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This paper presents the FFT-ApEn analysis method for the fault detection of an electric motor under different
rotating speeds. Motor vibration signals are analyzed using the Fast Fourier Transform (FFT) and Approximate
Entropy (ApEn) to obtain the fault factor of a motor under different rotating speeds. The effectiveness of the
proposed FFT and FFT-ApEn analyses for predicting the fault is verified through the experimental data. It is
found that the FFT-ApEn analysis for the vibration signal can more precisely identify the fault as compared to the
conventional FFT analysis method. In addition, the magnitudes of the frequency components are extracted for the
recognition of the fault modes. The frequency spectrum analysis is used for distinguishing four operating statuses,
i.e., normal, carbon brush failure, abnormal noise and bearing failure. Moreover, the FFT-ApEn method can
successfully discriminate four different operating statuses of a motor without removing any motor parts. Hence,
the FFT-ApEn analysis method is of great significance for a motor to have a real-time monitoring ability.

1. INTRODUCTION

A motor is an indispensable component in the modern in-
dustry. The temperature, noise, voltage, current and vibra-
tion signals are the most common parameters for detecting
whether the status of a motor is normal or faulty1. Among all
state-monitoring techniques, the vibration signal analysis is the
most classical technique to evaluate the status of a rotating ma-
chine.2–4 The analysis of a vibration signal is very critical to ef-
fectively monitor and control if a rotating motor possessed high
productivity and reliability. Generally, for a fault diagnosis
technique, the characteristic features of vibration signals were
analyzed in frequency domain or chaotic phase space. For ex-
amples, Arslan et al.5 disclosed the relationship between sta-
tistical vibration parameters, tool wear, and surface roughness
of a work piece during high speed turning operation. Javed
et al.6 presented a method for feature extraction or selection,
and the proposition was applied to time-frequency analysis of
non-stationary signals using discrete wavelet transform. Zhang
et al.7 used variational mode decomposition to detect the de-
fect signals of different locations in a multistage centrifugal
pump. They studied the failure mechanism of rolling bearings,
and established the defect signal models of different locations,
and simulated the fault signals of outer race defect, inner race
defect, as well as the rolling element defect. Also, empirical
mode decomposition (EMD) has been widely used for analyz-
ing non-stationary signals due to its ability to self-adaptive de-
composition of non-stationary signals. The EMD method can
accurately identify and diagnose the running state and bearing
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fault type at early stages of their development.8–10 Generally
speaking, for a motion system, the complexity and chaos de-
gree can be described by the Approximate Entropy (ApEn).
The higher the complexity and chaos degree of a motion sys-
tem are, the bigger the ApEn value of the system becomes. The
ApEn analysis method has a strong ability of resisting noise in-
terference in random signals, deterministic signals or these two
mixed signals. Since this method was proposed, it has been
successfully applied to the analyses of heart rate variability10

and endocrine hormone release pulsatility.12 Sparacino et al.13

studied a distorted portrait of the secretion rate at the gland
level by ApEn analysis. They reported whether and how this
distortion can influence the regularity of hormone pulsatility.
On the other hand, in conventional condition monitoring, the
commonly used method is the vibration analysis in frequency
domain through Fast Fourier Transform (FFT).14 FFT is an al-
gorithm to realize discrete Fourier transform and able to con-
vert the vibration signal from its time- domain representation
to its equivalent frequency-domain representation. Gao et al.15

presented an algorithm, FFT-AFD (Adaptive Fourier Decom-
position), reducing the computational complexity of the AFD.
AFD is originated with the purpose of positive frequency de-
composition of signals. They have proven the effectiveness,
accuracy, and reliability of the FFT-AFD algorithm, as well
as laid a foundation for its practical applications. Neverthe-
less, frequency analysis is only one aspect of interpreting the
information contained in a vibration signal. In view of this,
this paper presents a FFT- ApEn method for the fault detec-
tion of a motor on the basis of both the chaotic space and
frequency-domain analysis of vibration signals at different ro-
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tating speeds. It is found that the FFT-ApEn can more precisely
identify the faulty type of a rotating motor as compared to the
only FFT or ApEn method.

