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Gear fault diagnosis is important not only during the routine maintenance of machinery, but also during the in-
spection of newly manufactured gearboxes at the end of the assembly line. This paper discusses the application
of an artificial neural network (ANN) and a support vector machine (SVM) for identifying faults in the gearbox,
using the psychoacoustic and conventional statistical features extracted from acoustics and vibration signals. It
is observed that at the end of the assembly line, the gearbox is tested by mounting it on a test bench and driving
it by an electric motor. Based on the sound emitted while running on the test bench, the operator decides on the
acceptance of the gearbox for further assembly on a vehicle or machine. This method of acceptance or rejection of
the gearbox involves subjectivity and it is not reliable. Hence, it is important to have a reliable and objective fault
detection and diagnosis method. To eliminate subjectivity, psychoacoustic features, which are derived from the sci-
ence of listening in human beings, are proposed to be used as features, along with ANN and SVMs as classifiers.
To ascertain the ability of the psychoacoustic features to classify faults, laboratory experiments are carried on a test
setup by simulating faults like a gear shaft misalignment, a profile error of a gear tooth, a crack at the root of the
tooth, and a broken tooth. ANN and SVM are trained with the psychoacoustic features extracted from the acoustic
signal and other statistical features from the acoustics and vibration signals. The trained SVM and ANN are tested
for fault classification for these features and their accuracy is compared. Fault classification accuracy is found to be
95.65% for ANN and 93.44% for SVM with psychoacoustic features and is found to be better than pure statistical
features obtained from the vibration and acoustic signals. With the optimised ANN and SVM architecture, SVM
is found to be performing better than ANN. It is concluded that the psychoacoustic features, along with the ANN
and SVM method, could be adopted at the end of assembly line inspection to make the inspection process more
objective.

1. INTRODUCTION

The gearbox plays an important role in industrial applica-
tions, such as power transmission machinery and rotating ma-
chinery. It is one of the most important elements in almost all
vehicles. Identification of gear faults is an important task in
maintenance functions. It is also very important during the in-
spection of the newly manufactured gearbox at the end of the
assembly line. Many researchers have contributed to the field
of gear fault diagnosis and its ramifications are wide and are
interdisciplinary in nature. Earlier, fault diagnosis was based
on vibration techniques in which time and frequency domain
analysis was carried out. Summary of such methods has been
reported in many books and review papers.1–4 Worden et al.
had elaborated on, in detail, the application of different soft
computing algorithms to the fault diagnosis of mechanical sys-
tems describing all the steps involved, i.e. data collection with
sensors, feature extractions, and application of different artifi-
cial intelligence techniques used for pattern recognition.5 The
complexity of gearbox technology led researchers to develop
innovative and advanced techniques for fault diagnosis to en-
hance accuracy and reliability. Zhang, et al.6 and Sharma,
et al.7 proposed a time synchronous averaging method to di-
agnose faults under fluctuating speed conditions. Innovative

techniques like empirical mode decomposition, Hilbert-Haung
transforms, short-time Fourier transforms, wavelets, etc. are
applied for feature extraction and signal processing.8–11 These
methods figure out the information content of the signal due
to the transient effect generated by fault and inherent nature
of amplitude and frequency modulated vibration signal emit-
ted by the gearbox. Envelop analysis is also preferred by many
researchers to extract the information content in the signal.12

Other approaches like cepstrum analysis and bispectrum anal-
ysis are also used by researchers to detect and localise fault
in the gearbox.13, 14 Though vibration-based techniques are
widely studied and accepted, the acoustic technique is also
emerging and efforts have been made by researchers to diag-
nose gearbox and bearing faults using it.15, 16 Due to the com-
plexity involved in analysing signals obtained in the time do-
main or the frequency domain, researchers have focused their
attention on complementing vibration and acoustic methods
with the artificial intelligence technique for fault diagnosis.
Vakharia, et al. applied SVM as a supervised machine learning
technique and self-organising maps to diagnose bearing faults
with the features extracted from the vibration signal.17 Singh,
et al. demonstrated a rotor fault diagnosis using ANN and
SVM.18 ANN based on a multilayer feedforward backpropaga-
tion algorithm is the most accepted pattern classifier based on
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the human biological system, which can be trained to map all
the non-linearity involved in the features.19, 20 SVM belongs to
a different pedigree. It is based on the statistical learning tech-
nique where the features are classified using separating hyper-
planes for a multidimensional vector feature space. It is found
to work in a robust way, avoiding overtraining and generalisa-
tion issues.21, 22 Many researchers have used these techniques
along with the features extracted from the vibration signal.23, 24

