
subjected to linearly varying in-plane loading is considered for
different boundary conditions. The linearly varying in-plane
edge compression causes same linearly varying stress in the
skew plate stress. The total energy functional is formulated by
using the in-plane stress distribution. The total energy func-
tional is transformed from the physical domain to the compu-
tational domain using transformation relations. The orthonor-
mal polynomials are generated by using the Gram-Schmidt or-
thogonalization process, which satisfies the essential boundary
conditions of skew plates in computational domain. Using the
RRM in conjunction with BCOPs, the total energy functional
is converted into sets of algebraic equations for the static sta-
bility problem and into ordinary differential equations for the
free vibration problem. Pre-buckling vibration frequencies of
the stressed skew plate are obtained by solving the associated
linear eigenvalue problem for free vibration. The solution of
theeigenvalue problem for the static case results in the critical
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Figure 1a. Geometry and linearly varying in-plane loading of the skew plate.

Figure 1b. Various types of linearly varying loadings.

buckling load. The effects of skew angles, boundary condi-
tions, shear deformations, aspect ratios, and loadings on the
pre-buckling vibration and buckling behaviour of composite
skew plates are presented.

2. FORMULATION

In this study, composite skew plates are analysed having
length “a,” width “b,” and “ln” layers of equal thickness lami-
nates as shown in Fig. 1a. The z-axis is in the direction perpen-
dicular to the ξ−η plane. Different types of linearly varying in-
plane edge loadings are considered for finding the pre-buckling
frequencies and static stability of the composite skew plate.
The linearly varying in-plane edge loadings are expressed as:
Nxx = N0(1 − γ(ηb )). For different values of γ, we obtain
different in-plane load distributions: uniform (γ = 0), trape-
zoidal (γ = 0.5), triangular (γ = 1), partial tension (γ = 1.5),
and in-plane bending (γ = 2). The linearly varying in-plane
loads are shown in Fig. 1b.

Higher-order shear deformation theory (HSDT) is imple-
mented for composite plates as proposed by Reddy and Liu.29

In this theory, the displacements of the middle surface are ex-
pressed as cubic functions of the thickness coordinate, and the
transverse displacement is assumed to be constant through the
thickness. For this displacement field, the distribution of trans-
verse shear stress through the thickness is of parabolic varia-
tion. The transverse shear stress is zero at both the top and bot-
tom free surface and is maximum at the middle surface. The

displacement fields may be written as:

u(x, y, z, t) = uo(x, y, t) + zϕ1(x, y, t)+

z3(4/3h2)[−ϕ1(x, y, t)− wo,x(x, y, t)]

v(x, y, z, t) = vo(x, y, t) + zϕ2(x, y, t)+

z3(4/3h2)[−ϕ2(x, y, t)− wo,y(x, y, t)]

w(x, y, z, t) = wo(x, y, t); (1)

The above displacement fields can be rearranged as Soldatos
displayed:30

u(x, y, z, t) = uo(x, y, t)− zwo,x(x, y, t) + f(z)φ1
o(x, y, t)

v(x, y, z, t) = vo(x, y, t)− zwo,y(x, y, t) + f(z)φ2
o(x, y, t)

w(x, y, z, t) = wo(x, y, t); (2)

where φ01(x, y, t) = ϕ1(x, y, t) + w0
,x(x, y, t);

φ02(x, y, t) = ϕ2(x, y, t) + w0
,y(x, y, t)

and f(z) = z[1− (4/3)(z/h)2]; (3)

Here, the displacement components u, v, and w are in direc-
tions along the x-, y-, and z-axes, respectively, at a distance z
away from mid plane, and u0(x, y, t), v0(x, y, t) and are dis-
placement components of a generic point on the middle sur-
face. The expressions φ01(ϕ1+w0

,x) and φ02(ϕ2+w0
,y) represent

the total rotations (transverse shear strains) of the normal to the
middle surface about the y- and x-axes, respectively. The vari-
able h is plate thickness, and (),x represents the differentiation
with respect to x. The strain-displacement relations at a dis-
tance z away from the mid-plane of a plate can be expressed
as:

εx(x, y, z) = εox(x, y, t)− zwo,xx(x, y, t) + f(z)φ1
o
,x(x, y, t)

εy(x, y, z, t) = εoy(x, y, t)− zwo,yy(x, y, t) + f(z)φ2
o
,y(x, y, t)

γxy(x, y, z, t) = γoxy(x, y, t)− 2zwo,xy(x, y, t)+

f(z)φ1
o
,y(x, y, t) + f(z)φ2

o
,x(x, y, t)

γxz(x, y, z, t) = u,z(x, y, z, t) + w,x(x, y, z, t) =

f
′
(z)φ1

o(x, y, t)

γyz(x, y, z, t) = v,z(x, y, z, t) + w,y(x, y, z, t) =

f
′
(z)φ2

o(x, y, t); (4)

Both εox(x, y), εoy(x, y) and γoxy(x, y) are reference surface
strains and are defined as:

εoy(x, y, t) = vo,y(x, y, t), εox(x, y, t) = uo,x(x, y, t),

γoxy(x, y, t) = uo,y(x, y, t) + vo,x(x, y, t); (5)

