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This research combines theory with experiment to investigate the influence of an elastic boundary on modal pa-
rameters of a thin cylindrical shell (TCS). First, artificial stiffness method and finite element method (FEM) are
employed to calculate natural frequencies and modal shapes of TCS under condition such that vibration character-
istics of elastically supported shell can be roughly mastered. Then, the following measurements and identification
techniques are used to get precise frequency, damping, and shape results: non-contact laser Doppler vibrometer
and vibration shaker with excitation level being precisely controlled are used in the test system; “pre-experiment”
is adopted to determine the required tightening torque as well as to verify whether or not the tested shell is un-
der constraint boundary; and small-segment FFT processing technique is employed to accurately measure nature
frequency, and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based
on the accurate measured data, the influences on natural frequencies, modal shapes, and damping ratios of TCS
under elastic boundary are analysed and discussed. It can be found that an elastic boundary can significantly affect
frequency and damping results, clearly reducing high order damping and decreasing natural frequencies of most
modes. However, high order natural frequencies and mode shapes are still the same as the ones under the constraint
condition, and the changing trend of natural frequencies with mode shapes is constant when the order of axial mode
is m = 1, which agrees well with the results calculated by artificial stiffness method and FEM.

1. INTRODUCTION

Thin cylindrical shell (TCS) has long been an important
structural component due to its high stiffness to weight and
strength to weight ratios, which is widely used in engineer-
ing fields, such as aircraft casings, pipes and ducts, rotary
drums in granulators and aircraft engines.1, 2 Modal parame-
ters of TCS are mainly composed of natural frequencies, modal
shapes, and damping ratio, and these parameters are the basis
of further3–5 study on vibration characteristics of TCS, which
are of great importance to theoretical modelling, response pre-
diction, vibration reduction optimization, vibration mechanism
research, structural damage identification etc.

In engineering practice, in order to reduce the vibration
stress and suppress vibration fatigue of TCS, some vibration
reduction techniques6, 7 are used artificially. For example, fric-
tion damping snubber, metal rubber, elastic rubber and other
material are gradually used to substitute traditional constraint
or fixed boundary for elastic boundary, which can bear proper
extrusion deformation to absorb and consume structural vi-
bration energy. At present, the advantages of elastic bound-
ary are recognized by an increasing number of engineers and

researchers,8, 9 and it has been approved to be an effective
application in vibration control of the shell. There are also
many shell structures running without under complete restraint
boundary, or this may be called elastic boundary in a wider
sense, especially when it is excited by the complex external
loads, such as high-speed aerodynamic load and centrifugal
load. Besides, TCS are often installed or connected by weld-
ing, riveting, and bolting, which can inevitably lead to loose
or elastically restrained condition;10 thus, it is hard to ensure
whether the shell is working under complete restraint bound-
ary, and elastically supported shell structures are common in
engineering field.

Currently, great efforts have been made to study vibration
character of TCS under elastic boundary by scholars and re-
searchers, and many encouraging research results have been
obtained. For example, Forsberg11 studied the influence of
boundary conditions on the modal characteristics of thin cylin-
drical shells. Total 16 possible sets of homogeneous bound-
ary conditions were specified independently at each end of the
shell, and these sets of conditions were discussed in detail. It
has been found that even for long cylinders (length to radius
ratio of 40 or more) the minimum natural frequency may differ
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by more than 50% depending upon whether the displacement
of any point on the middle surface is in axial direction u = 0 or
the longitudinal stress resultant isNx = 0 at both ends. Koga12

studied the effects of boundary conditions on the free vibra-
tions of TCS and a simple formula for the natural frequency
was derived as an asymptotic solution for the eigenvalue prob-
lems of the breathing vibrations, whose accuracy was sequen-
tially examined by a comparison with numerical solutions and
experimental results. The results showed that the formula was
accurate enough for engineering and it was applicable under
any possible combinations of the boundary conditions for the
simply supported, clamped, and free ends of the shell. Ama-
bili and Dalpiaz13 studied the vibrations of circular cylindri-
cal shells with non-axisymmetric mass distribution on elas-
tic bed, and Rayleigh-Ritz method and Fourier series method
were used to obtain natural frequencies and modal shapes of
the shell. Loveday and Rogers14 analysed the free vibration
of TCS with elastic boundary conditions by application of the
exact solution of the Flugge shell theory equations of motion.
The elastic boundaries were represented by distributed linear
springs, and elastic boundary conditions could be simulated by
varying the eight spring constants. Liang et al.15 studied stiff-
ness optimization of TCS under elasticity boundary condition.
The explicit formula of initial parameter solution of variable
thickness shell was derived by transfer matrix method, and the
optimization process was transformed into a constraint nonlin-
ear solving process; thus, the objective function can be suc-
cessfully obtained by the stepped reduction method. Zhou et
al.16 used wave propagation method to solve the equations of
motion of TCS under elastic-support boundary condition, and
the elastic-support boundary condition was specified in terms
of eight independent sets of distributed springs which have ar-
bitrary stiffness values. Besides, the effects on natural frequen-
cies of the restraining springs were also studied for a range
of stiffness values and different geometrical characteristics of
the shells, and it was found that the restraining stiffness can
drastically affect frequency parameters of TCS. Sun17 studied
free vibration and dynamic response of rotating TCS and em-
ployed three methods to analyse its natural characteristics un-
der the different boundary condition, including Fourier series
expansion method and wave propagation approach for TCS
with classical boundary conditions, and Rayleigh-Ritz method
with artificial spring for TCS with elastically constrained con-
dition. Wu et al.18 studied vibration of a joined cylindrical-
spherical shell under elastic boundary by a domain decompo-
sition method. The elastic-support boundary was regarded as
a combination of distributed linear springs and can be treated
as a special interface as well as the interface between two ad-
jacent shell segments, and the theoretical results were com-
pared with those derived by ANSYS to confirm the reliability
and accuracy. Chen et al.19 studied vibration characteristics of
cylindrical shell under complicated boundary conditions, such
as elastic and non-uniform boundary conditions, and the ex-
act solution was obtained by improved Fourier series method,
but the calculated results were only compared with the finite
element results rather than experimental results.