The work discussed in this paper focuses on end of the line
inspection of the automobile gearbox, where it is observed that
the gearbox is tested manually by a human operator on the ba-
sis of his judgment. The gearbox is operated by a motor on
a test bench and the human auditor listens the sound emitted
by the gearbox to judge the quality of the gearbox based on his
experience to discriminate between good and faulty gearboxes.
The identification of the quality of the gearbox is based on the
subjective decision of operator and his experience of testing
gearboxes. Very rare work is reported in the literature for fault
diagnosis problems for newly manufactured gearboxes. Shang,
et al. have reported on this issue and have proposed vibration-
based technique with time synchronous averaging and an ANN
technique to address this issue by applying a genetic algorithm
for feature selection.25 Cook, et al. have elaborated on trends
and perspectives of the end of line inspection in a technical
note and proposed that the ability of psychoacoustic features
to objectively inspect the devices can overcome the limitations
of human auditors.26 Hence, attempts are made to develop a
technique to identify faults using psychoacoustic features and
artificial intelligence technique to help the operator to objec-
tively make a decision about the acceptability of the gearbox.
Kane and Andhare have reported the use of psychoacoustics
for a single fault, i.e. a crack at the root of the gear tooth for the
diagnosis of a gear fault with ANN.27 In the present work, mul-
tiple faults like gear shaft misalignment with a healthy gear, a
gear tooth with profile error (e.g. a scuffed tooth), a crack at
the root of the gear tooth, and a broken tooth are simulated,
and each condition is diagnosed using ANN and SVM. Exper-
iments are carried out in a laboratory by seeding the faults in
a gearbox; the details of the experimental setup and methodol-
ogy are discussed in following section.

2. EXPERIMENTAL SETUP AND
METHODOLOGY

2.1. Experimental Setup
Experiments were carried out on a Spur gearbox test rig.

The layout and the photograph are shown in Fig. 1(a) and 1(b).
It consists of a single stage spur pinion and gear. The shafts
are supported by flanges with ball bearings. A single-phase
DC motor with a speed controller operates the input shaft. The
output shaft is connected to the loading arrangement with a
pulley and rope for applying the required load. A data acquisi-
tion (DAQ) card by National Instruments (NI9234) was used to
acquire the vibration and acoustic signals with the accelerome-
ter and the microphone. The microphone was located in a free
field at a 1 m distance from the gearbox and the accelerom-
eter was placed on the bearing housing. It was connected to
the DAQ card and the data were acquired and stored on a com-
puter. LabVIEW software was used to acquire the vibration

Table 1. Expressions to compute statistical features of acoustic and vibration
signals.

Sr. No Statistical Indicator Formula

1 Root Mean Square (RMS)
√∑N

n=1(x(n))2

N

2 Kurtosis
∑N

n=1(x(n)−µ)4

Nσ4

3 Skewness
∑N

n=1(x(n)−µ)3

Nσ3

4 Maximum max[x]

5 Minimum min[x]

6 Range max[x]−min[x]

7 Crest Factor Peak Value
RMS Value

8 Form Factor RMS Value
Mean Value

9 Mean
∑N

n=1(x(n))

N

11 Variance
∑N

n=1(x(n)−µ)2

N

Where x(n) = amplitude of the nth digitized point in the time domain,
N = number of points in time domain and µ = mean of the N points,
σ = standard deviation.

and acoustic signals and extract various psychoacoustic and
signal statistical features. The vibration and acoustics signals
and their features were obtained at a constant speed of 720 rpm,
and at a no-load condition, and with a partial load condition.
The various gear faults with the increasing severity of faults
were introduced and the assembly error for the gear shaft mis-
alignment was also introduced in the setup. In the experiment,
50 samples of the signals of each condition of gear were ac-
quired and its features were extracted. Thus, there were 500
sample signals. The sampling frequency selected for acquiring
data was set at 44 kHz for the acoustic signal and of 20 kHz
for the vibration data.

