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The abilities of different degradation feature types to characterize rolling bearing fault trend are distinctive. And
even the characteristic ability of the same degradation feature can change at various times. Thus these feature
samples possess heteroscedasticity. However, traditional kernel extreme learning machine (KELM) model assumes
that different input samples’ effects on the predicted value are equal, which results in low prediction precision and
low computing efficiency. To solve this problem, a novel composite weighted KELM (CWKELM) prediction
model, which is fused with explicit weighting and implicit weighting, is proposed. In both feature type scale and
sample time scale, the feature samples and the prediction model are weighted according to the prediction error.
An adaptive mutation particle swarm optimization (AMPSO) algorithm is applied in optimizing the penalty factor
and the kernel parameter in the model. Taking various entropy features as the input samples, the proposed model
is adopted to conduct one-step and multi-step prediction for rolling bearing fault trend. Experimental results show
that this prediction model has higher prediction accuracy and computing efficiency compared with the traditional
KELM model.

1. INTRODUCTION

Rolling bearing is one of the key components that are widely
used and affect the health status of rotating machinery.1 In or-
der to prevent bearings and equipment from failure or damage,
it’s of great safety significance and economic value to carry
out rolling bearing fault trend prediction. The key of rolling
bearing fault trend prediction is to extract accurate degradation
characteristics and establish a good predictive model.2

On the one hand, as the input sample of the prediction
model, the degradation characteristics need to be sensitive
and robust to the degradation state of the rolling bearings in
the whole life cycle.3 The nonlinear complexity character-
istics based on the information entropy theory can measure
the probability distribution difference of variable bearing vi-
bration signals in different degradation stages from multiple
perspectives. And these degradation characteristics can reveal
the developing trend of the ball bearing degradation state in
essence. Therefore, entropy characteristics, including multi-
scale entropy,4 energy spectrum entropy,5 singular spectrum
entropy and spatial information entropy6 etc. have been widely
utilized in rotating machinery fault diagnosis and prediction.
These characteristics are combined with time-frequency anal-
ysis methods and perform well in fault diagnosis and degra-
dation state identification. Zhang et al7 proposed a novel
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hybrid bearing fault classification method based on permuta-
tion entropy (PE) and ensemble empirical mode decomposition
(EEMD) which can calculate the multi-scale intrinsic charac-
teristics as the fault classification features. In order to extract
accurate fault features from vibration signals, Li et al8 em-
ployed multi-scale permutation entropy (MPE) to character-
ize the complexity of the product function (PF) components
which are computed by local mean decomposition (LMD).
Zheng et al9 put forward a new and effective bearing fault di-
agnosis methodology based on fuzzy entropy (FuzzyEn) and
a self-adaptive time-frequency analysis method named local
characteristic-scale decomposition (LCD) which deals with
rolling bearing vibration signals. In summary, the informa-
tion entropy features are mostly applied in rolling bearing fault
classification and diagnosis, and the effect is significant. How-
ever, there are few applications of entropy features in the char-
acterization and prediction of the whole degradation life of
rolling bearings. This is mainly due to the degradation state
of rolling bearings changing at every moment in their full
life cycles. Bearing vibration signals have a large amount of
non-stationary and unbalanced data that are difficult to pro-
cess. When dealing with degradation data during the bearings’
whole life cycles, there are wide performance variations of dif-
ferent single entropy features on both type scale and time scale
and it can very likely result in a large prediction error. There-
fore, it’s better to carry out an effective weighted fusion pro-
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cessing of different entropy features.
On the other hand, the current fault prediction theories are

