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The analysis of the dynamical responses of compressor components are typically evaluated by using mathematical-
mechanical models, and many decisions are given based on numerical simulations. Such an investigation is usually
performed in a deterministic framework that cannot consider the uncertainties of the numerical model. These un-
certainties are present in a numerical investigation due to the variability of the model parameters, caused by the
limitations of the manufacturing processes, as well as simplifications and/or lack of knowledge to describe complex
physical processes accurately. In order to quantify the sensitivity of the model parameters and the epistemic uncer-
tainties of a discharge tube’s structural numerical response—solved by the finite element method—two stochastic
models are constructed, and their results are simultaneously analysed. The dynamical responses obtained from
both stochastic models identify the robustness limits of the structural response when it is subjected to parameter
uncertainties as well as model sensitivity by separating each contribution in the estimated dynamical structural
response.

1. INTRODUCTION

In structural dynamics, a mathematical-mechanical model
is constructed to quantify the physical responses of real struc-
tures. The first source of uncertainties during the modelling
processes, called data or parameter1, 2 uncertainties, is at-
tributed to the variability of manufacturing processes. This
sort of uncertainty affects model parameters like geometry,
mechanical properties, and boundary conditions, among oth-
ers. The second source of uncertainties, called model or epis-
temic uncertainties,1, 3 is attributed mainly to assumed simpli-
fications and/or the lack of knowledge to describe complex
physical processes accurately. It is important to consider un-
certainties during a modelling process as doing so can improve
model predictability,2 especially at high frequencies at which
small variations in system configuration can lead to very dif-
ferent structural responses.4

The main purpose of this paper is to analyse a structural
response of a discharge tube used in household compressors
when subjected to data and model uncertainties. Figure 1
displays a scheme of a typical hermetic compressor used in
household refrigerators. It is mainly composed of a compres-
sion mechanism, which generates high impulsive forces due to
valve opening or closing, and a compressor housing, which is
the most prominent source of noise in a household refrigera-
tor.5 In order to decrease the vibration energy transmissibility
from the compression mechanism to the housing, and conse-
quently decrease the global compressor noise, the compres-
sion mechanism is suspended by springs. The spring stiffness
values are selected to attain a mass-spring system with natu-
ral frequencies much lower than the operational frequencies of
the compressor. The refrigerant fluid is conducted from the
compression mechanism to the refrigeration system by means
of the discharge tube. The tube serve as the main vibration
energy path from the compression mechanism to the housing,
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Figure 1. Scheme defining a typical household compressor.

and due its structural importance, it is designed with a par-
ticular geometry to decrease energy transmissibility from the
former to the latter. However, due to its low dynamical stiff-
ness, the first natural frequencies of the discharge tube are very
close to the operational values.6, 7 Thus any small variation in
the structural configuration can lead to system resonance.

In order to investigate the sensitivity of a discharge tube
finite element model’s sensitivity to data and model uncer-
tainties, two stochastic models are constructed based on dif-
ferent formulations for random uncertainties modelling. The
first one, called parametric probabilistic approach, allows the
consideration of data uncertainties, modelling every uncertain
parameter as a random variable. This is a very efficient tool
to quantify data uncertainties; however, by definition, it can-
not take model uncertainties into account.8 In order to investi-
gate model sensitivity, a nonparametric probabilistic approach
based on the maximum entropy principle and the random ma-
trix theory is applied.9 This is a very efficient tool to evaluate
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Figure 2. Isometric view of the analysed discharge tube.

both model and data uncertainties and, when applied together
with a parametric probabilistic approach, it can estimate the
robustness of system responses to model uncertainties.10

Section 2, presents the mean computational finite element
model constructed to investigate a structural response of the
discharge tube. Section 3 is devoted to the construction of
parametric and nonparametric probabilistic models of random
uncertainties and presents the methodology used to set the
same level of uncertainty in each stochastic model. Finally,
Section 4 presents and discusses the dynamical responses cal-
culated using the stochastic models and identifies the robust-
ness limits of structural responses to parameter variabilities
and model uncertainties.

2. MEAN DISCHARGE TUBE MODEL

Figure 2 displays an isometric view of the discharge tube. In
order to investigate the dynamical responses of the structure,
its geometry is discretized using the finite element method.
The nominal model is tested using a commercial code that
describes each element as an Euler–Bernoulli beam with two
nodes and six degrees of freedom in each node with three trans-
lational displacements along the nodal x, y and z directions
and three rotational motions about the nodal x, y and z di-
rections. The tube is made of coppered steel, with Young’s
modulus E = 200 GPa, Poisson’s ratio ν = 0.3, mass den-
sity ρ = 7870 kg/m3, external diameter φ = 3.2 mm, and
wall thickness s = 0.5 mm. The connector coupled with the
pipe is modelled as a point mass of mc = 4.25 g. Include the
connector in the analysis is very important because its mass
is approximately 20% of the entire discharge tube mass. The
structure is clamped in (a) and free in (b), where it is excited
by applying a unitary point force in the z direction.

