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In wave superposition method, the prediction accuracy of acoustic pressure heavily depends on the locations of
equivalent sources. In this paper, the prediction accuracy corresponding to monopole equivalent source is studied.
According to analysis in this paper, when the velocities on some boundary nodes are inversely calculated using
the predicted pressures, there is velocity reconstruction error, and the prediction error of the acoustic pressure
and the velocity reconstruction error are closely related. The relationship between them is theoretically derived
and indicates that the prediction error decreases with a decrease in velocity reconstruction error. Based on these
findings, a method to determine the optimal locations by minimizing the normalized velocity reconstruction error
is proposed. A frequency threshold criterion is devised to give the frequency range for certain number of equivalent
sources within which good prediction accuracy of the acoustic pressure can be obtained. The proposed method
is validated by simulation and experiment, respectively. The results show that the method significantly reduces
prediction errors and is feasible.

1. INTRODUCTION

Boundary element method (BEM) is established as a well-
known numerical tool for predicting acoustic pressure in infi-
nite domain. In the BEM, boundary surface discretization is
only required, and the Sommerfeld radiation condition at in-
finity is naturally satisfied.1–3 However, the system matrices
of BEM are usually non-sparse and non-symmetric, which in-
creases the processing time and storage requirements.2 Fur-
thermore, the non-uniqueness problem occurs at characteristic
wave numbers corresponding to interior problems.2, 3 Differ-
ent methods including the CHIEF and the Burton-Miller meth-
ods to overcome the non-uniqueness problem have been de-
vised.1–4 In the CHIEF method, the integral formulation is
modified by adding equations to enforce solutions to vanish at
points in the interior. Thus, the fictitious solutions can be dif-
ferentiated from the true ones. But there is a lack of rigorous
criteria for selecting interior points and determining the limit
of stability.3 The Burton-Miller method, in which the integral
equation is combined with its normal derivative, theoretically
precludes non-unique solutions. However, the various orders
of singular integrals of Green’s function must be numerically
described and can lead to inefficiencies in computation.4 Dur-
ing the past few decades, tremendous progresses in the devel-
opment of BEM are moving the application of BEM in predict-
ing acoustic radiation in infinite domain. For example, with
the recent developments in fast multipole BEM, the computa-
tional efficiency is significantly improved.5 The relevant work
of BEM is still on its way.6–9

Koopmann et al. proposed the wave superposition method
(WSM) based on the idea that the radiated acoustic field of a
radiator can be constructed as a superposition of the fields gen-
erated by an array of equivalent sources located on an auxiliary
surface in the radiator.10 The source strengths are determined
by the specific normal velocity distribution on boundary sur-
face. Thus, the singular integrals of Green’s function,4, 11–14

which are involved in BEM when the acoustic pressure predic-
tion points are located on the boundary surface, are eliminated.
Only matrix operations are needed for the acoustic pressure
prediction. Therefore, this method greatly simplifies the pro-
cess of acoustic pressure prediction and is easily realized using
computer programming. WSM has been applied to calculation
of acoustic radiation.15–17 However, the prediction accuracy of
acoustic pressure using this method strongly depends on the lo-
cations of the equivalent sources, particularly for the radiators
with complex geometric shapes. Determining the locations be-
comes a problem. If the sources are far from the boundary
surface, the system equations become ill-conditioned and the
prediction accuracy of acoustic pressure is greatly affected. Al-
ternatively, if equivalent sources are located near the boundary
surface, the singularity occurs and erroneous predicted results
will be obtained. The equivalent source locations are distin-
guishing for different structures. These lead to that until now
there is no available commercial software of WSM to predict
acoustic pressure.

To determine the equivalent source locations, some re-
searches have been proceeded. Bai provided an effective
methodology for finding the optimal distance for WSM ap-
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plications, and indicated that the optimal distance was not a
unique value and may well depend on many factors.18 Fahn-
line studied the prediction accuracy and stability of the wave
superposition method using singular-value decomposition, and
provided physical insight into the nature of an acoustic field
by the approximate singular-function expansion of the acous-
tic radiation.19 His research further showed that the nodes
should be equally spaced. The cause of the non-uniqueness
problem (due to too small singular value) was also discussed.
Hwang and Chang developed a regular integral equation for
the exterior acoustic radiation based on the surface source dis-
tribution.20 It has been indicated that the offset distance be-
tween the equivalent source and boundary surface must be
larger than one-quarter of element size for a certain meshing
pattern. Gounot and Musafir devised a genetic algorithm to
search for the optimal equivalent source sets.21–23 This ap-
proach permits a good reconstitution of the pressure field by
using very few monopoles. However, this search algorithm
fails for large number of sources. Zellers and Wu analyzed
the diagonal terms in related matrices.24–27 The diagonal terms
were substituted by the derived approximate analytical expres-
sion self-terms. As an example of the application of the tech-
nique, acoustic radiation from a uniformly pulsating sphere
was analyzed and compared with the analytic solution. The
results showed that the approximate analytical expressions of
the monopoles were only consistent with the analytical solu-
tions in the low-frequency range.