mainly divided into three categories including physical pre-
diction model, data-driven prediction methodology and fusion
prediction methodology.10 Among them, physical prediction
models utilize mathematical models such as damage rules to
describe failure mechanism and failure modes. However, these
damage rules are either linear or multi-linear and that implies
physical models fail to meet the mechanical failure predic-
tion requirements. Moreover, physical prediction models rely
heavily on the analysis of physical mathematical model which
is difficult to establish for rotating machinery with complex
structure and multiple fault modes. Therefore, the physics-
based prediction approach makes the prognosis a risky task.
With the rapid development of computer science and artifi-
cial intelligence (AI), the data-driven prediction methodolo-
gies have covered a great number of new technologies and AI
algorithms such as time series prediction model, particle filter-
ing, regression analysis, hidden Markov model (HMM), arti-
ficial neural network (ANN), support vector machine (SVM)
and extreme learning machine (ELM) etc.11 The main idea
of the date-driven prediction methodology is to employ data
from past operations and current bearing conditions in or-
der to predict the bearing fault trend or even forecast the re-
maining useful life (RUL).12 It is interesting to find out that
there are both connections and differences among ANN, SVM
and ELM. And these three kinds of methodologies have been
widely studied and utilized in the area of mechanical prognos-
tics.13–15 ELM model is a learning machine based on single
hidden layer feedforward neural networks which is proposed
by Huang G.B. When using this model for predicting, the only
thing you should do is to set the node number of hidden layer
neurons, and the input layer weight and the implicit layer de-
viations are randomly generated. Furthermore, the weight of
the output layer can be obtained, and the whole process is
completed through one training without iteration. Therefore,
this model has a faster computing speed compared with ANN
model. However, due to the random generation of some pa-
rameters of the model, the generalization ability is insufficient.
Meanwhile, the prediction performance is susceptible to pa-
rameters such as the number of implicit nodes, and the stabil-
ity is relatively poor as a result. Huang et al in 2012 borrowed
the kernel mapping from SVM model to replace the random
mapping in ELM model and put forward the concept of kernel
extreme learning machine (KELM) to improve the deficiency
of the original ELM model.16 And the proposed new model
has been widely studied and utilized in time series prediction
in the past five years, and its prediction ability is stronger than
SVM.17, 18 However, there are few application cases of KELM
model in terms of rolling bearing condition monitoring or fault
prognostics. The main reason is that the rolling bearing mon-
itoring data has strong nonlinear and non-stationary character-
istics and is imbalanced in both date type scale and time chang-
ing scale. Han and Wang19 indicate that the KELM model ig-
nores that different prediction window sample points have a
different influence upon the prediction performance and these
sample points exhibit heteroscedasticity which can be harmful
to the fault prognostics. Furthermore, Han and Wang19 point
out that it’s necessary to assign different weights to the sample
points in time scale to improve the prediction accuracy. This
significant standpoint shows us a new road to the higher pre-

diction accuracy.
Based on the above analysis, this paper proposes a

novel bearing fault trend prediction model named compos-
ite weighted KELM (CWKELM). On the basis of the KELM
structure, the training input samples come from three kinds
of entropy features and these features are explicit weighted in
the feature fusion layer. And the model structure is implicit
weighted in the model optimization layer at the same time. In
the proposed model, the prediction error of CWKELM is re-
duced by balancing the data structure in both feature type scale
and time scale. Further more, explicit weighting can reduce the
input samples’ dimension and the calculation efficiency of the
prediction model can be improved. An adaptive mutation par-
ticle swarm optimization (AMPSO) algorithm is employed to
optimize the key parameters such as penalty factor and ker-
nel parameter in the model in order to improve the prediction
accuracy further. The optimized CEKELM model is then ap-
plied in bearing fault trend prediction based on bearing vibra-
tion monitoring signals. Several kinds of information entropy
features extracted from vibration signals are taken as the input
samples and the root mean square (RMS) which monitors the
bearing’s whole life from normal state to failure is taken as the
predicted target value. After these steps, single step and multi-
step prediction of bearing fault trend is conducted at last. The
advantages of this model are verified in both predicting accu-
racy and computational efficiency compared with traditional
models such as ELM, KELM, SVM and BP neural networks.