2.2. Methodology
Various gear tooth faults like a scuffed tooth (i.e., a tooth

profile error), a crack at the root, and a broken tooth were intro-
duced. Other faults (e.g. an assembly error of shaft misalign-
ment with a healthy gear) are also introduced. Various features
of acoustic and vibration signal were extracted by simulating
these faults in test setup. The pattern classifiers, such as ANN
and SVM, are applied on the extracted features to diagnose the
presence of a fault as a two-class problem. The methodology
followed in this study is depicted in the flow chart shown in
Fig. 2. The details of the features extracted from the vibration
and acoustic signal are discussed in next section.

3. SIGNAL PROCESSING AND FEATURE
EXTRACTION

3.1. Statistical Features of Vibration and
Acoustic Signal

Statistical features characterise the signal by obtaining the
values such as the mean, rms, kurtosis, skewness, etc. from the
vibration and acoustics time domain signals, and various statis-
tical features were computed using the LabVIEW programme.
A brief description of these features is presented in Table 1 and
the sample values obtained are shown in Table 2 and 3.

RMS is the normalized second statistical moment of the sig-
nal. It is used to describe the overall health of the machine.
Kurtosis is the normalized fourth statistical moment of the sig-
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(a)

(b)

Figure 1. (a) Layout of experimental setup. (b) Photograph of experimental setup.
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Figure 2. Methodology.
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Table 2. Sample values of statistical features extracted from vibration signal.

Status Load RMS Variance Kurtosis Skewness Max Min Range Mean Form Factor Crest Factor
Healthy no load 0.149 0.022 4.826 0.061 0.893 –1.052 1.945 0.010 14.670 5.994
Healthy with load 0.344 0.118 3.415 –0.030 1.843 –1.799 3.642 0.002 186.395 5.358

Crack at root no load 0.200 0.040 5.995 0.024 1.435 –1.673 3.107 0.002 118.074 7.156
Crack at root with load 0.723 0.523 3.608 –0.016 3.453 –3.345 6.798 0.002 461.447 4.776
Profile error no load 0.555 0.308 7.913 –0.011 3.765 –4.013 7.779 0.003 186.349 6.781
Profile error with load 0.803 0.645 3.369 0.003 3.415 –3.719 7.133 0.002 437.071 4.250
Broken tooth no load 0.191 0.037 5.351 0.033 1.353 –1.207 2.559 0.003 65.266 7.079
Broken tooth with load 0.725 0.526 7.079 0.014 5.015 –5.856 10.870 0.002 334.341 6.914
Misalignment no load 0.415 0.172 5.892 0.001 3.050 –2.984 6.034 0.002 240.989 7.351
Misalignment with load 0.149 0.022 4.826 0.061 0.893 –1.052 1.945 0.010 14.670 5.994

Table 3. Sample values of statistical features extracted from acoustic signal.

Status Load RMS Variance Kurtosis Skewness Max Min Range Mean Form Factor Crest Factor
Healthy no load 0.060 0.004 3.055 –0.039 0.230 –0.254 0.484 0.008 7.849 3.852
Healthy with load 0.067 0.004 3.041 –0.028 0.261 –0.273 0.533 0.003 25.794 3.913
Crack no load 0.061 0.004 2.938 0.018 0.247 –0.255 0.502 0.002 27.491 4.065
Crack with load 0.091 0.008 3.057 –0.022 0.411 –0.384 0.795 0.002 53.881 4.523

Profile error no load 0.107 0.011 3.091 –0.027 0.467 –0.466 0.933 0.003 36.957 4.384
Profile error with load 0.087 0.008 3.049 0.008 0.388 –0.376 0.764 0.004 20.066 4.469
Broken tooth no load 0.056 0.003 3.011 –0.054 0.259 –0.233 0.491 0.006 9.922 4.636
Misalignment no load 0.062 0.004 3.012 0.009 0.267 –0.308 0.575 0.006 10.115 4.293
Misalignment with load 0.059 0.003 3.097 –0.014 0.256 –0.249 0.506 0.002 25.190 4.371

nal. It provides the measure of the pickiness or impulsive na-
ture of the signal. Skewness is a measure of symmetry, or more
precisely, the lack of symmetry. Peak value or maximum value
is the highest point in a set of values. Range indicates the dif-
ference between maximum and minimum value of amplitude
of the signal. Crest factor is the ratio of peak level to RMS
level. It indicates the presence of high amplitude peaks caused
by local damages. Form factor is the ratio of the RMS value to
mean value which indicates the overall status of signal. Mean
is the average of all the amplitude of the digitized points sam-
pled. Variance indicates the spread of the amplitude of the
values from its mean.28–30