In this paper, the relationship between the prediction error
of the acoustic pressure and velocity reconstruction error on
the boundary is theoretically derived. An optimization method
to determine the locations of equivalent sources is proposed to
improve the prediction accuracy. A frequency threshold cri-
terion is devised to make the predicted pressure accuracy ac-
ceptable. The applicability of this proposed method is demon-
strated by numerically investigating the acoustic field of two
models including a uniformly pulsating sphere and designed
shell structure. The proposed method is further validated by
experiments of a cylindrical shell and a clamped plate.

2. THEORETICAL BACKGROUND

The wave superposition method (WSM) is based on the idea
that the radiated acoustic field of a radiator can be constructed
as a superposition of the fields generated by an array of sim-
ple sources, which are called equivalent sources and located
on an auxiliary surface enclosed in the radiator. The resulting
pressure at a receiver point r is defined as10:

p(r) = iρω
∫
V

q(r0)g(|r− r0|)dV (r0); (1)

where i2 = −1; ρ is the mean density of the medium; ω is
the angular frequency of the harmonic vibration of surface
S, which encloses volume V of the radiator; q(r0) is the
strength of the simple source distribution,10 which is evalu-
ated at r0 inside V , as shown in Fig. 1a; and g(|r− r0|) =

−eik|r−r0|/4π |r− r0| is the free-space Green’s function,

(a)

(b)

Figure 1. Diagram of the wave superposition method and equivalent source
array.

where k = ω/c is acoustic wavenumber, and c is the speed
of acoustic in the acoustic medium.

There is no restriction on the location of r0, and it can be
placed anywhere in V . In general, 0these simple sources are
assumed to distribute over on surface of a fictitious spherical
shell. Through some algebraic operations and discretization,
Equation (1) is rewritten as10:

p̂(r) =

N∑
i=1

sig(r, ri); (2)

where p̂(r) denotes an approximation of p(r); ri is the location
of the ith equivalent source on the auxiliary surface, as shown
in Fig. 1b; and si is the source strength of the ith equivalent
source.

The boundary condition on the surface of the radiator is de-
fined by:

∇p(rs) · ns = −ikρcv(rs) on S; (3)

where ∇ represents the gradient operator with respect to the
receiver location rs on the boundary surface; ns is the unit nor-
mal vector at location rs on the boundary surface; and v(rs)
is the normal velocity at rs. Substituting Eq. (2) into Eq. (3)
and applying it to N nodes on the surface of the radiator, the
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source strengths can be determined. Thus, the radiated acous-
tic pressure at any field point is determined as:

p̂(r) =

N∑
j=1

(
N∑
i=1

g(r, ri)D
−1
ij

)
v(rsj); (4)

where v(rsj) is the normal velocity corresponding to the jth
node on the boundary; and:

Dij =
1

ikρc
∂g(rsi, rj)

∂nsi
. (5)

3. EQUIVALENT SOURCE LOCATION
OPTIMIZATION

3.1. Velocity Reconstruction Error

Equation (3) indicates that the pressure and the vibration ve-
locity on the boundary are not independent. In this section, the
relationship between the prediction error of acoustic pressure
and the surface velocity reconstruction error is analyzed. From
Eqs. (3) and (4), the normal velocity at arbitrary location rs on
the boundary can be expressed as:

v̂(rs) =

N∑
j=1

(
1

ikρc

N∑
i=1

∂g(rs, ri)

∂ns
D−1ij

)
v(rsj) =

N∑
j=1

Nj(rs)v(rsj); (6)

where Nj(rs) is the velocity interpolation function. When
rs = rsh (rsh is the location of the hth node on the bound-
ary surface), Nj(rsh) is written as:

Nj(rsh) =
1

ikρc

N∑
i=1

∂g(rsh, ri)

∂nsh
D−1ij =

N∑
i=1

DhiD
−1
ij . (7)

Equation (7) indicates that Nj(rsh) is the summation of the
product of the hth row of matrix D and the jth column of D−1.
Thus, Nj(rsh) is exactly unity when h = j and zero when
h 6= j due to DD−1 = E, where E is the identity matrix.
Therefore, Nj(rsh) = δhj , where δhj is the Kronecker delta.
Because of the property of the Kronecker delta, the calculated
surface normal velocities on the nodes are identical to the pre-
scribed values, which are used to obtain the source strengths,
i.e., v̂(rsh) = v(rsh), h = 1, 2, · · · , N . Because the pre-
scribed normal velocities on these surface nodes can be ex-
actly reconstructed and the imaginary part of Nj(rsj) is zero
at these nodes, the imaginary part of Nj(rs) vanishes when N
approaches infinity. However, it is not always zero for finite
N values. This behavior results in velocity reconstruction er-
rors on the surface, i.e., the reconstructed velocity v̂(rs) is not
identical to the prescribed value v(rs) when rs 6= rsh.

In this paper, the errors of the predicted acoustic pressure
and the reconstructed velocity on the boundary surface are rep-
resented by εp = p(rs) − p̂(rs) and εv = v(rs) − v̂(rs), re-
spectively, where v(rs) · ns = v(rs) and v̂(rs) · ns = v̂(rs).

Because p̂(rs) and v̂(rs) satisfy Eq. (3), the following equa-
tion is obtained.

ikρcεv(rs) = ∇εp(rs). (8)

The linearized equations of the conservation of mass and state
are given as28:

∂ρ′(rs, t)

∂t
+ ρ∇ · v(rs, t) = 0, p(rs, t) ≈ c2ρ′(rs, t); (9)

where ρ′(rs, t) is the fluctuating quantity of the medium den-
sity. Only considering harmonic steady state conditions, the
pressure p(rs, t) and vibration velocity v(rs, t) can be writ-
ten as pt(rs, t) = p(rs)e

−iωt and vt(rs, t) = v(rs)e
−iωt.

Their approximations are given as p̂t(rs, t) = p̂(rs)e
−iωt and

v̂t(rs, t) = v̂(rs)e
−iωt. Thus, the following equation is ob-

tained.
∇ · εv(rs) =

ik
ρc
εp(rs). (10)

Substituting Eq. (8) into Eq. (10) yields:

∇2εp(rs) + k2εp(rs) = 0. (11)

It can be noted that εp(rs) satisfies the Helmholtz equation.
Equation (8) can be rewritten as:

ikρcεv(rs) · ns =
∂εp(rs)

∂ns
. (12)

Thus, this boundary condition is satisfied by εp(rs). Because
both p(r) and p̂(r) satisfy the Sommerfeld radiation condition,
the following equation at infinity is obtained.

lim
r→∞

rα
(
∂εp(r)

∂r
+ ikεp(r)

)
= 0; (13)

where r denotes a cylindrical or spherical polar radius, and α
is equal to 1/2 in the two-dimensional case (2D) and equal to
1 in three-dimensional case (3D). Hence, εp(rs) satisfies the
Sommerfeld radiation condition at infinity.

Analogous to the pressure wave, an error wave of the pres-
sure prediction that corresponds to the velocity reconstruction
error appears to be radiated from the radiator. Obviously,
εp(rs) is small when εv(rs) is small. Thus, εv(rs) can be
used to reflect the prediction accuracy of the acoustic pres-
sure. As a result, the optimal locations can be determined
by minimizing the velocity reconstruction error. In WSM,
the non-uniqueness problems of monopole equivalent source
at the eigen-frequencies that correspond to the locations of the
sources can be eliminated by adjusting the locations. There-
fore, the non-uniqueness problems can be avoided in the opti-
mal locations.

3.2. Equivalent Source Location
Determination

To accurately predict the acoustic pressure, the dipole matrix
D should be diagonally dominant. This condition requires that
each source must be paired with the corresponding node on
the boundary surface, and that the distance between the source
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and node is less than that from any other source to the node.
However, only a few structures, such as the sphere and infi-
nite circular cylinder, can satisfy this condition. To reduce the
optimization parameters for determining the optimal locations,
equivalent sources are located on an auxiliary surface that is re-
tracted from the actual structure boundary by scale coefficient
Sc(0 < Sc < 1). The auxiliary surface has a similar geomet-
ric shape to the radiator. The coordinates of the sources are
obtained by multiplying Sc with the surface nodes. Thus, the
parameters are reduced to one.