The rest of this paper is organized as follows. The basic
principles of CWKELM model are explained in Section 2. In
detail, Section 2.1. presents the process of the entropy fea-
ture extraction and the explicit weighting. Later, the KELM
methodology and the implicit weighting are exhibited in Sec-
tion 2.2. Furthermore, Section 2.3. gives the specific steps of
CWKELM for rolling bearing fault trend prediction. Section 3
describes the bearing fatigue life test and explains the experi-
mental data used in this paper. Section 4 shows how the model
parameters are optimized with AMPSO algorithm. The pre-
dicted results with the novel model and other methodologies
are discussed and analysed in Section 5. And the conclusion is
reached in Section 6.

2. PRINCIPLES OF CWKELM

2.1. Entropy Feature Extraction and Explicit
Weighted Fusion

The first step of forecasting the rolling bearing degradation
state is to extract different kinds of information entropy char-
acteristics as the input samples of the model from vibration
signals during bearings’ whole life. Of these entropy charac-
teristics, multi-scale entropy (MSE), energy entropy, and sin-
gular entropy have a better performance and have been applied
in many cases. The calculation process of MSE is detailed by
Li et al.20 The fault developing trend of rolling bearings can
be better characterized by describing how far the rolling bear-
ing monitoring state deviates from the normal state with rela-
tive entropy theory. Therefore, relative energy entropy (REE)
and relative singular entropy (RSE) are defined on the basis
of energy spectrum entropy and singular spectrum entropy as
follows:

One single set of vibration data at rolling bearing normal
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state xb(t)(t = 0, 1, 2, . . . , N−1) andM sets of vibration data
at rolling bearing degradation state xi(t)(i = 1, 2, . . . ,M, t =
0, 1, 2, . . . , N − 1) are selected and then time-frequency spec-
trum Lb(t, f) and Li(t, f) are computed by time-frequency
analysis. And these two spectrums’ energies at characteristic
frequency fg are respectivelyEgb andEgi calculated as follows:

Egb =

N−1∑
t=0

Lb(t, fg)
2, (1)

Egi =

N−1∑
t=0

Li(t, fg)
2, (2)

where g = 1, 2, . . . , G represents the frequency characteris-
tics of fault. Based on this, the energy spectrum of samples at
normal state and samples at fault state can be represented as
Eb =

[
E1
b , E

2
b , . . . , E

G
b

]
and Ei =

[
E1
i , E

2
i , . . . , E

G
i

]
.

The total energy at characteristic frequency of all the sam-
ples can be computed by the following formula:

EgL =

M∑
i=1

Egi + Egb . (3)

The proportions of the energy of xb(t) and xi(t) at charac-
teristic frequency fg accounting for the total energy are respec-
tively as below:

pgb = Egb /E
g
L, (4)

pgi = Egi /E
g
L, (5)

where pgb +
∑M
i=1 p

g
i = 1.

According to the theory of relative entropy, REE between
the fault sample set and the normal sample set is calculated as
follows:

REEib =

G∑
g=1

|pgi log
pgi
pgb
|. (6)

The time-frequency spectrum Lb(t, f) of normal state and
Li(t, f) of fault state are processed by singular value decom-
position (SVD). The singular value spectrum of normal sam-
ples is σb =

[
σ1
b , σ

2
b , . . . σ

J
b ,
]

and the single value spectrum of
fault samples is σi =

[
σ1
i , σ

2
i , . . . σ

J
i ,
]

where J is the order of
the diagonal matrix in the decomposition of singular values.

Combined with singular spectrum entropy theory, two cor-
responding probabilities are defined as below:

qjb = σjb/σ
i
L, (7)

qji = σji /σ
i
L, (8)

where 1 ≤ j ≤ J, σjL =
∑M
i=1 σ

j
i + σjb .