3.2. Psychoacoustic Features of Acoustic
Signal

Psychoacoustics is the scientific study of the sound percep-
tion. It involves the study of the psychological and physiolog-
ical responses associated with sound. It is an interdisciplinary
field, including psychology, acoustics, electronic engineering,
physics, biology, physiology, and computer science. Fastle,
Zwicker, and Aures have significant contributions in this field.
The contributions of these scientists have helped to develop
the methods to objectively quantify the sound that the human
being perceives. The way a human being extracts the informa-
tion contained in the acoustic signals using the natural senses
is mimicked in the algorithms that have been accepted by the
International Organisation for Standardisation (ISO). As per
ISO532B, the objective indices specified are stationary loud-
ness, time varying loudness, roughness, sharpness, tonality,
and fluctuation strength.31 Loudness is a term referring to the
human perception of sound volume, expressed in the units of
sone corresponds to 40 dB sound at 1 kHz tone. Roughness
is another algorithm used to determine the subjective judge-
ment to correlate noticeable sound as heard by the human ear.
Roughness is a hearing sensation related to the loudness mod-
ulation at frequencies too high to discern separately, such as a
modulation frequency greater than 30 Hz. It is the algorithm
developed to measure the energy in 24 barks that computes

and filters the envelope of signal in each band by measuring
the amplitude modulation of each envelope. It then weights
the level in each band with the frequency dependent weighting
function.32 This algorithm returns the roughness spectrum ver-
sus critical band and then integrates the roughness spectrum to
measure the roughness. Sharpness is a hearing sensation re-
lated to frequency and it is independent of loudness. It cor-
responds to the sharp, painful, high energy sound and is the
comparison of the amount of high frequency energy to the total
energy.33 Tonality is used to determine whether a sound con-
sists mainly of the tonal component of broadband noise. The
algorithm for tonality measures the relative strength of the sig-
nal, as compared to the overall signal.34 For each time block,
this algorithm first varies the frequency resolution according
to human frequency selectivity, then searches the frequencies
of likely tones and then compares the loudness of the sound.
Fluctuation strength is a hearing sensation related to the loud-
ness modulation at low frequencies that is perceptible individu-
ally. It uses a similar method to roughness versus time analysis,
except that it focuses specifically on the signal variation with
very low modulation frequencies.35, 36 These psychoacoustics
features like loudness, sharpness, roughness, and tonality were
extracted by using the modules in LabView, which follows ex-
pressions given in Table 4, and the sample values are tabulated
and shown in Table 5 for the various faults simulated in the
setup.

4. APPLICATION OF ARTIFICIAL NEURAL
NETWORK AND SUPPORT VECTOR
MACHINE

4.1. Artificial Neural Network
ANN is an interconnected network model based on the bi-

ological learning process of the brain and finds numerous ap-
plications in data analysis, pattern recognition, and control.37

Among the different types of neural networks, a feedforward
backpropagation multilayer perceptron neural network is used
for the present work. It consists of an input layer of source
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Table 4. Psychoacoustic features and related expressions.27

Sr.
No

Psycho-
acoustic
Feature

Formula Description

1 Loudness
(sone)31

N =
∫ 24 Bark
0 N ′dz

(Refer Fig. 3)
N = loudness in sones
N ′ = specific loudness
z = Bark scale

2 Loudness
(phon)31

N = 2
LL−40

10

LL = 40 + 10
log(N)
log(2)

LL = loudness level in phons

Figure 3. Critical band rate vs. specific loudness.32

3 Sharpness
(acum)

S = 0.11
∫ 24 Bark
0 N′g(z)dz∫ 24 Bark

0 N′dz

z < 14→ g′(z) = 1
z > 14→ g′(z) = 0.00012z4 − 0.0056z3 + 0.1z2 −
0.81z + 3.51
(Refer Fig. 4 for z value31)

Figure 4. Weighing g′(z) vs. critical band rate.32

4 Roughness
(asper)

R = fmod

∫ 24 Bark
0 ∇Lg(z)dz

(Refer Fig. 5)

Figure 5. Modulation frequency (fmod ) and perceived modulation depth
(∆L).32

5 Fluctuation
Strength
(vacil)31

F = ∆L
fmod
4 Hz + 4 Hz

fmod

∆L = perceived modulation depth
fmod = modulation frequency

6 Tonality
(Tu)
Aures
Model33

T = cW 0.29
T ∗W 0.79

Gr

WT = {
∑M
i=1[W1(∆zi) ∗W2(fi) ∗W3(∆Li)]