To determine the optimal Sc, a method is proposed by min-
imizing the normalized velocity reconstruction error, which is
defined as:

εv =

∫
S

|v(rs)− v̂(rs)|dS∫
S

|v(rs)|dS
× 100% ≈

N∑
j=1

Sj |v(rsj)− v̂(rsj)|

N∑
j=1

Sj |v(rsj)|
× 100%. (14)

To calculate εv , the boundary surface is divided into with two
meshing patterns: modes A and B. In Eq. (14), Sj is the area
of the jth node in mode B. Here, it should be noted that the
nodes of mode A do not coincide with those of mode B. The
nodes of mode A are used to obtain equivalent sources, and
the prescribed velocities on the nodes are used to calculate the
acoustic pressure. According to Eq. (6), the constructed veloc-
ities v̂(rsj) on the nodes of mode B are interpolated using the
sjprescribed velocities on the nodes of mode A for each Sc.
For each Sc, εv is obtained by substituting v̂(rsj) and the pre-
scribed velocities v(rsj) on the nodes of modeB into Eq. (14).
Then Sc that corresponds to the minimum εv is selected as the
optimal value. The radiated acoustic vpressure is predicted in
the determined auxiliary surface. The designed objective func-
tion is: {

Objective function = min(εv(Sc, k))

Sc ∈ (0, 1), k = k1, k2, · · · , kn
. (15)

3.3. Frequency Threshold Criterion
It is known that the acoustic wavelength decreases with the

increase in vibration frequency. Therefore, for a certain num-
ber of equivalent sources, the threshold of frequency within
which the prediction accuracy of acoustic pressure in WSM is
acceptable is limited. Besides that, the threshold is distinguish-
ing when the equivalent sources are located on different auxil-
iary surfaces. Hence, it is indispensable to give the threshold
in the optimal auxiliary surface to ensure the predicted results
are acceptable for the given number of equivalent sources.

When the sources are located on the determined auxiliary
surface, the radiated acoustic pressure in the exterior region to
radiator can be expressed as10:

p(r) = iρωδτ

∫
σ

q(rσ)g(r, rσ)dσ(rσ); (16)

where σ is the determined auxiliary surface and δτ is a con-
stant value for thickness.10 The discretization of Eq. (16) can
be achieved by subdividing the auxiliary surface into a set of
small quadrilateral or triangular elements. The integral over
the auxiliary surface is approximated by summations of inte-
grals over each element. The spatial coordinates and acoustic
variables within an element can be related to the nodal values
by shape functions. Then, the appropriately weighted Gaussian
quadrature formula is used to calculate the element integrals.
Using the isoparametric surface element, the global coordinate
rσ and the source strength q(rσ) on each element can be ap-
proximated by:

rσ =

M∑
h=1

Nhrh and q =
M∑
h=1

Nhqh; (17)

where Nh is the known shape function; rh is the local coordi-
nate; qh is the nodal values of the source strength; and M is
the number of element nodes.

The discretized form of Eq. (16) based on the isoparametric
transformation is given as:

p(r) = iρωδτ
K∑
i=1

M∑
h=1

Hih(r)qh; (18)

where K is the number of elements and Hih is given as:

Hih(r) =

∫
σi

g(r, rσ)Nhdσ(rσ). (19)

Equation (19) represented in the s−t coordinate, for quadrilat-
eral element and triangular element respectively, are the form
of:

Hih(r) =

1∫
−1

1∫
−1

g(r, rσ(s, t))Nh(s, t)J(s, t)dsdt; (20)

Hih(r) =

1∫
−1

1−η∫
−1

g(r, rσ(s, t))Nh(s, t)J(s, t)dsdt; (21)

where J(s, t) is the Jacobian of the transformation. For two-
dimensional Gaussian quadrature formula, the upper bound of
error is given as20:∣∣∣∣∣∣

1∫
−1

1∫
−1

H(s, t)dsdt−
m∑
l=1

n∑
j=1

wlwjH(sl, tj)

∣∣∣∣∣∣ ≤ 2(E1 + E2);

(22)
where m and n denote the number of Gauss integral points
in s and v direction, respectively; wl and wj are the Gauss
weighting factor for the corresponding Gauss points sl and sj ;
E1 and E2 are the estimated relative errors.