The linear time–invariant damped system modelled with the
finite element method can be written in the frequency domain
as:

(−ω2[Mn] + jω[Dn] + [Kn]){un(ω)} = {fn(ω)}; (1)

where ω is the angular frequency, {fn(ω)} is the vector with
n inputs, {un(ω)} is the vector with n degrees of freedom,
and j is the imaginary unit. In Eq. (1), the mass [Mn], damp-
ing [Dn], and stiffness [Kn] operators are symmetric positive-
definite matrices. The vector {un(ω)} of the system can be
calculated by solving:

{un(ω)} = (−ω2[Mn] + jω[Dn] + [Kn])−1{fn(ω)}. (2)

We are interested in studying the structural acceleration vector
{an(ω)} due to the external point force. This vector can be

found using {un(ω)}, following the relation:

{an(ω)} = −ω2{un(ω)}. (3)

2.1. Mean discharge tube reduced model
In order to decrease the number of algebraic operations us-

ing [Mn], [Dn], and [Kn] (and, consequently, decreasing the
computational efforts), the mean reduced model is constructed
from the usual modal analysis. The generalized eigenvalue
problem is written as:

[Kn]{φi} = ω2
i [Mn]{φi}; (4)

where ωi is the i-th eigenvalue and {φi} is its corresponding
eigenvector. Defining the matrix [Φm] = [{φ1} {φ2} ... {φm}]
with m � n, the system response {un(ω)} can be approxi-
mated by {um(ω)}, such that:

{um(ω)} = [Φm]{qm(ω)}; (5)

where {qm(ω)} is the vector solution of:

(−ω2[Mm] + jω[Dm] + [Km]){um(ω)} =

[Φm]{fn(ω)}. (6)

In Eq. (6), the diagonal reduced matrices [Mm], [Dm], and
[Km] can be represented algebraically, assuming the normal-
ization [Φm]T [Mn][Φm] = [Im], where [Im] is the identity
matrix, as:

[Mm] = δij , [Dm] = 2ξiωiδij , [Km] = ω2
i δij ; (7)

where δij is Kronecker’s delta, and ξ1 = ξ2 = ... = ξm =
0.25% are the usual modal damping rates. According to
Eq. (3), the approximated acceleration response {am(ω)} can
be written using the modal solution, such that {am(ω)} =
−ω2{um(ω)}. The error associated with the approximation
of the acceleration vector {an(ω)} by {am(ω)} can be con-
trolled, and it should be reduced, as it is necessary to set the
optimal value of m, wherein ‖ {an(ω)} − {am(ω)} ‖ is suffi-
ciently close to zero.

2.2. Mesh convergence
In order to check the mesh convergence, the structural nat-

ural frequencies are calculated as a function of the number of
elementsNe used in the finite element model. For the precision
to exceed 99.75% in the 100th natural mode, it is necessary to
use a mesh with approximately 300 elements. Figure 3 shows
the acceleration spectrum {a(b)m (ω)} at point (b) (see Fig. 2)
in the z direction, which is calculated using the mean reduced
model with m = 100 modes.

3. STOCHASTIC MODELS

This section deals with the construction of two different
stochastic models of uncertainties. The first, the paramet-
ric probabilistic model, considers mechanical and geometrical
properties as random variables. The second model, the non-
parametric probabilistic model, considers uncertainties at the
operator’s level. The main differences between the paramet-
ric and nonparametric approaches when applied to a very sim-
ple dynamical system can be found in Sampaio and Cataldo’s
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Figure 3. Acceleration spectrum at point (b) in the z direction.

work,12 while some physical consequences of using the non-
parametric probabilistic approach can be found in the work
of Legault et al.4 Following the methodology developed by
Capiez-Lernout et al.,10 the nonparametric probabilistic model
is fitted to introduce a similar level of uncertainty for each
probabilistic model.