And RSE between the fault sample set and the normal sam-
ple set is calculated as follows:

RSEib =

J∑
j=1

|qji log
qji
qjb
|. (9)

The above information entropy features can form a three-
dimensional eigenvector: X1 = [MSE REE RSE]. Three
kinds of information entropy features measure the complexity
changing of vibration signals from different angles and there

is much difference in abilities of characterizing the bearing
fault trend. It will result in large prediction error that X1 is
taken as the input samples of KELM directly. Therefore, in the
stage of model training, each entropy feature’s prediction error
for bearing operating states is evaluated respectively and con-
duct explicit weighting on every entropy feature. The weighted
input samples are more suitable for prediction model train-
ing and fault prognostics. Relative Root Mean Square Error
(RRMSE) and Correlation Coefficient of Trend Change α are
two different kinds of indicators commonly used in evaluating
the forecasting results. The actual feature sequence is set as
Y = {yj | j = 1, 2, . . . , n} and the predicted feature sequence
is written as Y1 = {ŷj | j = 1, 2, . . . , n}. The formulas of
RRMSE and α are as follows:

RRMSE =

√√√√ 1

n

n∑
j=1

(
yj − ŷj
yj

)2

× 100%, (10)

α =

∑n−1
j=1 [(yj+1 − yj) (ŷj+1 − ŷj)]√∑n−1
j=1 [(yj+1 − yj) (ŷj+1 − ŷj)]2

. (11)

RRMSE indicates the deviation and α reflects the consis-
tency between the predicted values and the actual values re-
spectively. Based on this, the weight evaluation factor is de-
fined as follows:

F = α/RRMSE. (12)

The merits of single entropy feature prediction are evaluated
by calculating the weight evaluation factors of single feature
prediction results. And finally the input predicting features of
the prediction model is expressed as the following formula.

X2 = [MSE REE RSE] [FmseFreeFrse]
T
. (13)

2.2. KELM and Implicit Weighting
The ELM model is a kind of single hidden layer feedforward

neural networks and its output function can be represented as

f(x) =

L∑
i=1

βihi(x) = h(x)β. (14)

In order to guarantee the minimum prediction error of output
values, the corresponding objective function equation is set as
follows:

min ‖ f(x)− f0(x) ‖

= min ‖
L∑
i=1

βihi(x)− f0(x) ‖= 0 (15)

In the above equations, L is the number of neurons in the
hidden layer. h(x) is the random mapping in the hidden layer
and f0(x) is the predictive function value. When there are
N inputs named xi(i = 1, 2, L, . . . , N), the matrix form of
Eq. 14 can be represented as follows:

f(x) = Hβ, (16)

where H is the random mapping matrix in the hidden layer.
And matrix H can be denoted by h(x) as follows:

H =


h(x1)
h(x2)
M

h(xN )

 . (17)
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The output weight vector β can be calculated by the least
square method as the following equation.

β = H+O = HT (HHT )−1O

= HT

(
I

C
+HHT

)−1
O, (18)

where H+ represents the Moore-Penrose generalized inverse
matrix of H and O represents the predictive expectation ma-
trix. C is the penalty factor that is generally positive and this
parameter can improve the generalization ability of the model.
And the output function of the model can be indicated as fol-
lows:

f(x) = Hβ = HHT

(
I

C
+HHT

)−1
O. (19)

However, unlike ELM, KELM model uses the kernel map-
ping in the hidden layer instead of random mapping in ELM,
which can be shown as the following formula 17.

ΩELM = HHT : ΩELM,i,j

= h(xi) · h(xj) = K(xi, xj), (20)

where K(xi, xj) is a kind of kernel function, which is always
selected as RBF kernel function. The general form is given as
follows:

K(xi, xj) = exp

(
−‖ xi − xj ‖

2

2σ2

)
, (21)

where σ is the kernel parameter. And the output function of
KELM model can be represented by the following equation.

f(x) =

K(x, x1)
M

K(x, xN )

T (I/C + ΩELM )
−1
O. (22)