2. RESEARCH METHOD

2.1. The Definition of the ApEn
In order to define ApEn(r,m,N) for the N-dimensional

time series {u(1), u(2), ..., u(N)} with given parameters m
and r, the m-dimensional sequence vector x(i) should be em-
bedded.1, 11 Then, the ApEn is defined as:

ApEn(m, r,N) = lim
N→∞

∣∣φm (r)− φm+1 (r)
∣∣ ; (1)

where:

ϕm(r) =

(
1

N −m+ 1

)N−m+1∑
i=1

lnCm
i (r); (2)

Cm
i (r) =

(
1

N −m+ 1

)N−m+1∑
j=1

θ (d (x(i), x(j))− r),

(1 ≤ i ≤ N −m+ 1, i 6= j) (3)

θ (x) =

{
1 if x > 0
0 otherwise

; (4)

d(x(i), x(j)) = max
0≤k≤m−1

|x(i+ k)− x(j + k)| ,

(1 ≤ i ≤ N −m+ 1, 1 ≤ j ≤ N −m+ 1, i 6= j). (5)

Obviously, the estimate value of the ApEn depends on m and
r. As suggested by Pincus et al.,11 m can be taken as 2 and r be
taken as (0.1− 0.25) SD, where SD is the Standard Deviation
from the original data sequence. As a rule in engineering prac-
tice, more than 100 data are needed to meet the requirements
for estimating a robust value of the ApEn. Consequently in this
paper, the ApEn is calculated under the following conditions:
N ≥ 100, r = 0.15SD, m = 2.

2.2. The FFT-ApEn Analysis Method
Seven motors that have been judged as four operating sta-

tuses were tested to obtain four sets of vibration signals, i.e.,
“normal” for two motors, “bearing failure” for two motors,
“carbon brush failure” for two motors, and “abnormal sound”
for a motor. The motors are series motors of the drum washing
machines, and the DC voltage of 0–72 V is applied to them to
get various rotating speeds.
Step 1: Acquiring the vibration signal for every typical operat-
ing status of a motor, and the frequency range of the vibration
signal is divided into five equal regions.
Step 2: Through the FFT algorithm,15–17 computing the main
frequency regions of the vibration signal for every operating
status of the motor at low and high rotating speeds, respec-
tively.
Step 3: Constructing the time series required for the calcula-
tion of the ApEn.
Step 4: Confirming the SD threshold δ0 and average-value
threshold Ψ0 of the ApEn for a normal-status rotating motor

Figure 1. The flowchart of the FFT-ApEn algorithm

Figure 2. The flowchart of the decimation-in-time FFT algorithm (N = 8.

at various rotating speeds.
Step 5: The SD and average value of the ApEn of the vibration
signal for every operating motor are calculated and compared
with δ0 and Ψ0, at various rotating speeds. The flowcharts for
the description of steps are revealed in Fig. 1 and 2.

3. RESULTS AND DISCUSSION

3.1. Vibration Signals in Time and
Frequency Domains

As mentioned above, seven motors that have been judged as
four operating statuses were tested to obtain four sets of vibra-
tion signals. The hardware components of the data acquisition
system are Lens LC0105 accelerometer and NI9235 data ac-
quisition card, as revealed in Fig. 3. Vibration signals of the
motors in time or frequency domain at the rotating speeds of
915 and 2250 rpm are shown in Figs. 4, 5, 6, and 7, respec-
tively. The rotating speed of a motor is obtained from the loca-
tion feedback by a photoelectric code-disc located at the motor
revolution axis. From the vibration signals in time domain as
seen in the Figs. 4 and 5, the four operating statuses have no ob-
vious distortion phenomenon, so that it is difficult to evaluate
the running states of the motors. Through the FFT algorithm,
the vibration signals in frequency domain present obvious and
different main frequency regions for the four operating-status
motors at the same rotating speed of 915 rpm, as seen in the
Fig. 6.

3.2. Analysis of FFT Algorithm
According to the vibration signal in frequency domain as

shown in Fig. 6 and 7, the frequency range of the vibration
signal for a motor is divided into five regions: (0, 500), (500,
1000), (1000, 1500), (1000, 1500), (1500, 2000), (2000, 2500).
By use of the FFT algorithm, main frequency regions of vi-
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Figure 3. The picture of the experimental set up.