3.1. Parametric probabilistic model

Let {x} = {p1, p2, ..., p46} be a vector containing 46 pa-
rameters, like curvature radii, inclination angle, Young’s mod-
ulus, damping ratio, connector mass, and other features of the
discharge tube. Therefore, the matrices of Eq. (1) are functions
of {x}. During the parametric probabilistic modelling, vector
{x} is modelled as a random vector {X} in which the random
elements Pi are independent Gaussian random variables with
mean µi and standard deviation σi. The normal distribution is
defined from−∞ to∞; consequently, a Gaussian variable can
assume negative values. This behaviour is not acceptable for
many necessarily positive parameters of the stochastic model,
like Young’s modulus, the damping ratio, and the connector
mass. However, as the purpose of this paper is to evaluate the
sensitivity of the discharge tube model under low levels of un-
certainties and, consequently, the probability of the necessar-
ily positive random variables, one may assume negative values
can be neglected. The stochastic finite element model is then
written as:

(−ω2[M
par
n ] + jω[D

par
n ] + [K

par
n ]){Upar

n } = {fn(ω)};
(8)

where [M
par
n ], [D

par
n ], and [K

par
n ] are the random matrices

obtained from the probabilistic model of {X}, and {Upar
n }

is the corresponding stochastic process of system responses.
In Eq. (8), the operators [M

par
n ], [D

par
n ], and [K

par
n ] are all

symmetric positive-definite random matrices. The dispersion
of the random vector {X} is controlled by its coefficient of
variation, which is chosen as 1% for all random variables Pi,
except the inclination angle variables for which the standard
deviations are chosen as 1 degree. Figure 4 shows two different
meshes randomly obtained with the parametric probabilistic
approach. A numerical solver using the direct Monte Carlo
simulation2, 9 is performed to solve Eq. (8) according to the
usual modal analysis described in Subsection 2.1.

ZX

Y

Figure 4. Isometric view of two different meshes randomly obtained using
the parametric probabilistic model. The dots represent the node positions,
the squares denote the connector point mass, and the crosses show the clamp
locations.

3.2. Nonparametric probabilistic model

The nonparametric probabilistic modelling process consid-
ers uncertainties at the matrix operator’s level. The nonpara-
metric approach was proposed by Soize,9 and it has been ex-
tensively studied in linear13 and nonlinear14 dynamics, vibroa-
coustics,15 and static16 problems. Therefore, the reduced ma-
trix model defined in Eq. (6) is replaced by:

(−ω2[M
npar
m ] + jω[D

npar
m ] + [K

npar
m ]){Unpar

m } =

[Φm]{fn(ω)}; (9)

where [M
npar
m ], [D

npar
m ], and [K

npar
m ] are symmetric positive-

definite reduced random matrices and {Unpar
n } is its associ-

ated stochastic process. The matrices in Eq. (9) can be rewrit-
ten as:

[M
npar
m ] = [LM ]

T
[GM] [LM ] ; (10)

[D
npar
m ] = [LD]

T
[GD] [LD] ; (11)

[K
npar
m ] = [LK ]

T
[GK] [LK ] ; (12)

where [LM ], [LD], and [LK ] are diagonal matrices ob-
tained from the usual Cholesky decompositions [Mm] =
[LM ]T [LM ], [Dm] = [LD]T [LD], and [Km] = [LK ]T [LK ].
In Eqs. 10, 11, and 12, the operators [GM], [GD], and [GK]
can be modelled as independent positive-definite symmetric
random matrices9, 11 for which probability density functions
must be constructed.

The random matrix [G] denotes [GM], [GD], or [GK]. The
probability model of [G] is constructed according to the ran-
dom matrix theory and the maximum entropy principle us-
ing the available informations as constraints.2, 9 The probabil-
ity density function of random matrix [G] with respect to the
Lebesgue measure d̃G = 2n(n−1)/4

∏
1≤i≤j≤n dGij is given

by2, 9

pG([G]) = 1M+([G])× CG × det([G])
(m+1)

1−δG
2δG ×

exp

{
−m+ 1

2δ2G
tr([G])

}
; (13)

where 1M+([G]) is equal to 1 if [G] ∈M+ and is to 0 if [G] /∈
M+; M+ denotes the ensemble of all real symmetric positive-
definite matrices with dimensions m×m. In Eq. (13) CG is a
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positive constant, such that:

CG =
(2π)−m(m−1)/4{(m+ 1)(

√
2δvG)−2}m(m+1)/(2δ2G)∏m

j=1 Γ
(
m+1
2δ2G

+ 1−j
2

) .