The primary variations of the integrands in Eq. (20) and
Eq. (21) are determined by the terms that can be characterized
by e−ikr/rp, p = 1 or 2. Therefore, the following integral can
be representative of the actual integrals to estimate the Gaus-
sian quadrature error bounds.

H =

∫
σi

e−ikr

rp
dσ, p = 1, 2, 3. (23)
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Table 1. The numbers of elements on the boundary for modes A and B.

Mode A Mode B
Sphere 82 TE 82 TE

Designed 774 TE+400QE 1686 TE

Considering that the Jacobian is almost constant within an ele-
ment and the distance from the field point to the element is not
severely varied, E1 and E2 are determined as20:

E1 =
π

2(p− 1)!

(
kL1

4

)2m 2m∑
l=0

(l + p− 1)!

l!(2m− l)!

(
1

krmin

)
;

(24)

E2 =
π

2(p− 1)!

(
kL2

4

)2n 2n∑
l=0

(l + p− 1)!

l!(2m− l)!

(
1

krmin

)
;

(25)
whereL1 = max(L12, L34) andL2 = max(L23, L41); rmin is
the minimum distance between the field point on the bound-
ary and the element. To ensure convergence of the Gaussian
quadrature, k < min(4/L1, 4/L2). For triangular element, the
same criteria can be obtained. Let Lmax denote the maximal
size of all the elements on the optimal auxiliary surface. To
make the prediction accuracy of acoustic pressure acceptable,
the criterion should be satisfied.

k < 4/Lmax. (26)

4. NUMEICAL SIMULATION

4.1. Validation of Equivalent Source
Location Determination Method

In what follows, acoustic radiations from a uniformly pul-
sating sphere with radius a = 1 m and vibration velocity am-
plitude v = 1 m/s, and a radiator, as shown in Fig. 2, are pre-
sented to illustrate the use of the method. The acoustic medium
is air with its density ρ = 1.21 kg/m3, and the speed of acous-
tic c = 343 m/s. For the two radiators, the numbers of ele-
ments on the boundary for modes A and B are shown in Ta-
ble 1, where TE and QE represent triangular and quadrilateral
elements, respectively. Although there is no known analytical
acoustic pressure for the designed radiator, an exact solution
can be obtained using the substitute velocity boundaries, which
is equivalent to that from a point source, that is, a simulation
point source, in the structure surface. The prescribed normal
velocity on the boundary surface is generated by placing an
acoustic point source in the radiator. If the radiator vibrates
under such a boundary condition, the radiated pressure must
be equal to that generated by the point source. A monopole
source that is a simulation point source is set at a fixed location
with coordinate (0.15 m, 0 m, 0 m) for the designed radiator.

In this paper, ε1(%) and ε2(%) is used to represent the rel-
ative errors of the real and imaginary components of the pre-
dicted acoustic pressure, respectively. The root-mean square
norms of them are given by:

εreal =

√√√√ 1

M

M∑
m=1

ε21m, εimag =

√√√√ 1

M

M∑
m=1

ε22m; (27)

Figure 2. Shape and size of the designed radiator.

where ε1m and ε2m represent the relative errors of the real and
imaginary components of the acoustic pressure at node xm,
respectively. To study the effect of the equivalent source loca-
tions on the accuracy of the predicted result, εv , εreal and εimag

on boundary nodes of the two radiators are plotted for different
k and Sc values in Figs. 3 and 4.

These results show that the locations have a remarkable in-
fluence on the accuracy of the predicted acoustic pressure, and
that the errors change with Sc. Clearly, it can be seen that
εv , εreal and εimag show the almost identical trend, the predic-
tion accuracy increases when εv decreases, and good predic-
tion accuracy is obtained in the optimal auxiliary surface cor-
responding to minimum εv . Hence, εv is a good indicator of
the prediction accuracy of the acoustic pressure. It is also ob-
served that the prediction accuracy is relatively more sensitive
to the source locations for complex radiator. From the data of
the errors, the accuracy of the predicted values is acceptable at
0.19 ≤ Sc ≤ 0.37 for the designed radiator.