The different components of strain energy in which mem-
brane energy (Sm), bending energy (Sb), additional bending
energy due to additional change in curvature (Sab), and shear
energy(SS) are related respectively to membrane strains
ε0

T

=
{
ε0x(x, y) ε0y(x, y) γ0xy(x, y)

}
, bending strains

κT =
{
−wo,xx(x, y, t) − wo,yy(x, y, t) − 2woxy(x, y, t)

}
,

additional bending strains κaT

=
{φo1,x(x, y, t) φo2,y(x, y, t) φo1,y(x, y, t) + φo2,x(x, y, t)},
and transverse shear strains φ0T

=
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φ02(x, y, t) φ01(x, y, t)

}
, through the following consti-

tutive relations:

Sm =
1

2

∫
A

(
ε0

T

Aε0 + ε0
T

Bκ+ ε0
T

Cκa
)
dA; (6)

Sb =
1

2

∫
A

(
κT Bε0 + κT Dκ+ κT Eκa

)
dA; (7)

Sab =
1

2

∫
A

(
κaT

Cε0 + κaT

Eκ+ κaT

Fκa
)
dA; (8)

Ss =
1

2

∫
A

(
φ0T

Hφ0
)
dA; (9)

The sum of all strain energy of the composite skew plate is
calculated as:

S = Sm + Sb + Sab + Ss; (10)

In the present investigation, the bold upright letters and bold
italic letters are used to denote matrices and vectors, respec-
tively. The extensional stiffness (A), coupling stiffness (B),
bending stiffness (D), and shear stiffness (H) matrices are de-
fined in terms of the transformed lamina stiffness Q as:

(AijBijDij) =

∫ h/2

−h/2
Qij(1, z, z

2)dz

=

ln∑
k=1

∫ zk

zk−1

Qij(1, z, z
2)dz i = 1, 2, 6 and j = 1, 2, 6

(Cij , Eij , Fij) =

∫ h/2

−h/2
Qij(1, z, f(z))f(z)dz

=

ln∑
k=1

∫ zk

zk−1

Qij(1, z, f(z))f(z)dz i = 1, 2, 6 and j = 1, 2, 6

Hij =

∫ h/2

−h/2
Qijf

′
(z)f

′
(z)dz

=

ln∑
k=1

∫ zk−1

zk

Qijf
′
(z)f

′
(z)dz i = 4, 5 and j = 4, 5;

(11)

where, ln is the number of orthotropic layer; Aij , Bij , Cij ,
Dij , Eij , Fij and Hij represent plate stiffness; Qij(i, j =
1, 2, 6) are the transformed plane stress reduced stiffness co-
efficients; and Qij(i, j = 4, 5) are the transformed through-
thickness shear stiffness coefficients.

The potential energy due to in-plane loading can be ex-
pressed as:

P = −1

2

∫ a

0

∫ b

0

{ ∂w0

∂x
∂w0

∂y

}T [
Nxx Nxy
Nxy Nyy

]
{

∂w0

∂x
∂w0

∂y

})
dxdy; (12)

where Nxx, Nyy and Nxy are the in-plane loads in the x-
direction, the in-plane loads in the y-direction, and the in-plane
shearing loads, respectively. The expression for kinetic energy

Figure 2. Mapping of the skew plate domain into a unit square plate domain.

may be expressed as:

TE =
1

2

∫ a

0

∫ b

0





∂u0

∂t
∂v0

∂t
∂w0

∂t
∂φ0

2

∂t
∂φ0

1

∂t



T 
ρh 0 0 0 0
0 ρh 0 0 0
0 0 ρh 0 0

0 0 0 ρh3

12 0

0 0 0 0 ρh3

12




∂u0

∂t
∂v0

∂t
∂w0

∂t
∂φ0

2

∂t
∂φ0

1

∂t



 dxdy; (13)

where ρ is the density. The energy expression Sm, Sb, Sab, Ss

and P is transformed from the orthogonal co-ordinate system
to the oblique co-ordinate system using transformation rela-
tions. Mapping of a skew plate having length “a,” breadth “b,”
and thickness “h,” into a unit square plate domain in the ξ − η
plane is shown in Fig. 2. The transformation relations are given
by:

x = aξ + bη sinψ; y = bη cosψ; (14)

The following transformation relations are followed for the
mapping and function of the functional from the x-y plane to
the ξ − η plane:[ ∂

∂x
∂
∂y

]
=

[
1
a 0

− tanψ
a

secψ
b

] [ ∂
∂ξ
∂
∂η

]
; (15)


∂2

∂x2

∂2

∂y2

∂2

∂x∂y

 =

 1
a2 0 0

tan2 ψ
a2

sec2 ψ
b2 − 2 tanψ secψ

ab

− tanψ
a2 0 secψ

ab




∂2

∂ξ2

∂2

∂η2

∂2

∂ξ∂η

 ; (16)

The transformed membrane strain energy S∗m, S∗b, S∗ab

and S∗s potential energy (P ∗) are kinetic energy (T ∗E) repre-
sented as:

S∗m =
1

2

∫ 1

0

∫ 1

0

<1(uo,ξ, u
o
,η, v

o
,ξ, v

o
,η) (17a)

cosψdξdη;
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S∗b =
1

2

∫ 1

0

∫ 1

0

<2(wo,ξξ, w
o
,ξη, w

o
,ηη, φ

o
1,ξ, φ

o
1,η, φ

o
2,ξ, φ

o
2,η)

(17b)

cosψdξdη;

S∗ab =
1

2

∫ 1

0

∫ 1

0

<3(wo,ξξ, w
o
,ξη, w

o
,ηη, φ

o
1,ξ, φ

o
1,η, φ

o
2,ξ, φ

o
2,η)

(17c)

cosψdξdη;

S∗s =
1

2

∫ 1

0

∫ 1

0

<4(φo1, φ
o
2) cosψdξdη; (17d)

P ∗ =− 1

2

∫ 1

0

∫ 1

0

<5(nxx, nxy, nyy, w
o
,ξ, w

o
,η) (17e)

cosψdξdη;

T ∗
E

=
1

2

∫ 1

0

∫ 1

0

<6(uo, vo, wo, φo1, φ
o
2) cosψdξdη; (17f)

The expressions for <i i = 1, 2, . . ., 6) are given in Ap-
pendix A.

2.1. Generation of Orthogonal Polynomials
To generate orthogonal polynomials satisfying essential

boundary conditions over the unit square plate domain in the
ξ − η plane, the following displacement fields are used:

ũo(ξ, η, t) =

N∗∑
j=1

Uj
∧
αj (ξ, η) cos(ωt)

ṽo(ξ, η, t) =

N∗∑
j=1

Vj
∧
βj (ξ, η) cos(ωt)

w̃o(ξ, η, t) =

N∗∑
j=1

Wj

∧
Θj (ξ, η) cos(ωt)

φ̃1
o(ξ, η, t) =

N∗∑
j=1

Kj
∧
γj (ξ, η) cos(ωt)

φ̃2
o(ξ, η, t) =

N∗∑
j=1

Lj
∧
δj (ξ, η) cos(ωt); (18)

where N∗ is the order of approximation to get the desired ac-
curacy; Uj , Vj , Wj , Kj and Lj are unknown constants; and
∧
αj(ξ, η),

∧
βj(ξ, η),

∧
Θj(ξ, η),

∧
γj(ξ, η)and

∧
δj(ξ, η) are boundary

characteristics orthonormal polynomial (BCOP) functions.

The orthonormal polynomials (
∧
Θj(ξ, η) are generated for sat-

isfying the essential boundary conditions over the unit square
plate domain in the ξ, η plane by the Gram-Schmidt pro-
cess explained by Singh and Chakraverty.4 In the present
study, the same orthonormal polynomials are considered for
∧
αj(ξ, η),

∧
βj(ξ, η),

∧
γj(ξ, η) and

∧
δj(ξ, η) also. Orthonormal

polynomials (
∧
Θj(ξ, η)) over the region 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1

have been generated using the linearly independent set of func-
tions Fj(ξ, η) = f(ξ, η)× fj(ξ, η). Both f(ξ, η) and fj(ξ, η)
are two functional scalar quantities as given below:

f(ξ, η) = ξp(1− ξ)qηr(1− η)s; (19a)

fj(ξ, η) =
{

1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3, . . . .
}
. (19b)

The explicit expression for the orthogonal polynomials for
different types of boundary conditions are derived by using the
following equations:

Θj (ξ, η) = ξpηq(1− ξ)r(1− η)sfj(ξ, η). (20)

The value of ’p” depends on the boundary condition on ξ =
0, 1. At ξ = 0, p = 0, 1, 2 respectively for free, simply sup-
ported, and clamped boundary conditions. At ξ = 1, q =
0, 1, 2 respectively for free, simply supported, and clamped
boundary conditions. In a similar way, the values of r and s
are chosen for η = 0, 1 as:

Θ1 (ξ, η) = F1 (ξ, η) ,Θj (ξ, η) = Fj (ξ, η)−
j−1∑
i=1

αjiΘi (ξ, η) ;

(21)

αji =
< Fj (ξ, η) ,Θi (ξ, η) >

< Θi (ξ, η) ,Θi (ξ, η) >
,

i = 1, 2, 3, . . . , (j − 1), j = 2, 3, 4, . . . , N∗. (22)

The inner product of the functions Θi (ξ, η) and Θj (ξ, η) is
expressed as:

< Θi (ξ, η) ,Θj (ξ, η) >=

∫ 1

0

∫ 1

0

Θi (ξ, η) Θj (ξ, η) dξdη.

(23)
The norm of the function Θj (ξ, η) is expressed by:

‖Θj (ξ, η)‖ =< Θj (ξ, η) ,Θj (ξ, η) >1/2

=

[∫ 1

0

∫ 1

0

Θj (ξ, η) Θj (ξ, η) dξdη

]1/2
. (24)

The normalisation of the orthogonal polynomial is essential for
avoiding the illness of the stiffness matrix. The normalisation
is done by:

∧
Θj (ξ, η) =

Θj (ξ, η)

‖Θj (ξ, η)‖
. (25)

In the present study for all cases of the skew plate, 36 num-
bers of terms have been considered for getting the converged
pre-buckling free vibration frequency and buckling load. The
explicit expressions for 36 polynomial terms for simply sup-
ported boundary conditions (SSSS) are given in Appendix B.
For the sake of brevity, the explicit expressions for polynomial
terms for other boundary conditions are not presented.