On the time scale, the predictive ability of the models input
samples is different. That is to say, the closer the prediction
points are, the greater the impact of training samples on pre-
diction results will be.19 Therefore, there is necessity conduct-
ing implicit weighting on the input samples of KELM model
on the time scale. Concretely, weighting coefficients are used
to weigh the prediction error variables of the model, and then
the objective function 15 can be rewritten as follows:

minP (β, ξ) =
1

2
βTβ +

1

2
C

N∑
i=1

νiξ
2
i , (23)

s.t.h(xi)β = oi − ξi, i = 1, L, . . . , N,

where P (β, ξ) is the cost function of the prediction model. xi
is the value of the input samples. oi is the prediction expecta-
tion value. ξi is the error variance. N is the number of train-
ing samples. Combined with Eq. 17 and Eq. 18, the output
function of the implicit weighted KELM model is shown as
follows.

f(x) =

K(x, x1)
M

K(x, xN )

T (VC + ΩELM )
−1
O, (24)

where VC = diag
{

1
Cν1

, L, 1
CνN

}
and the weighting coeffi-

cient is νk =

√
1
N

∑N
k=1 ξ

2
k

|ξk| .

2.3. The Steps of CWKELM Prediction
Methodology

Based on the above principles of the explicit weighting in
entropy feature extraction and the implicit weighting in KELM
prediction, the CWKELM prediction steps are determined as
follows:

(1) Signal preprocessing and feature extraction
The information entropy features and the condition monitor-

ing data are extracted and normalized from the rolling bearing
life test.

(2) Parameter optimization
AMPSO algorithm is used to optimize the kernel parameter

and the penalty factor of the prediction model.
(3) Explicit weighting
The weight evaluation factors of three different kinds of

entropy features are calculated and explicit weighting is con-
ducted according to Eq. 13.

(4) Implicit weighting
The implicit weighting is conducted on the input samples

according to the weighting coefficient in the proposed model.
(5) Fault trend prediction
The proposed model, CWEKLM, is utilized to predict the

rolling bearing operation monitoring data. And the specific
step flow chart is shown in Fig. 1.

3. FATIGUE LIFE TEST FOR ROLLING
BEARINGS

In this paper, the fatigue test data of rolling bearings that are
analysed by the methodology mentioned above are gathered in
Bearing Test Research Center, Hangzhou, China.21 As shown
in Fig. 2, the experimental platform is mainly composed of
three parts, including ABLT-1A bearing test machine, signal
acquisition module and status monitoring module. Figure 3 is
the system diagram. Four CA-YD-139 acceleration sensors are
arranged in the four bearing test stations, and connected with
the DH-5920 dynamic signal acquisition instrument. In this
way, four sets of rolling bearings can be tested at one time and
multiple sets of full life vibration data can be stored in the end.
Meanwhile, four thermal resistances on stations and one YD-
1 acceleration sensor are connected with one signal amplifier
to monitor the operation indexes such as temperature, kurtosis
and RMS. When these indexes exceed the alarm threshold, the
test machine will stop working.

The single row deep groove ball bearing 6204, which is
commonly used in mechanical equipment, is taken as the test
object of the life test, and it is shown in Fig. 4(a). During the
test, the motor speed is 1500 r/min, and the vibration signals
are sampled every 10 minutes. The sampling time is 1 s, and
the sampling frequency is 25.6 kHz. When the test runs to
9600 minutes, the kurtosis index is over eight while it is about
three at normal state. The rolling bearing has a serious failure
and the test machine stops. After the shutdown and examina-
tion, the bearing of No.4 Station fails due to the inner ring ero-
sion as is shown in Fig. 4(b) and 960 groups of rolling bearing
vibration data is collected.

The change curve of Root Mean Square (RMS) over time is
shown in Fig. 5. This monitoring index monitors and records
the whole process of 6204 bearing from normal state to failure
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Figure 1. Flow chart of the methodology.

Figure 2. Bearing test platform.