To further test the effectiveness of the proposed method, the
predicted acoustic pressure in optimal auxiliary surface is com-
pared to those in other retracted surfaces on an arbitrary se-
lected field point, P1 = (0 m, 0 m, 1 m) and P2 = (0.15 m,
0 m, 0.5 m) for the sphere and designed radiator, respectively.
Figures 5 and 6 show the comparison results, where the calcu-
lation frequency k satisfies the requirement of k ≤ 4/Lmax.

The comparison results show that the numerical solutions in
the optimal auxiliary surface are consistent with the exact solu-
tions, and the prediction accuracy is significantly improved in
the optimal auxiliary surface. Furthermore, it is shown again
that the prediction accuracy is relatively more sensitive to the
locations for complex radiator. According to analysis, the max-
imum errors of the predicted results are 1.4 × 10−8% and
5.6×10−3% for the sphere and designed radiator, respectively.
However, in other retracted auxiliary surfaces, the prediction
accuracy is very poor and the predicted result is unacceptable.
Therefore, the optimal auxiliary surface must be determined.

4.2. Validation of Frequency Threshold
Criterion

As previously analyzed, for a certain number of equivalent
sources, the prediction accuracy is only good in a certain fre-
quency range. Hence, it is necessary to judge the frequency
range in which the prediction accuracy is acceptable. Fig-
ure 7 shows the plots of εreal and εimag on boundary field nodes
calculated in optimal auxiliary surfaces for different k. Obvi-
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(a)

(b)

(c)

Figure 3. Plots of εv , εreal and εimag on boundary nodes of uniformly pulsating
sphere for different k and Sc values.

Table 2. kthreshold and maxima of εreal and εimag on boundary field points
calculated in optimal auxiliary surfaces when k < kthreshold.

kthreshold εreal εimag

Sphere 900 2.2× 10−3 1.00
Designed 270 0.70 1.05

ously, the accuracy of the predicted acoustic pressure becomes
unacceptable when the acoustic wavenumber k exceeds a cer-
tain value. Table 2 shows the frequency kthreshold that satisfies
kthreshold = 4/Lmax and the maxima of εreal and εimag when
k < kthreshold. The results show that the prediction accuracy is
guaranteed by requiring k < kthreshold.

(a)

(b)

(c)

Figure 4. Plots of εv , εreal and εimag boundary nodes of designed radiator for
different k and Sc values.

5. EXPERIMENTAL INVESTIGATION

To further validate the proposed method, the sound radia-
tion of two radiators, namely, a cylindrical shell and a clamped
plate are investigated experimentally, the physical data of
which are shown in Table 3. The cylindrical shell with flanges
of 1.5 cm thickness welded at its both ends is fixed on a still
frame by bolt to approximate the clamped boundary condition,
as shown in Fig. 8a. Both ends of the cylindrical shell are
sealed by two aluminum alloy end plates with a thickness of
2 cm. This material is chosen because of its high stiffness and
low weight. An ordinary 10 inch loudspeaker is positioned on
an end plate to generate an interior sound field, which excites
the cylindrical shell, as shown in Fig. 8c. The resulting struc-
tural vibration causes an exterior sound field around the cylin-
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(a)

(b)

Figure 5. Variation of pressure in the selected field point with k for uniformly
pulsating sphere.

Table 3. Physical data of two radiators.

Cylindrical shell Clamped plate
Length (m) 0.60 0.50
External diameter (m) 0.35
Width (m) 0.50
Thickness (mm) 1.05.2018 1.08.2018
Density (kg/m3) 7900 7800
Young’ modulus (N/m) 1.95× 1011 2.1× 1011

Poisson Ratio 0.247 0.30
Loss factor 10−4 ∼ 10−3 10−5 ∼ 10−3

drical shell. The stiff plate is fixed with his rim on a stiff frame,
the bottom of which holds an exciter, using bolt to approximate
the clamped boundary condition, as shown in Fig. 8b. The ex-
citer is connected to the center of the plate via a stiff push rod,
as shown in Fig. 8d, and makes the plate vibrate to generate an
exterior sound field.