2.2. Rayleigh-Ritz Method
The total potential energy (Π) of the system is the

sum of the strain energy (S) and the potential energy
(P ). The total potential energy function Π(S + P )
and kinetic energy function (TE) are transformed from
the x-y plane to the ξ − η plane by using Eqs. (14)
and (15). The displacement and rotational components
(ũo(ξ, η, t), ṽo(ξ, η, t), w̃o(ξ, η, t), φ̃1o(ξ, η, t)andφ̃2o(ξ, η, t))
are expressed in terms of unknown constants (Uj ,
Vj , Wj , Kj , Lj) using the orthonormal polynomials

(
∧
αj(ξ, η),

∧
βj(ξ, η),

∧
Θj(ξ, η),

∧
γj(ξ, η)and

∧
δj(ξ, η)). Further,

these displacement and rotational components are substituted
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in the total potential energy function and the kinetic energy
function to get the energy function in the ξ−η plane. The total
energy (TL) is the addition of the kinetic energy (T ∗E) to the
total potential energy (Π). This involves different unknowns,
Uj , Vj , Wj , Kj and Lj , and can be minimised with respect to
constants as follows:

∂TL
∂Cj

= 0 for j = 1, 2, 3, . . . , 5N∗; (26a)

where,

C1

C2

.

.

.
CN∗

CN∗+1

CN∗+2

.

.

.
C5N∗



=


{u}
{v}
{w}
{k}
{l}

 and {u} =



U1

U2

.

.

.
UN∗


,

{v} =



V1
V2
.
.
.
VN∗


, {w} =



W1

W2

.

.

.
WN∗


,

{k} =



K1

K2

.

.

.
KN∗


, {l} =



L1

L2

.

.

.
LN∗


.

(26b)

The total number of constants is 5N∗. The above Eq. (26a)
leads to the governing eigenvalue equation for finding the pre-
buckling free vibration frequency (λf ) as given below:

∑
[[KL − λKG]− λfM ]


{u}
{v}
{w}
{k}
{l}

 = {0} ; (27a)

where [M] is the mass matrix; [KL] is the linear elastic stiff-
ness; and [KG] is the linear geometric stiffness matrix. For
finding the buckling load (λbuck) in the static buckling prob-
lem, the eigenvalue problem is reduced to the following:

∑
[KL − λbuckKG]


{u}
{v}
{w}
{k}
{l}

 = {0} . (27b)

Here, λ < λbuck. Equations (26) and (27) constitutes a set of
5N∗ simultaneous algebraic equations referred to as the Ritz
system.

Figure 3. Variation of non-dimensional frequency (ω∗) for different modes
of vibration for three layered crosspl- [0/90/0] composite SSSS skew plates
(a/h = 100) having different skew angles.

3. RESULTS AND DISCUSSIONS

The non-dimensional fundamental frequency (ω∗) of
isotropic skew plates (a/b = 1, a/h = 100) for different skew
angles (ψ) and different support conditions are similar to open
literature and given in Table 1. For obtaining the convergence
of results, 36 numbers of terms (orthogonal polynomials) are
considered for all cases of support conditions and skew angles.
The present solution agrees well with the results obtained by
using the double series of beam characteristic function by Nair
and Durvasula and the two-dimensional orthogonal plate func-
tions by Liew and Lam.2, 31 Durvasula used the double Fourier
sine series to find the non-dimensional fundamental frequency
of a simply supported skew plate.1

The influence of skew angles on the free transverse vibra-
tion of simply supported composite [0/90/0] skew plates is
shown in Fig. 3. As the skew angle increases 0 ≤ ψ ≤ 450,
the frequency of the first three modes of vibration increases.
This behaviour is expected sincebecause, when the skew angle
increases, the stiffness of the plate increases, which makes a
higher frequency for all three modes of vibration. Similar be-
haviour is also observed for skew plates with more and more
edge restraints. Figure 4a shows the effect of boundary condi-
tions on the fundamental frequency of a composite skew plate.
As the four edges of the composite [0/90/0] skew plate support
changes in boundary conditions from simply supported (S) to
clamped (C) one after another, the stiffness increases, which
causes a higher frequency value. The fundamental frequen-
cies of the composite [0/90/0] skew plate are shown for the
following four boundary conditions: SSSS, CSSS, CSCS and
CCCC. The pre-buckling vibration behaviour is presented as
a plot of non-dimensional fundamental frequencies against di-
mensionless in-plane loads for composite skew plates of differ-
ent boundary conditions as shown in Fig. 4b. The pre-buckling
fundamental frequency and in-plane load of each plate are nor-
malized with respect to the free vibration frequency and buck-
ling load of an SSSS plate (a/b = 1; ψ = 30◦; a/h = 100).
The result indicates that the fundamental pre-buckling fre-
quency increases with the increase in the edge restraints of the
skew plate. The frequency is always higher for a CSCS plate
as compared to an SCSC plate.
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Table 1. Non-dimensional fundamental frequency (ω∗) of isotropic square skew plates (a/b = 1, a/h = 100) for different skew angles (psi) and different
support conditions.