Figure 3. Structure of the test system.

state and has a good ability to follow and reflect the fault devel-
oping trend of the bearing. Therefore, predicting the fault trend
of the rolling bearing can be equivalent to predicting the RMS
monitoring curve. According to the change of curve of time,
the fault development of rolling bearing over time can be di-
vided into four stages: (1) normal state:0–6820 min; (2) slight
degradation state:6830–8450 min; (3)serious fault state:8460–
9330 min; (4) failure state:9340–9600 min. Liu et al22 point
out that the second and the third state which are referred as
“soft failure” account for most of mechanical failures. Con-
sidering that there is some regularity in time sequence of the
period, we take 6840-9330 min as the analysis interval of the
prediction model where the training interval is 6840–8830 min,
200 sets of data in total; the test range is 8840–9330 min,
50 sets of data in total.

Figure 4. a) 6204 Bearings at normal state. b) 6204 Bearing with inner ring
pitting.

Figure 5. The RMS-time curve.

4. OPTIMIZATION OF THE MODEL
PARAMETERS

Similar to the support vector machine (SVM) model, the
penalty factor C in KELM model is mainly used to balance
the complexity of the model and the empirical risk value to
improve the generalization performance of the model. In or-
der to control the model complexity, the factor C is always
relatively small but cannot be too small, avoiding experience
error.22 When the kernel parameter is too large, the response
velocity of the model can be slow and the ability to adjust is
poor. While the kernel parameter σ is too small, the model can
be too sensitive and this can cause a great error too. There-
fore, it’s necessary to optimize the penalty factor C and the
kernel parameter σ. At present, commonly used optimization
algorithms include Grid Search Algorithm, Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) algorithm.

Compared with the Grid Search Algorithm and GA, PSO
algorithm converges fast and has strong universality but its
search precision is poor and it is easy to get into local optimal.
However, GA has relatively high precision despite relatively
complex calculation and low iteration efficiency. Therefore,
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Figure 6. The iteration curve of parameter optimization.

the adaptive mutation particle swarm optimization (AMPSO)
algorithm is proposed to be applied to C and σ optimization.
The main idea of this algorithm is to add the variation op-
eration to the particle variable and initialize the population
to the optimal solution.23 The training period data is used
for the single step prediction analysis. The number of parti-
cle group dimension is set to 2, and the number of particles
is set to 20, and the number of iterations is limited to 100.
C ∈ [0.1, 1000] , σ ∈ [0.01, 100]. The fitness objective func-
tion is the weight evaluation factor F . Parameter setting and
specific steps of the algorithm can be seen in Qu et al23 and
Zhang.24 At the same time, GA and PSO algorithm are used
for comparison and further analysis. The detail specification of
the calculating device is given as below: CPU is Intel R©CoreTM

i5-4590 CPU@3.30GHz, RAM is 4.00GB, and the operating
system (OS) is 32-bit Windows 7. With this calculating device,
the converge curves are shown in Fig. 6. The optimization re-
sults are shown in Table 1.

The AMPSO algorithm achieves the optimal value of 108.5,
which is basically consistent with the optimal solution of GA,
only through eighteen iterations. The computational efficiency
of AMPSO is higher than GA. The PSO algorithm, which
doesn’t add the variation operation, is in the local optimum
after the 11th iteration, and the optimization result is not
ideal. Finally the model parameters are selected as C = 9.8,
σ = 1.02 .

5. THE ANALYSIS AND COMPARISON OF
FAULT TREND PREDICTION

There are 200 sets of data in the training period that are used
to train the prediction model. The information entropy features
are weighted by the one-step prediction weighting evaluation
factor. Firstly, the information entropy characteristics includ-
ing MSE, REE and RSE are extracted from the vibration sig-
nals, and then three groups of feature samples are respectively
used as the model input to predict the changing curve of RMS
over time. The prediction results are shown in Figure 7, 8, 9.
The predicted values which are calculated from MSE, REE and
RSE deviate from the real values more or less in the second half
of the training period. There are relatively more error points
in the predicted curve which is calculated from MSE. How-
ever, the error points are fewer in the predicted curve which is
calculated from RSE. The three information entropy features’
abilities to predict the RMS curve differ from each other and
the training results need further quantitative analysis.

The RRMSE and Correlation Coefficient of Trend Change α
of the above mentioned one-step prediction training results are

Figure 7. The MSE training result of one-step forecast.