(14)
The dispersion parameter δG denotes the mean quadratic dis-
tance between random matrix [G] from its mean value [Im] and
assumes the value 0 ≤ δG ≤ (m+ 1)1/2 × (m+ 5)−1/2. The
algebraic representation of [G] can be constructed according
to Cholesky factorization. Thus:

[G] = [LG]T [LG]; (15)

where [LG] is an upper triangular random matrix such that:

1. the matrix elements [LG]ij are independent random vari-
ables;

2. for i < j, the matrix elements [LG]ij can be written as
[LG] = δG√

m+1
Uij, where Uij is a real Gaussian random

variable with zero mean and unit variance;

3. for the diagonal i = j, the matrix elements [LG]jj can be
written as [LG] = δG√

m+1

√
2Vjj, where Vjj is a gamma

random variable whose probability density function is:

pVjj (v) =
1

Γ
(
m+1
2δ2G

+ 1−j
2

)v(m+1)/2δ2G−(1+j)/2 exp{−v}.

(16)
A numerical solver using the direct Monte Carlo method is

implemented to solve Eq. (9). The system response is cal-
culated, according to Eq. (5), as a linear combination of the
eigenvectors obtained from the mean model.

3.3. Identification of the matrices’ disper-
sion parameters with respect to the
parametric probabilistic model

This paper aims to analyse the response sensitivity of an
industrial mechanical system to data and model uncertainties.
Therefore, it is necessary to set the nonparametric probabilistic
model to represent the same levels of uncertainties reproduced
by the parametric probabilistic model. The dispersion parame-
ters δM , δD, and δK related to the random mass, damping and
stiffness matrices, respectively, are then estimated using the
methodology developed by Capiez-Lernout et al.10 The para-
metric probabilistic model introduced in Subsection 3.1 in-
cludes data uncertainties, while the nonparametric probabilis-
tic model introduced in Subsection 3.2 deals with both model
and data uncertainties. An optimization problem is introduced
to set the same level of uncertainties in both probabilistic mod-
els.

The lowest natural frequencies of the system modelled by
the parametric and nonparametric probabilistic approaches are
Ωpar

1 and Ωnpar
1 , respectively. The probability density func-

tions pΩpar
1

and pΩnpar
1

—related to the random variables Ωpar
1

and Ωnpar
1 , respectively—are compared using the least square

cost function:10

J(δM , δK) =
‖ pΩnpar

1
− pΩpar

1
‖

‖ pΩpar
1
‖

; (17)
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Figure 5. Discrete probability density functions obtained with the parametric
(black) and nonparametric (grey) probabilistic approaches.

where ‖ f(x) ‖, considering a generic function f(x), is ob-

tained solving
√∫∞

0
|f(x)|2dx. The dispersion parameters

δM and δK are then estimated solving the optimization prob-
lem:

[δM , δK ] = arg min J(δM , δK). (18)

Since structural natural frequencies are not functions of the
damping matrix, the dispersion parameter δD cannot be in-
cluded in the cost function defined by Eq. (17). Therefore,
δD is determined using the relation:10

δD =

√
WD(m+ 1)

tr{[Dm]}2 + tr{[Dm]2}
; (19)

where WD is the mean quadratic distance of random matrix
[D

npar
m ] from its mean value. The value of WD can be numer-

ically estimated solving:

WD = E{‖ [D
npar
m ]− [Dm] ‖2F }. (20)

4. SIMULATED RESULTS OBTAINED USING
THE STOCHASTIC MODELS

4.1. Estimation of the dispersion parame-
ters

In order to estimate the best values of δM and δK , the opti-
mization problem defined by Eq. (18) is solved using the ge-
netic algorithm with ns=2000, where ns is the number of sim-
ulations. The optimization problem yields δM = 0.276 and
δK = 0.011. Figure 5 shows pΩpar

1
and pΩnpar

1
using the best

estimated values. The best value of δD is determined by solv-
ing Eq. (19).

The value of as a function of the number of simulations is
presented at Fig.ure 6 and, according to the graph, the best
value is reached with simulations.

The value of δD as a function of the number of simulations
ns is presented at Fig. 6 and, according to the graph, the best
value δD = 0.029 is reached with ns = 1200 simulations.
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Figure 6. Value of δD calculated as a function of ns.
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Figure 7. Convergence function calculated using the parametric (black) and
nonparametric (grey) models varying ns for m = 100.

4.2. Convergence analysis
In order to set the best values for the number of simulations

ns and the dimensionm of the reduced model, it is necessary to
analyse the results using a convergence criteria. Since we are
interested in the connector’s random acceleration {a(b)

m (ω)},
the convergence function is defined as:

conv(ns,m) =

{
1

ns

ns∑
k=1

∫
|{a(b)

m (ω, k)}|dω

}1/2

; (21)

where k denotes the realization index. Figure 7 plots the con-
vergence function by varying ns for m = 100; according to
graph, good convergence is reached with ns = 1400 sim-
ulations. To set the best dimension of the reduced model,
the same convergence function is calculated by varying m for
ns = 1400 realizations.