Type of Supports Skew angle (ψ)
Non-dimensional fundamental frequency (ω∗)

Present solution Durvasula1 Liew and Lam2

SSSS

0◦ 1.99 2.0 -
15◦ 2.11 2.11 2.11
30◦ 2.52 2.54 2.52
45◦ 3.53 3.54 3.53

Nair and Durvasula31 Liew and Lam2

CSSS

0◦ 2.39 2.40 2.40
15◦ 2.54 2.54 2.55
30◦ 3.10 3.11 3.12
45◦ 4.53 4.53 4.58

CCSS

0◦ 2.74 2.74 2.74
15◦ 2.90 2.91 2.91
30◦ 3.52 3.57 3.52
45◦ 5.08 5.12 5.08

Note: ω∗ = ω
[
(b2/π2)

√
ρh/D

]
; D is flexural rigidity.

Figure 4a. Variation of non-dimensional fundamental frequency (ω∗) for dif-
ferent boundary conditions for three layered cross-ply [0/90/0] composite skew
plates (a/h = 100) having different skew angles.

Figure 5a shows the influence of aspect ratio on the free
vibration frequency of skew plates. As the aspect ratio
(a/b) increases, the non-dimensional fundamental frequency
increases. This is because the plate becomes stiffer with the
increase of the aspect ratio. It is also observed that as the
aspect ratio increases, the non-dimensional fundamental fre-
quency increases more rapidly for plates having a higher skew
angle. Figure 5b shows the effect of the aspect ratio on the
second mode of transverse vibration of skew plates. The vari-
ation of second mode frequency is similar to the fundamental
frequency for a plate with an aspect ratio up to nearly 1.5 for
all values of skew angles. However, the frequency variation
decreases beyond an aspect ratio of 1.5 for all values of skew
angles. The pre-buckling vibration behaviour is presented as
a plot of non-dimensional fundamental frequencies against di-
mensionless in-plane loads for SSSS composite skew plates of
different skew angles as shown in Fig. 5c. The pre-buckling
fundamental frequency and in-plane load of each plate are nor-
malized with respect to the free vibration frequency and buck-
ling load of an SSSS plate (a/b = 1; ψ = 0◦; a/h = 100). The
result indicates that the stiffness of the skew plate increases

Figure 4b. The influence of skew angle on the pre-buckling vibration be-
haviour of a composite skew plate a/b = 1; a/h = 100; ψ = 300) having
different boundary conditions.

in a non-uniform manner with the increase of the skew angle.
Also, in the pre-buckling range, frequency decreases with the
increase of in-plane load, reaching zero frequency at buckling
load.

Figure 6 reflects on the effect of shear deformation on trans-
verse vibration of skew plates for different aspect ratios (a/b)
of the three layered cross-ply [0/90/0] composite SSSS skew
plates ψ = 30◦. The effect of shear deformation on frequency
is more for higher values of the aspect ratio. The frequency
of different modes of vibration increases with the increase of
aspect ratio until a certain value, and after that, it remains con-
stant or slowly decreases for a plate of higher thickness in
which a/h = 10 and 20. The non-dimensional fundamental
frequencies increase with the increase of aspect ratio (a/b) for
plates of a/h ratio 50 and 100. For plates of a/h ratio 10 and
20, the non-dimensional fundamental frequency increases up
to an aspect ratio (a/b) with values of 1.75 and 2.5, respec-
tively, and then the frequency value slowly decreases.

Figure 7 shows the influence of different types of linearly
varying in-plane loading on the pre-buckling vibration be-
haviour of an SSSS composite plate (a/b = 1; ψ = 30◦;
a/h = 100). The pre-buckling fundamental frequency and
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Figure 5a. Variation of non-dimensional fundamental frequency (ω∗) with
respect to the aspect ratio (a/b) for three layered cross-ply [0/90/0] composite
SSSS skew plates (a/h = 100) having different skew angles.

Figure 5b. Variation of non-dimensional frequency (ω∗) for the second mode
with respect to the aspect ratio (a/b) for three layered cross-ply [0/90/0] com-
posite SSSS skew plates (a/h = 100) having different skew angles.

in-plane load of each plate are normalized with respect to the
free vibration frequency and buckling load of the SSSS plate
(a/b = 1; ψ = 30◦; a/h = 100). The result indicates that
the pre-buckling fundamental frequency value increases with
the increase in the γ value. Also, in the pre-buckling range,
frequency decreases with the increase of in-plane load, reach-
ing zero frequency at buckling load. The buckling loads ob-
tained from the present method of solution for skew plates
subjected to uniform in-plane loading with boundary condi-
tions in which all edges are simply supported and in which all
edges are clamped are similar to open literature and given in
Table 2. The mechanical properties used in the present analysis
for composite skew plate are: E11/E22 = 25, G12 = G13 =
0.5E22, G23 = 0.2E22 and ν12 = 0.25. The variation of di-
mensionless buckling load coefficients kc(=

Ncrb
2

E22π2h3 ) for dif-
ferent plate aspect ratios (a/b) of a simply supported cross-ply
composite [0/90/0] skew plate (a/h = 100, ψ = 30circ) sub-
jected to different types of in-plane loading (γ = 0.5, 1.0, 1.5
and 2.0) are shown in Fig. 8. It is observed that for uniform
in-plane loading (γ = 0), the value of the buckling coefficient

Figure 5c. The influence of skew angle on the pre-buckled vibration behaviour
of an SSSS composite skew plate (a/b = 1; a/h = 100).