Figure 4. Vibration signals in time domain for four operating-status motors at
the same rotating speed of 915 rpm. (a) normal (b) bearing failure (c) abnormal
(d) carbon brush failure..

bration signals are partially overlapped for the four operating-
status motors at a low rotating speed of 915 rpm, as shown in
Fig. 6 and Table 1. Besides, the main frequency regions tend
to be consistent for the four motors at a high rotating speed of
2250 rpm, as revealed in Fig. 7.

3.3. The Average Value and Standard
Deviation of the ApEn

Table 2 shows the average value (AV) and standard devia-
tion of the ApEn of the vibration signal for every operating-

Figure 5. Vibration signals in time domain for four operating-status motors
at the same rotating speed of 2250 rpm. (a) normal (b) bearing failure (c)
abnormal (d) carbon brush failure.

Table 1. Main frequency features of vibration signals for four operating-status
motors at different rotating speeds.

Motor speed Main frequency regions (Hz) Operating status
915 rpm (500, 1000), (2000, 2500) normal
915 rpm (500, 1000) bearing failure
915 rpm (1500, 2000), (2000, 2500) abnormal sound
915 rpm (500, 1000), (2000, 2500) carbon brush failure

2250 rpm (1000, 1500) normal
2250 rpm (1000, 1500) bearing failure
2250 rpm (1000, 1500) abnormal sound
2250 rpm (1000, 1500) carbon brush failure

status motor at different rotating speeds. From Table 2, the
AV and SD of the ApEn of the normal motor are larger than
those of the other faulty motors under the same rotating speed.
When the motor rotating speed gets faster, the AV and SD dif-
ferences between a normal motor and a faulty motor become
larger. Therefore, comparing the AV and SD of the ApEn of
a tested motor with those of a normal motor can judge if the
tested motor was running normally. Unfortunately, when the
AV and SD of the ApEn of a tested motor have been calculated
out, it is difficult to discern the specific fault type by referring
to Table 2 only.

3.4. Judging the Operating Status of a Motor
by FFT-ApEn Analysis

To illustrate the FFT-ApEn method clearly, one normal mo-
tor (labeled as A) and three faulty motors (labeled as B, C, D)
are tested as follows. Firstly, vibration signals are analyzed by
ApEn algorithm for the four motors at a high rotating speed of
2250 rpm. Then, the operating status of every motor is evalu-
ated as normal or not, as revealed in Table 3. Next, vibration
signals are analyzed through the FFT algorithm for the four
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Figure 6. Vibration signals in frequency domain for four operating- status
motors at the same rotating speed of 915 rpm. (a) normal (b) bearing failure
(c) abnormal (d) carbon brush failure.

motors at a low rotating speed of 915 rpm, and the main fre-
quency regions are extracted out. Finally, refering to Table 1
and Table 2, the operating status of every motor can be judged
clearly, as shown in Table 4. For example, the AV (ApEn) of
tested motor B is 0.0621087 at a rotating speed of 2250 rpm,
as shown in Table 3. Refering to Table 2, the operating sta-
tus of motor B could be either bearing or carbon brush failure.
The main frequency of tested motor B is only (500, 1000) at a
rotating speed of 915 rpm, as shown in Table 4. Then, refering
to Table 1, the operating status of motor B is judged as bearing
failure.

3.5. Discussion About Nonlinearity and
Chaos

By using the FFT algorithm, main frequency regions of the
vibration signal for a motor are found out. According to the
principle of nonlinear dynamics, the time series of variables
already contain information about the system variables. In or-
der to quantify the complexity of nonlinear sequence data, Pin-
cus18 proposed a concept of the ApEn, which solved the puz-
zle of getting the entropy of a chaotic system. Approximate
entropy can be used to represent the complexity of a system,
and it is widely used in the fields of the weather forecast and
detection of the mechanical vibration.19

Figure 7. Vibration signals in frequency domain for four operating- status
motors at the same rotating speed of 2250 rpm. (a) normal (b) bearing failure
(c) abnormal (d) carbon brush failure.

4. CONCLUSIONS

Using FFT-ApEn analysis for a vibration signal, we investi-
gated the relationship between the ApEn and stability of a ro-
tating motor through the viewpoint of nonlinearity and chaos.
The average value and standard deviation of the ApEn are sig-
nificantly correlated with the operating status of a motor. For
a normal motor, the value of the ApEn is increasing with the
increasing of the rotating speed. To sum up, the FFT-ApEn
method can successfully distinguish the operating status and is
of great significance for a motor to have a real-time monitoring
ability.
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