The results are calculated in Fig. 8, and good approximation
is obtained using m = 70 structural modes.
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Figure 8. Convergence function obtained using the parametric (black) and
nonparametric (grey) models by varying m for ns = 1400.

4.3. Random response of the discharge tube
This section presents the results obtained from the paramet-

ric and nonparametric probabilistic models fitted with the same
levels of uncertainties. The parametric results are calculated
assuming the coefficient of variation for all random variables
as 1%, except for the inclination angles, which are assigned a
standard deviation of 1 degree. The stochastic response cal-
culated with the nonparametric probabilistic model is obtained
using the results δM = 0.276, δD = 0.029 and δK = 0.011
estimated in Subsection 4.1.

In order to investigate the robustness of the predictions, the
acceleration response is divided into three ranges: low fre-
quency (0–1 kHz), medium frequency (1–5 kHz), and high
frequency (5–10 kHz). The same finite element mesh is
used for all analysis. Figure 9 shows the random responses
{a(b)

m (ω, k)} in the low frequency range, calculated by apply-
ing the parametric (top) and nonparametric (bottom) stochastic
models. The grey envelope displays the confidence limits ob-
tained with a probability level of 95%, estimated by applying
the sample quantiles method.10, 17 The resulting graph shows
that the random acceleration response appears robust to data
uncertainties due to the low variability in the parametric model.
The model sensitivity, estimated by the differences between the
results of the parametric and nonparametric models, is negligi-
ble for frequencies lower than 500 Hz and starts increasing for
frequencies beyond this value.

The random response {a(b)
m (ω, k)} in the medium frequency

range for the parametric (top) and nonparametric (bottom)
models is Fig. 10. The parametric results (top) show that the
system is sensitive to data uncertainties, as depicted by the ex-
tent of the grey region. The envelope is large, indicating loss
of accuracy when predicting the resonance regions themselves.
The nonparametric results show that the system is not robust
enough to model uncertainties because the grey region in this
case is much larger than the one plotted using the parametric
model.

The high frequency responses are presented in Fig. 11. The
parametric results (top) show that the robustness of the system
response toward data uncertainties is small. However, when
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Figure 9. Top: Envelope (grey region) for a probability level of 95%, obtained
using the parametric probabilistic model in the low-frequency range. The dark
line presents the mean model response. Bottom: The same envelope obtained
using the nonparametric probabilistic model.

compared with the nonparametric results (bottom), it is de-
duced that model uncertainties are more important in this fre-
quency range. This result shows that even a simple dynamic
model—like the Euler–Bernoulli mechanical model used to
represent the discharge tube in this paper—can be very sen-
sitive to model uncertainties in medium and high frequency
ranges. Moreover, decisions based on a deterministic numeri-
cal investigation for discharge tube response can lead to mis-
leading results for medium and high frequencies.

5. CONCLUSIONS

This paper analysed two different stochastic models of un-
certainties applied to a discharge tube used in household refrig-
erators. The first stochastic model—the parametric probabilis-
tic model—replaced every uncertain parameter by a random
variable. This is a very efficient tool to evaluate data uncertain-
ties but, by definition, it cannot consider model uncertainties.
The second stochastic model—the nonparametric probabilis-
tic model—can consider both data and epistemic uncertainties.
Therefore, when both stochastic models of uncertainties are
applied to a structural analysis, it is possible to separate the
robustness of responses of a system subjected to both uncer-
tainties.
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Figure 10. Top: Envelope (grey region) for a probability level of 95%, ob-
tained using the parametric probabilistic model in the middle-frequency range.
The dark line presents the mean model response. Bottom: The same envelope
obtained using the nonparametric probabilistic model.

The results obtained in this paper showed that the system
response is very robust to data and model uncertainties in the
low frequency range. This property is very important because
the first natural frequencies of the structure are very close to
the operational frequencies. Therefore, decisions based on a
deterministic numerical analysis are predictive in the low fre-
quency range. The stochastic structural results for the medium
frequency range showed that both the data and the model un-
certainties increase, diminishing the robustness of the struc-
tural response in this frequency range. In the high frequency
range, the robustness of the structural response with respect to
data uncertainties continued to be small, but model sensitiv-
ity was predominant. This result suggests that a deterministic
strategy in this frequency range can lead to erroneous results.
Moreover, the results showed that even a very simple indus-
trial component model, like the discharge tube modelled in this
study, can be very sensitive to model uncertainties in medium
and high frequency ranges.
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The dark line presents the mean model response. Bottom: The same envelope
obtained using the nonparametric probabilistic model.
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