The surfaces of the cylindrical shell and the clamped plate
are divided evenly into 30 and 25 elements, respectively. The
nodes of elements are used to obtain equivalent sources, and
the normal velocities on the nodes are used to calculate the
source strengths and the sound pressure. The constructed ve-
locities v̂(rsj) on the centers of the elements are interpolated
using the measured velocities on the nodes. εv is obtained
by substituting v̂(rsj) and the measured velocities v(rsj) on
the centers into Eq. (14). The normal velocities and the radi-
ated acoustic pressure in the selected field points as depicted

(a)

(b)

Figure 6. Variation of pressure in the selected field point with k for designed
radiator.

in Fig. 9 are obtained by means of velocity and pressure mea-
surements, as shown in Fig. 10. For the cylindrical shell, the
auxiliary surface is retracted from the boundary of the shell
along x-axis, as shown in Fig. 9a. Considering that the stiff
frame is well sealed, only the exterior side of the clamped plate
generates sound field into the infinite domain. Thus, the aux-
iliary surface can be located on an auxiliary plane at a certain
distance from the exterior side, as shown in Fig. 9b.

The measurements are made from 100 Hz to 700 Hz for the
cylindrical shell and 100 Hz to 500 Hz for the clamped plate
with increment of 10 Hz, the lower limit being imposed by the
semi-anechoic laboratory. The loudspeaker and the exciter are
driven with sinusoidal signal. The initial values of input volt
age and current for the loudspeaker are 15 V and 1.6 A, and for
the exciter 1.5 V and 2.7 A, where both the input voltages re-
main constant when the frequency is increased. The mass ratio
of the used accelerometer to the cylindrical shell and clamped
plate is less than 1%. Thus, the accelerometer has little in-
fluence on the vibration of the radiator. The measured and
computed sound pressure levels are plotted in Figs. 11 and 12
for two radiators, where pamp represents the amplitude of the
acoustic pressure.

The results show that the prediction accuracy is significantly
improved in the optimal auxiliary surface compared with the
fixed auxiliary surface, and the computed pressures in the op-
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(a)

(b)

Figure 7. εreal and εimag on boundary field points calculated in optimal aux-
iliary surfaces for different k (a) Uniformly pulsating sphere (b) Designed
radiator.

Table 4. Prediction error in optimal auxiliary surface.

Field point 1 Field point 2
Relative errors % Maximum Average Maximum Average
Cylindrical shell 5.09 3.04 6.05 3.07
Clamped plate 13.05 8.02 21.09 10.04

timal auxiliary surfaces are consistent with the measured val-
ues. The detailed data of the calculation accuracy are shown
in Table 4. From the data of the relative errors, the average
and maximum errors corresponding to the cylindrical shell are
less than 3.7% and 6.5%, respectively. The accuracy of the
computed acoustic pressure is good. For the clamped plate,
all of the accelerometer bases have been bonded to the surface
of the clamped plate when the vibration velocity and acoustic
pressure are measured. Its surface shape is changed by these
bases. When the radiated pressure is computed, the surface is
still treated as a plane. Its surface area is smaller than that of
the cylindrical shell. Thus, the accuracy is lower than that cor-
responding to the shell. The average error is still acceptable,
although the accuracies in very few frequencies are poor. In
addition, there is still some reflection of sound wave. These
cause discrepancy between the computed and measured values
in several frequencies.

6. CONCLUSIONS

The selection of the auxiliary surface is the key to obtain
accurate prediction results in the wave superposition method.
The relationship between the surface velocity reconstruction
error and acoustic pressure prediction error has been theoret-
ically derived in this paper. Representative numerical exam-

(a) (b)

(c) (d)

Figure 8. (a) Steel cylindrical shell (b) Clamped plate(c) Loudspeaker (d)
Exciter.

(a) (b)

Figure 9. Coordinates of these field points (a) Cylindrical shell (b) Clamped
plate.

ples show that the normalized velocity reconstruction error is
a good indicator of the prediction error of acoustic pressure.
The prediction accuracy can be significantly improved in the
optimal auxiliary surface compared with the fixed auxiliary
surface. With the criterion satisfied, the prediction accuracy
in the optimal auxiliary surface is acceptable and significantly
improved. The experimental results show that the prediction
error of acoustic pressure in the determined optimal auxiliary
surface is greatly reduced. Thus, the proposed method is good
at reducing the prediction error and is feasible.
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(a) (b)

Figure 10. Acoustic pressure measurement (a) Cylindrical shell (b) Clamped
plate.

(a)

(b)

Figure 11. Amplitude of the acoustic pressure of the cylindrical shell at the
selected field points (a) Field point 1 (b) Field point 2.
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