Figure 6. Effect of shear deformation on non-dimensional fundamental fre-
quency (ω∗) for different aspect ratios (a/b) of the three layered cross-ply
[0/90/0] composite SSSS skew plates (ψ = 300).

(k) for the composite skew plate decreases up to an aspect ra-
tio (a/b) of 1.75 and then slowly increases up to an aspect ratio
value of 2.35 and then decreases slowly. Here, the aspect ra-
tio at which the composite skew plate buckling mode shifts
from first mode to second mode is 2.35. For other types of
linearly varying in-plane loading when γ = 0.5, 1.0, 1.5 and
2.0 the value of the buckling coefficient first decreases up to
an aspect ratio (a/b) of 1.45, 1.10, 0.9 and 0.8, respectively.
The mode-shifting occurs from first mode to second mode for
different types of linearly varying in-plane loading in which
γ = 0.5, 1.0, 1.5 and 2.0 for aspect ratios (a/b) of 2.25, 2.0,
1.33, and 1.0, respectively. For all types of linearly varying in-
plane loading, the value of the buckling coefficient decreases
after mode-shifting from first mode to second mode.

Figure 9 shows the variation of the dimensionless buckling
load coefficient kc(=

Ncrb
2

E22π2h3 ) for different plate aspect ratios
(a/b) of a clamped cross-ply composite [0/90/0] skew plate
(a/h = 100) subjected to in-plane bending loading (γ = 2.).
For in-plane bending, the value of the buckling coefficient first
decreases up to an aspect ratio of nearly 0.8 and then increases
up to an aspect ratio of nearly 1.0 for a skew plate having a
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Table 2. Critical buckling coefficient (ki) isotropic square skew plates (a/b = 1, a/h = 100) for different skew angles (ψ) under uniform in-plane loading.

Type of Supports Skew angle (ψ)
Dimensionless buckling coefficient (ki)

Present solution Wang5 Babu and Kant32

Simply supported plate (SSSS)

0◦ 4 4.0 4.0
15◦ 3.826 3.824 3.830
30◦ 3.323 3.316 3.330
45◦ 2.559 2.525 2.557

Durvasula33 Wang et al.3

Clamped supported plate (CCCC)

0◦ 10.074 10.074 10.074
15◦ 9.431 9.462 9.479
30◦ 7.612 7.638 7.734
45◦ 5.110 5.110 5.172

Note: ki = Ncrb
2cos4ψ/π2D

Figure 7. The influence of different types of in-plane loading on the pre-
buckled vibration behaviour of cboxan SSSS composite skew plate (a/b = 1;
a/h = 100; ψ = 30◦).

skew angle of ψ = 30◦and45◦. For the skew angle of ψ = 30◦

and 15◦, the buckling coefficient value mostly remains con-
stant between aspect ratio values of 0.8 and 1.0. The change of
mode occurs for all skew plates at an aspect ratio of 1.0, and
the further the buckling coefficient value decreases, the higher
the value of the aspect ratio.

In the present investigation, the following nine sets of
boundary conditions are considered: SSSS, SSCS, SCSS,
CSCS, SCSC, SSCC, CCSC, CCCS, CCCC, where ’S” stands
for simply supported edge and ’C” for clamped edge. The let-
ters indicate the boundary conditions on the edge of the plate
in the anti-clockwise fashion starting from the left-hand corner.
Table 3 shows the dimensionless buckling coefficient of three
layered cross-ply [0/90/0] composite skew plates (ψ = 45◦,
a/h = 100) with nine sets of boundary conditions subjected to
trapezoidal in-plane loading (γ = 0.5). It is observed that the
more edge restraint there is, the higher the buckling coefficient
is.

Tables 4 and 5 show the dimensionless buckling coefficient
for three layered cross-ply [0/90/0] composite skew plates
(ψ = 45◦, a/h = 100) with nine sets of boundary conditions
subjected to triangular in-plane loading and partial tension in-
plane loading, respectively.

Figure 8. Variation of the buckling load coefficient (k) with respect to the
aspect ratio (a/b) for three layered cross-ply [0/90/0] composite SSSS skew
plates (ψ = 30◦, a/h = 100) subjected to different in-plane loadingcboxs.