2}0.5

W1(∆zi) =
[

0.13
∆zi+0.13

]1/0.29

W2(fi) =

{
1

1+0.2∗
(

fi
700 Hz + 700 Hz

fi

)2
}0.5

W3(∆Li) = 1− exp
(
− ∆Li

15 dB

)
∆Li = Li− 10 log10

[∑n
k 6=i AE(fi)

]2
+EGr(fi) +

EHS (fi)

c = calibrating constant and is adjusted so that the value of 1 kHz tonal
component at 60 dB will be 1
WGr = weight function signifies the loudness to tonal ratio of tonal ele-
ment
WT = coherence function on the incitement of annoyance by tonal ele-
ments
W1 = the width of an individual tonal element
W2 = centre frequency
W3 = related to the value of tonal size
∆z = width of tonal element
f = center frequency in the unit Hz
∆Li = value of calibration size of the tonal element in the unit of dB
AE(fi) = is the effect of tonal element close to tonal element
EGr(fi) = intensity of noise in the critical band including the ith tonal
element.
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Table 5. Sample values of psychoacoustic features extracted from acoustic signal.

Status Load Roughness (asper) Sharpness (acum) Loudness (sone) Loudness (phon) Fluctuation Strength (vacil) Tonality (Tu)
Healthy no load 0.367 2.011 15.687 79.715 0.189 0.069
Healthy with load 0.357 2.696 22.724 85.062 0.245 0.027
Crack no load 0.442 2.128 18.309 81.945 0.401 0.000
Crack with load 0.342 3.122 28.403 88.280 0.179 0.084

Profile error no load 0.390 3.320 30.237 89.183 0.225 0.049
Profile error with load 0.450 2.662 23.100 85.298 0.405 0.057
Broken tooth no load 0.511 2.338 18.620 82.188 0.575 0.037
Broken tooth with load 0.516 3.471 29.754 88.950 0.316 0.003
Misalignment no load 0.348 2.795 22.049 84.626 0.317 0.034
Misalignment with load 0.294 2.793 23.420 85.497 0.215 0.026

nodes, two hidden layers of computation neurons, and the out-
put layer. The input layer nodes represent the normalized fea-
ture extracted from the measured signal. The number of input
nodes is six, for the six psychoacoustic features used. Simi-
larly, ten input nodes are used for the ten statistical features
of the acoustic signal and the vibration signal. For selecting
the number of hidden layers and the number of neurons in it,
the rule of thumb and a few suggestions as given by Palit and
Popovic are referred to, which suggests that two hidden lay-
ers are sufficient to solve the complex non-linear problems and
number of neurons in the hidden layer should be in the neigh-
bourhood of 75% of the number of network inputs, or between
0.5 and 3 times the number of inputs.38 The geometric pyramid
rule suggests assigning a hidden node as per the formula,

Nh = α
√
Ni ×N0;

where Nh is hidden neuron where Ni is the number of input
nodes in input layer, N0 is the number of nodes in the output
layer, and α is the multiplication factor, the value of which
should be selected in the range of 0.5 to 2. Efforts are made in
this work to observe the best performance of the ANN archi-
tecture by varying the number of layers and number of nodes
in it and the architecture with the best results is selected and
has been converted into a generalised program, which selects
the number of hidden nodes as equal to the number of input
nodes for the two hidden layers. Therefore, the two hidden
layers are selected and the number of neurons in each hidden
layer is taken equal to the number of inputs in every architec-
ture. The output node is one in all architectures. The target
value of the output node is having binary value 0 and 1, rep-
resenting good and faulty condition, respectively. In the ANN,
the activation function of tan-sigmoid (tanh) and logistic (log-
sigmoid) were used in the hidden layer and output layer, re-
spectively. The ANN was created, trained, and implemented
using code written in MATLAB with the training algorithm
of Levenberg-Marquardt.39 Out of the 500 sample signals ac-
quired, 40% were used for training, 30% for testing, and 30%
for validation. The ANN was trained iteratively to minimize
the performance function of the Mean Square Error (MSE) be-
tween the network output and corresponding target values. At
each iteration, the gradient of performance function MSE was
used to adjust the network weights and biases. In this work, an
MSE of 10−5, a minimum gradient of 10−10, and maximum
iteration number of 5000 were used. The training process got
terminated when the error converged to a specified condition
within the specified iteration. The initial weights and biases of
the network were generated automatically by the program.