Figure 8. The REE training result of one-step forecast.

Figure 9. The RSE training result of on-step forecast.

respectively calculated and the weight evaluation factor F is
computed according to this. The results are shown in Table 2.

Among the three features, the correlation coefficient of RSE
is the largest, and the RRMSE of RSE is similar to that of
MSE. The weight evaluation factor of RSE is the largest, and
that indicates the predictive ability of RSE is the best. This
result is consistent with the prior qualitative analysis. Mean-
while, the indexes of RSE and REE are close to each other
and all of them are within reason. That means it’s reasonable
and effective to utilize information entropy features for rolling
bearing fault prognostics. On the other hand, in order to utilize
the comprehensive entropy information in the samples, explicit
weighting is conducted on the input samples of KELM model
according to Eq. 13. The fusion feature X2 is used as a new
input characteristic to train KELM model. The training result
is shown in Fig. 10.

After the explicit weighting processing, the predicted resid-
uals in the middle and posterior segment of the single informa-
tion feature are effectively cut down and the predicted error is
further reduced. In order to illustrate the effectiveness of the
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Table 1. Comparison of the optimization results.

Optimization Parameter Parameter Target Iteration Computation
Algorithm C σ Value F Number Time/s
AMPSO 9.8 1.02 108.5 18 12.235

GA 10.5 1.12 109 23 15.363
PSO 5.7 0.84 85.5 11 9.275

Table 2. The evaluation indexes of single entropy feature.

Information Correlation RRMSE Weight Evaluation
Entropy Features Coefficient /% Factor (F )

MSE 6.4430 7.54 85.4152
REE 6.7806 7.77 87.3206
RSE 7.4317 7.58 97.9829

Figure 10. The explicit weighted training result of one-step forecast.

Figure 11. The multi-input training result of one-step forecast.

explicit weighting, the three single entropy features which are
not weighted are used as the KELM input samples for training
and the training time is 0.2027s. However, the weighting fu-
sion features training time is only 0.0913s. The one-step fore-
cast result of the multi input features which are not weighted
is shown is Fig. 11. Compared with this result, the predicted
error of the explicit weighted training result in Fig. 10 is rel-
atively smaller, and that demonstrates the effectiveness of the
explicit training.

On the basis of explicit training, implicit weighting is con-
ducted on the characteristic sequence X2 on the time scale in
KELM model and the result is shown in Fig. 12 below. Within
the training interval, the predicted values are consistent with
the true values and the error is relatively small. The further
comparative analysis can be seen in Table 3.

By the comparative analysis of Table 2, Table 3 and Fig-
ure 12, we can conclude that the prediction accuracy is sig-
nificantly improved after the composite weighting in KELM
and training samples. The proposed model’s prediction result
has a high consistency with real value in the range of one-
step forecast and the prediction curve fits the monitoring curve

Table 3. The comparison of fusion processings.

Fusion Correlation RRMSE Weight Evaluation
Processing Coefficient /% Factor (F )

Multi inputs 7.0093 6.40 109.5788
(without processing)
Explicit weighting 7.6351 3.15 242.6733

Composite weighting 8.3976 1.68 501.3071

Figure 12. The composite weighted training result of one-step forecast.

Figure 13. CWKELM test result of one-step forecast.

well in the training stage. The CWKELM prediction model
is used to predict 50 groups of data in the test period, as is
shown in Fig.13. The KELM multi-input prediction model is
adopted for comparison and the result is shown in Fig. 14. By
comparing Fig. 13 and Fig. 14, we find that the prediction ef-
fect of CWKELM for rolling bearing fault trend is better than
KELM. In the middle and posterior section of the test inter-
val, the predicted curve is basically consistent with the true
curve and there is only a small margin of deviation in the ini-
tial phase of the test interval. In comparison, the prediction
error of KELM model is relatively large and the KELM model
is sensitive to the change of the data samples. And this results
that small amplitude of data fluctuation can cause a large pre-
diction error. Therefore, the CWKELM prediction model has
some engineering significance in balancing the data structure
and reducing the prediction error.