4. CONCLUSIONS

The pre-buckling vibration and buckling behaviour of com-
posite skew plates with different skew angles and boundary
conditions have been investigated under different types of lin-
early varying in-plane loadings. The present analysis is based
on higher-order shear deformation theory (HSDT) for deter-
mining more realistic behaviour of composite skew plates. The
total energy functional is derived using in-plane stress dis-
tributions and transformed from the physical domain to the
computational domain using transformation relations. This
functional is solved using the Rayleigh-Ritz method (RRM)
considering boundary characteristics orthonormal polynomials
(BCOPs) functions. The pre-buckled free vibration frequency
and critical buckling loads for composite skew plates under
different linearly varying in-plane loadings are obtained from
the solution of the associated linear eigenvalue problem. The
free vibration frequency of the skew plate under both loaded
and unloaded conditions increases with an increase in edge re-
straint and skew angle. For different types of linearly varying
in-plane loading, the pre-buckling fundamental frequency in-
creases with an increase in the γ value. For all types of linearly
varying in-plane loading in static stability analysis, the value
of the buckling coefficient decreases after shifting the buck-
ling mode from first mode to second mode. With the reduction
of length to thickness ratio (thicker plate), the free vibration
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Table 3. Dimensionless buckling coefficient (kc) for cross-ply [0/90/0] composite skew plates (ψ = 45◦, a/h = 100) with nine sets of boundary conditions
subjected to trapezoidal (γ = 0.5) in-plane loading.

Aspect ratio SSSS SSCS SCSS CSCS SCSC SSCC CCSC CCCS CCCC
0.5 12.85 23.67 13.49 43.19 13.97 23.83 24.67 43.27 44.29

0.75 7.44 12.50 8.46 21.56 9.48 12.87 14.17 21.88 22.87
1.0 5.74 8.70 7.31 13.95 9.11 9.36 11.29 15.10 15.59

1.25 5.26 7.18 7.63 10.55 10.47 8.24 10.92 12.08 12.67
1.5 5.43 6.70 8.76 8.93 10.55 8.27 11.03 11.17 11.74

1.75 6.05 6.88 9.25 8.29 10.69 8.78 10.81 11.03 11.98
2.0 6.71 7.55 9.79 8.29 11.67 8.80 12.02 12.12 12.60

Table 4. Dimensionless buckling coefficient (kc) for cross-ply [0/90/0] composite skew plates (ψ = 45◦, a/h = 100) with nine sets of boundary conditions
subjected to trapezoidal (γ = 0.5) in-plane loading.

Aspect ratio SSSS SSCS SCSS CSCS SCSC SSCC CCSC CCCS CCCC
0.5 14.70 26.66 15.76 47.47 16.12 26.70 28.11 49.89 49.98

0.75 9.40 15.50 11.21 25.68 12.13 15.68 17.77 28.77 28.85
1.0 8.25 12.26 11.45 18.53 13.26 12.69 15.86 22.76 23.10

1.25 8.93 12.03 14.64 16.14 16.91 12.80 17.44 22.36 23.04
1.5 11.20 14.09 19.06 16.27 19.91 15.19 20.83 25.34 25.80

1.75 14.17 17.23 25.09 18.07 25.22 17.25 25.73 30.55 30.65
2.0 17.92 17.87 18.00 20.64 32.36 19.91 32.78 35.12 35.73

Figure 9. Variation of buckling load coefficient (k) with respect to the aspect
ratio (a/b) for three layered cross-ply [0/90/0] composite CCCC skew plates
having different skew angles subjected to in-plane bending.

frequencies decrease with an increase in the aspect ratio. It is
also noted that the more edge restraint there is, the higher the
buckling coefficient is.
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Table 5. Dimensionless buckling coefficient (kc) for three layered cross-ply [0/90/0] composite skew plates (ψ = 45◦, a/h = 100) with nine sets of boundary
conditions subjected to partial tension (γ = 1.5) in-plane loading.

Aspect ratio SSSS SSCS SCSS CSCS SCSC SSCC CCSC CCCS CCCC
0.5 16.86 29.81 18.60 51.66 18.83 29.79 32.05 55.22 55.59

0.75 12.23 19.32 15.76 30.28 16.36 19.35 22.91 35.32 35.99
1.0 12.97 18.05 21.00 24.62 21.76 18.14 24.05 33.18 33.73

1.25 17.82 22.34 25.99 25.24 29.96 22.36 31.20 34.82 39.34
1.5 12.53 12.96 13.08 16.76 21.54 21.98 25.25 16.98 26.95

1.75 7.59 7.73 8.19 9.85 13.42 13.21 15.35 10.35 16.04
2.0 5.28 5.36 5.74 6.59 9.49 9.09 10.69 7.13 10.89
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Θ8 = 30
√

21η(1−3η+2η2)ξ(−3+17ξ−28ξ2+14ξ3) (B.8)

Θ9 = 30
√

21η(−3+17η−28η2+14η3)ξ(1−3ξ+2ξ2) (B.9)

Θ10 = 30
√

77η(1− 9η + 26η2 − 30η3 + 12η4)ξ(−1 + ξ)
(B.10)

Θ11 =30
√

182(−1 + η)ηξ(−1 + 13ξ − 57ξ2+

111ξ3 − 99ξ4 + 33ξ5) (B.11)