The sample values of the input features for the training net-

Figure 6. ANN architecture with signal statistical features.

work are given in the Tables 2, 3, and 5. The training of ANN
is carried with these features for different faults versus healthy
gear condition as a two-class problem. The network architec-
tures used in MATLAB for statistical and psychoacoustic fea-
tures, respectively, are shown in Figs. 6 and 7. Figures 8(a)
and 8(b), 9(a) and 9(b), to Figs. 10(a) and 10(b) are the sample
regression plots of the ANN training, representing the corre-
lation between the network output and target values for dif-
ferent faults and features. The value of correlation coefficient
R is 0.97 for statistical features of acoustics signal and 0.99
for training with psychoacoustic features of acoustic signal as
well as vibration signal. The value of the correlation coeffi-
cient greater than 0.9 indicate a good fit of the data and the
training is perfect.

Similar plots were obtained for the other fault conditions.
Similarly, the performance plots for all the cases obtained are
observed to check the issue of overtraining and generalisation
and it’s observed that there is no chance of over-fitting and that
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Figure 7. ANN architecture with psychoacoustic features.

generalisation is good.

4.2. Support Vector Machine
The Support Vector Machine (SVM) has gained popularity

as a pattern recognition technique which is based on statistical
learning theory as it overcomes the over-fitting and generalisa-
tion issue, as compared to the popular classifier such as ANN.
Yang et al.,40 Sarvan et al.,41 Cheng et al.,42 and Saidi et al.24

have successfully demonstrated the application of SVMs for
gear and bearing fault classification, using features extracted
from the vibration signal such as higher order spectral features,
wavelet coefficients, and features obtained by decomposing
the signal using empirical mode decomposition etc. SVM has
proved successful in other fields of pattern recognition such as
finger print recognition, face detection, etc., as it can work with
small sample size.

The data obtained from the healthy and other all faulty con-
ditions in the gearbox are classified using SVM with a radial
basis function, such as kernel. Healthy gear condition was rep-
resented by the target value of 0 and other all faults like a crack,
profile error, broken tooth, and misalignment were assigned
the target value of 1. It’s not possible to pictorially present
the scatter of the feature points used for the classification in
multidimensional feature space, and hence the pair wise clus-
tering is demonstrated by applying the SVM classifier. Pair
wise comparison of the features is made and the pictorial repre-
sentation showing clustering of data for classification purpose
is presented for few features in Figs. 11, 12, and 13. From
Fig. 11(a-c) and Fig. 13(a-c), it can be inferred that the statisti-

Table 6. Comparison of classification accuracy of ANN and SVM.

Gear ANN SVM
Condi- Features Train- Test- Valida- Train- Test- Valida-

tion ing ing tion ing ing tion
VSF 100 95.83 91.66 100 92.83 95.42

Crack ASF 94.59 94.64 88.21 97.29 98.21 92.32
PF 98.90 95.65 95.65 97.53 93.44 95.08

Profile
VSF 100 100 100 100 100 100

error
ASF 98.75 100 95.08 100 100 100
PF 100 100 96.72 100 100 100

Broken
VSF 98.70 94.91 100 100 98.30 100

tooth
ASF 100 90.16 93.44 100 91.80 91.80
PF 100 100 100 100 100 100

Mis- VSF 98.88 94.20 89.85 97.77 98.55 88.40
align- ASF 88.88 89.85 85.42 94.44 89.85 85.50
ment PF 97.10 97.80 96.10 98.90 94.20 95.65

Where VSF = Vibration Statistical Features, ASF = Acoustical Statistical
Features, and PF = Psychoacoustic Features.

Table 7. Network statistics for ANN for misalignment error.

No. No. Train-
of of ing Train- Vali- Test-

Fea- Hid- Hid- Corre- ing dation ing
Corr RMSE

tures den den lation Accu- Accu- Accu-
Lay- No- Coeffi- racy racy racy

er des cient

VSF
1 10 0.96 97.77 89.85 97.10 0.94 0.17
2 9 0.93 98.88 92.75 97.89 0.92 0.20

ASF
1 18 0.83 92.22 91.30 96.20 0.94 0.170
2 10 0.82 91.11 92.75 97.10 0.89 0.24

PF
1 15 0.92 98.90 97.10 98.50 0.97 0.12
2 09 0.98 98.95 97.20 98.55 0.98 0.11

cal features of the vibration signal and psychoacoustic features
give better clustering of the features and hence, better diagno-
sis between the healthy and faulty gearboxes, compared to the
statistical features of the acoustics signal (Fig. 12(a-c)). Few
statistical features of the acoustics signal do not show distinct
clustering in the two-dimensional representation for faults, like
misalignment.