In order to further illustrate the robustness and practical
value of CWKELM model in rolling bearing fault trend pre-
diction, a certain length of data is randomly selected as the
training sample and ELM, KELM and CWKELM model are
adopted to the one-step, five-step, ten-step, fifteen-step and
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Figure 14. KELM test result of one-step forecast.

Figure 15. The multi-step forecast error curve.

Table 4. Performance comparison of prediction models.

Prediction RRMSE Correlation Computation
Model /% Coefficient Time/s

CWKELM 2.32 7.8546 0.4568
SVM 3.76 6.4533 0.5786
BP 5.27 5.9271 1.3624

twenty-step prediction of the normalized RMS. The result is
shown in Fig. 15.

From Fig. 15, the relative errors of the three models have in-
creased in different degrees with the improvement of the num-
ber of prediction step. Compared with the ELM and KELM
models, the relative error of CWEKLM model is relatively
small, and it is always below 10% and the performance of
CWKELM model is better. While the relative error of ELM
model and KELM model is over 15% when the number of pre-
diction step reaches 20. The reliability of the predicted results
is significantly reduced.

As a special kind of single hidden layer feedforward neural
network, KELM combines the design concept of ANN and the
kernel learning methodology of SVM, and has been widely ap-
plied in the field of fault diagnosis and prognostics. CWKELM
is a kind of advanced KELM model. In order to illustrate the
advantages of CWKELM in rolling bearing fault trend predic-
tion, SVM regression prediction model and the typical back
propagation (BP) neural network are utilized for comparison
and the results are shown in Table 4.

Table 4 shows that the RRMSE of CWKELM model is rel-
atively smaller than that of SVM and BP model and the fault
trend changing correlation coefficient between the predicted
results and the real values is larger. This result can demonstrate
that the CWKELM model can better achieve the goal of rolling
bearing fault trend prediction. In terms of computational effi-
ciency, CWKELM prediction model has a shorter calculation
time. The main reason is that the composite weighting changes

multi inputs into single fusion inputs and the structure is sim-
ple, so the computation speed is faster. However, there are al-
ways multiclass sample inputs in the SVM model and BP neu-
ral network and the computation process is complex and needs
more time. In the control experiment, BP neural network takes
empirical risk minimization as its principal and need a large
number of training samples to train. However, due to the lim-
ited number of samples in the study, there will be a large error.
CWKELM model can balance the sample data structure and
modify the input samples in both sample data scale and time
scale by explicit weighting and implicit weighting. That en-
sures the CWKELM model also has certain adaptability for
small sample data.

6. CONCLUSIONS

In order to improve the rolling bearing fault trend prediction
accuracy and computational efficiency, this paper proposes a
composite weighted KELM (CWKELM) model and applies
it to forecast the condition monitoring index RMS. Through
comparison and analysis, the following conclusions can be
reached.

(1) CWKELM model can overcome the differences of the
input samples in both type scale and time scale and balance
the data structure by explicit weighting and implicit weighting.
In this way, the input samples’ ability to characterize different
degradation states can be enhanced. In the one-step predic-
tion and multi-step prediction of rolling bearing fault trend,
the CWKELM model is more accurate than traditional KELM
model.

(2) Composite weighting can improve the prediction accu-
racy of the KELM model. At the same time, explicit weighting
can convert multi inputs into single inputs and thus improve
the computational efficiency to some degree. Compared with
KELM, SVM and BP neural network, CWKELM model has
faster computing speed.

(3) AMPSO algorithm is applied in the parameter optimiza-
tion of CWKELM model and this algorithm can effectively
avoid the local optimal problem which exists in PSO algo-
rithm. Meanwhile, compared with GA, AMPSO algorithm has
advantages such as fewer iterations, faster convergence speed
and is more suitable for real-time online parameter optimiza-
tion, and then the prediction accuracy of CWKELM model is
improved rapidly.
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