Θ12 =210
√

11η(1− 3η + 2η2)ξ(1− 9ξ+

26ξ2 − 30ξ3 + 12ξ4) (B.12)

Θ13 =90η(−3 + 17η − 28η2 + 14η3)ξ(−3 + 17ξ−
28ξ2 + 14ξ3) (B.13)

Θ14 =210
√

11η(1− 9η + 26η2−
30η3 + 12η4)ξ(1− 3ξ + 2ξ2) (B.14)

Θ15 =30
√

182η(−1 + 13η − 57η2+

111η3 − 99η4 + 33η5)ξ(−1 + ξ) (B.15)

Θ16 =30
√

42(−1 + η)ηξ(3− 53ξ+

325ξ2 − 935ξ3 + 1375ξ4 − 1001ξ5 + 286ξ6) (B.16)

Θ17 =210
√

26η(1− 3η + 2η2)ξ

(−1 + 13ξ − 57ξ2 + 111ξ3 − 99ξ4 + 33ξ5) (B.17)

Θ18 =30
√

231η(−3 + 17η − 28η2

+ 14η3)ξ(1− 9ξ + 26ξ2 − 30ξ3 + 12ξ4) (B.18)
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Θ19 =30
√

231η(1− 9η + 26η2−
30η3 + 12η4)ξ(−3 + 17ξ − 28ξ2 + 14ξ3) (B.19)

Θ20 =210
√

26η(−1 + 13η − 57η2+

111η3 − 99η4 + 33η5)ξ(1− 3ξ + 2ξ2) (B.20)

Θ21 =30
√

42η(3− 53η + 325η2−
935η3 + 1375η4 − 1001η5 + 286η6)ξ(−1 + ξ)

(B.21)

Θ22 =30
√

714(−1 + η)ηξ(−1 + 23ξ − 187ξ2+

737ξ3 − 1573ξ4 + 1859ξ5 − 1144ξ6 + 286ξ7),
(B.22)

Θ23 =210
√

6(1− 3η + 2η2)ηξ(3− 53ξ+

325ξ2 − 935ξ3 + 1375ξ4 − 1001ξ5 + 286ξ6),
(B.23)

Θ24 =30
√

546(−3 + 17η − 28η2 + 14η3)

ηξ(−1 + 13ξ − 57ξ2 + 111ξ3 − 99ξ4 + 33ξ5),
(B.24)

Θ25 =2310η(1− 9η + 26η2 − 30η3+

12η4)ξ(1− 9ξ + 26ξ2 − 30ξ3 + 12ξ4) (B.25)

Θ26 =30
√

546η(−1 + 13η − 57η2 + 111η3−
99η4 + 33η5)ξ(−3 + 17ξ − 28ξ2 + 14ξ3), (B.26)

Θ27 =210
√

6η(3− 53η + 325η2 − 935η3+

1375η4 − 1001η5 + 286η6)ξ(1− 3ξ + 2ξ2) (B.27)

Θ28 =30
√

714η(−1 + 23η − 187η2 + 737η3−
1573η4 + 1859η5 − 1144η6 + 286η7)(−1 + ξ),

(B.28)

Θ29 =30
√

1254(−1 + η)ηξ(1− 29ξ + 301ξ2 − 1547ξ3+

4459ξ4 − 7553ξ5 + 7462ξ6 − 3978ξ7 + 884ξ8),
(B.29)

Θ30 =210
√

102η(1− 3η + 2η2)ξ(−1 + 23ξ − 187ξ2+

737ξ3 − 1573ξ4 + 1859ξ5 − 1144ξ6 + 286ξ7),
(B.30)

Θ31 =90
√

14η(−3 + 17η − 28η2 + 14η3)ξ(3− 53ξ+

325ξ2 − 935ξ3 + 1375ξ4 − 1001ξ5 + 286ξ6),
(B.31)

Θ32 =210
√

286η(1− 9η + 26η2 − 30η3 + 12η4)

ξ(−1 + 13ξ − 57ξ2 + 111ξ3 − 99ξ4 + 33ξ5),
(B.32)

Θ33 =210
√

286η(−1 + 13η − 57η2 + 111η3 − 99η4+

33η5)ξ(1− 9ξ + 26ξ2 − 30ξ3 + 12ξ4), (B.33)

Θ34 =90
√

14η(3− 53η + 325η2 − 935η3 + 1375η4−
1001η5 + 286η6)ξ(−3 + 17ξ − 28ξ2 + 14ξ3),

(B.34)

Θ35 =30
√

1122/1303(−1 + η)ηξ

(1− 3ξ + 2ξ2)(−31− 154η + 1155η2 − 4004η3+

7007η4 − 6006η5 + 2002η6 + 988ξ − 8398ξ2+

31616ξ3 − 57798ξ4 + 50388ξ5 − 16796ξ6) (B.35)

Θ36 =30
√

1254/417437(−1 + η)η(−1 + ξ)ξ(635 + 308η−
3003η2 + 14014η3 − 35035η4 + 48048η5 − 34034η6+

9724η7 − 18088ξ + 176358ξ2 − 823004ξ3+

2057510ξ4 − 2821728ξ5 + 1998724ξ6 − 571064ξ7)
(B.36)
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