5. RESULTS AND DISCUSSION

ANN and SVM are trained to classify data with the psychoa-
coustic and statistical feature vectors of acoustic and vibration
signal, as discussed earlier. The trained ANN and SVM func-
tions are tested for the test data and the accuracy of classifica-
tion, without performing the optimisation that is compared and
shown in Table 6.

The Table 6 gives the comparison of the testing accuracy
for data from four different faults with different features on
which ANN and SVM are operating. Among the various fea-
tures used, psychoacoustic features are giving the best results
(93.44% to 100%) for various fault classification compared to
statistical features of vibration (88.40% to 100%) and statisti-
cal features of acoustic signals (85.50% to 100%). These re-
sults are in line with the clustering observed for the statistical

Table 8. Optimised SVM for misalignment fault.

Train- Vali- Test-
Fea-

RBF Sigma C
ing dation ing

Corr RMSE
tures Accu- Accu- Accu-

racy racy racy
VSF 0.0001 0.1 100 100 100 1 0
ASF 0.00001 0.01 100 100 100 1 0
PF 0.000001 0.01 100 100 100 1 0
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(a)

(b)

Figure 8. Regression plot for: (a) statistical features of healthy and misaligned gear shaft from vibration signal; (b) statistical features of healthy and scuffed
gear from vibration signal.
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(a)

(b)

Figure 9. Regression plot for: (a) statistical features of acoustic signal of healthy and misaligned gear shaft; (b) statistical features of acoustic signal of healthy
and scuffed gear.

International Journal of Acoustics and Vibration, Vol. 24, No. 1, 2019 77



P. V. Kane, et al.: END OF THE ASSEMBLY LINE GEARBOX FAULT INSPECTION USING ARTIFICIAL NEURAL NETWORK AND SUPPORT. . .

(a)

(b)

Figure 10. Regression plot for: (a) psychoacoustic features of healthy and misaligned gear shaft; (b) psychoacoustic features of healthy and scuffed gear.
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(a)

(b)

(c)

Figure 11. Pair wise clustering of statistical features of vibration signal with SVM classification: (a) kurtosis vs. RMS; (b) crest factor vs. RMS; (c) form factor
vs. RMS.
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(a)

(b)

(c)

Figure 12. Pair wise clustering of statistical features of acoustic signal with SVM classification: (a) kurtosis vs. RMS; (b) crest factor vs. RMS; (c) form factor
vs. RMS.
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(a)

(b)

(c)

Figure 13. Pair wise clustering of psychoacoustic features of acoustic signal with SVM classification: (a) loudness vs. roughness; (b) sharpness vs. roughness;
(c) fluctuation strength vs. roughness.
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features of the vibration and acoustic signal and psychoacous-
tic features, presented in Figs. 11, 12, and 13. These results
are based on the generalised program developed for ANN and
SVM, as discussed in sections 4.1 and 4.2, which provides the
basis to compare the classification ability of the different fea-
tures’ datasets.

To check whether these results can be further improved, the
ANN architecture and SVM architecture were varied. This
variation is done in the following manner. The ANN architec-
ture was varied by changing the number of hidden layers and
number of nodes in it and the fault classification accuracy was
evaluated. The accuracy of the single hidden layer and the two
hidden layers with number of hidden nodes varied from 1 to 20
is evaluated. Table 7 shows the sample of best results for the
different features’ datasets obtained for the fault of misalign-
ment. In Table 7, the training correlation coefficients indicates
the correlation between the input and target values during ANN
training. Classification accuracy indicates the correctness with
which the ANN can identify the target values. The values of
Pearson’s linear correlation coefficient, indicated by ‘corr’ and
root mean square error indicated by RMSE, is obtained for test-
ing the datasets in Table 7 and these are obtained by following
expressions

corr =

∑N
i=1(tp − t̄)(Op − Ō)√∑N

i=1(tp − t̄)2
∑N

i=1(Op − Ō)2
;

RMSE =

√√√√ 1

N

N∑
i=1

(tp −Op)2;

where N is the amount of data, tp is the target values, Op is
the predicated values, t̄ and Ō are the averages of the target
and predicted values, respectively.

Similarly, the SVM architecture was also modified by vary-
ing variable C and RBF Sigma (also termed as gamma in lit-
erature). A standard SVM seeks to find the margin that sep-
arates all the positive and negative data points and the results
of a standard SVM are demonstrated in Table 6. However,
this can lead to poorly fit models if any data points are mis-
labelled or extremely unusual. To account for this, in 1995,
Cortes and Vapnik proposed the ideas of a “soft margin” SVM
that allows some data points to be ignored or placed on the
wrong side of margin; this innovation often leads to a better
overall fit. C is the parameter for the soft margin cost func-
tion, which controls the influence of each individual support
vector; this process involves the trading error penalty for sta-
bility. C is a cost of classification and a large C gives low bias
and high variance. Low bias as the cost of misclassification
is penalised a lot. RBF Sigma is the parameter of a Gaussian
Kernel, which controls the position of data points in higher di-
mensions. Small RBF Sigma gives low bias and high variance
and large RBF Sigma gives higher bias and low variance. The
best values of the C and RBF Sigma hyperparameters are ob-
tained using the Grid-Search method.43, 44 Table 8 shows the
values of the parameters RBF Sigma and C, for which the best
classification accuracy results are observed for the datasets of
a misalignment fault compared to a healthy gearbox condition.
The training, validation, and testing accuracies are obtained
within the range of 62.31% to 100% for the values of C and

RBF Sigma varying from 0.00001 to 10000 on a logarithmic
scale for the feature sets presented in Table 8.

From the results obtained in Table 7, it can be observed that
there is a marginal change in the results of the ANN by chang-
ing its architecture compared with the results of Table 6 for the
generalised program developed to compare the fault classifica-
tion accuracy of different feature datasets. From the results of
Table 8, reasonable improvement in fault classification accu-
racy is obtained by varying the C and RBF Sigma parameters,
compared to the standard SVM.

ANN and SVM with psychoacoustic features are perform-
ing the best as compared to the other datasets. Psychoacoustic
features are derived from the variation in time as well as the
frequency domain and are analogous to the human ability to
listen. Different faults manifest differently in the form of sound
waves and psychoacoustic features can characterize them ef-
fectively, compared to the simple statistical features. Loudness
is based on amplitude of the frequency content of the acoustic
signal, sharpness indicates a variation in loudness at high fre-
quencies, while roughness characterises temporal deviations
due to the frequency modulation of 20 Hz to 300 Hz present
in sound pressure. Fluctuation strength characterises the tem-
poral deviation due to low frequency modulation in 0.25 Hz
to 20 Hz. The psychoacoustic features can characterise the
change in the health of a gearbox, analogous to human hear-
ing, as they are based on science of hearing. Therefore, the
psychoacoustic features are performing better.

6. CONCLUSIONS

This paper attempts to provide a solution to the issue of
hearing-based end of assembly line inspection during the man-
ufacturing of a gearbox. Various faults in gear assembly are
simulated in a laboratory on a test setup. Vibration and acous-
tic signals are acquired from the gearbox under various con-
ditions. A novel idea of applying psychoacoustics features is
attempted for fault identification. Psychoacoustics and signal
statistical features are extracted from the acquired signals of
the gearbox. These features are then used as inputs for ANN
and SVM for fault classification. The accurate results of clas-
sification of ANN and SVM are compared with the proposed
psychoacoustic features and conventional statistical features of
the vibration and acoustic signal. An attempt was made to im-
prove the performance of ANN and SVM by changing their
architecture. However, it resulted in marginal improvement in
ANN and significant improvement in performance of SVM.
From the comparison of various features used, it is observed
that for the combinations of datasets (four faulty and one good
gear condition), the classification with psychoacoustic features
has an edge over the others. Hence, it can be concluded that the
psychoacoustic features can capture the variation in the acous-
tic signal more effectively than the statistical signal features,
and it can objectively ascertain the presence of a fault along
with ANN and SVMs. The proposed method can overcome
the issue of the subjectivity involved in the inspection process
and can help the operator to make the decision objectively dur-
ing the end of the line inspection in the manufacturing envi-
ronment. The process of fault inspection can be automated us-
ing artificial intelligence techniques, like ANN or SVM, along
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with the psychoacoustic features to facilitate more objective
and intelligent decision making.
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