However, most of researches done by the above scholars and
researchers are mainly based on theory or simulation; experi-
mental studies on the influence of elastic boundary on modal
parameters of TCS are still scarce. Besides, due to the com-
plexity of the damping mechanism, it is difficult to obtain the

Table 1. Dimension parameters of TCS.

Length Thick- Inter- Exter- Exten- Exten-
ness nal nal sion edge sion edge

radius radius radius thickness
(mm) (mm) (mm) (mm) (mm) (mm)

95 2 142 144 150 3

Table 2. Material parameters of TCS.

Name Elastic Poisson Density
modulus (Gpa) ratio (kg/m3)

Structural steel 212 0.3 7850

reliable damping parameters of the shell-only-based theoreti-
cal model, let alone analysing the related influence on damping
parameters. Therefore, it is necessary to combine theory with
experiment to investigate the influence of elastic boundary on
modal parameters of TCS.

This research has investigated the influence of elastic bound-
ary on modal parameters of TCS. First, in Section 2 artificial
stiffness method (ASM) and finite element method (FEM) are
employed to calculate natural frequencies and modal shapes
of TCS under conditions such that vibration characteristics of
elastically supported shell can be roughly mastered. Then, ex-
periment system is set up to accurately measure modal param-
eters of TCS, and the corresponding test procedures and iden-
tification techniques suitable for elastically supported shell are
proposed in Section 3. Finally, in Section 4, based on the accu-
rate measured data, the influence on natural frequencies, modal
shapes, and damping ratios of TCS under elastic boundary are
analysed and discussed in detail. This research can provide
dynamic modelling service for TCS under complex boundary
condition, provide experimental data for effective selection of
boundary parameters in the theoretical model, and also pro-
vide an important reference for diagnosis of vibration fault of
elastically supported shell.

2. THEORETICAL ANALYSIS OF NATURE
FREQUENCY AND MODAL SHAPE OF
TCS UNDER ELASTIC BOUNDARY

2.1. Research Object and Simulation of
Elastic Boundary

The TCS studied in this research is shown in Fig. 1 and its
dimension and material parameters are listed in Table 1 and
Table 2, respectively. There is an extension edge with 150 mm
external radius and 3 mm thickness on this shell which is ma-
chined to be clamped by a clamping-ring with eight M8 bolts,
so that it can be of certain that the shell be restricted under
fixed-free boundary (or called under constraint boundary with
one end free). Then, we can simulate different elastic bound-
ary conditions by filling rubber ring of different thickness into
the position between the clamping-ring and extension edge and
tightening M8 bolts with certain tightening torque, as seen in
Fig. 1. For example, we can fill 1 mm, 2 mm, and 3 mm rubber
rings to simulate the various types of elastic boundaries, and
the related material parameters of ZN33 elastomer used in this
research are listed in Table 3.

2.2. Artificial Stiffness Method
In practice, elastic boundary conditions commonly exist

in the connection positions of TCS and complete constraint
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Table 3. Material parameters of elastic rubber.

Name Elastic Poisson Density
modulus (Gpa) ratio (kg/m3)

ZN33 elastomer 2.68 0.498 999

Figure 1. TCS and simulation of elastic boundary using rubber ring.

Figure 2. Dynamic model of TCS under elastic boundary based on ASM.

boundary is hard to reach. Therefore, Artificial stiffness
method is proposed to calculate the natural frequency of thin
cylindrical shell under elastic boundary, and their stiffness can
be modified to simulate the actual constraint effect, which as-
sumes some virtual springs are on two sides of TCS.20–22 Fig-
ure 2 gives the dynamic model of TCS under elastic boundary,
whose length, radius, and thickness is L, R, and H . First,
the assumptions that the TCS studied in this research can meet
isotropic and homogeneity hypothesis and the influences of
shear stress as well as boundary damping are ignored. Then,
the curvilinear coordinates system o−xθz is used in this model
by taking the generatrix and parallel direction of TCS as two
main directions, any point on the middle surface of the shell
can be described by (x, θ), where x is the generatrix length
from the vertex to the point (x, θ) and θ is the correspond-
ing rotation angle. Besides, u, v and w is the displacement
of any point on the middle surface in the x, θ, z direction, and
ku, kv, kw is the support stiffness in u, v and w direction while
kθ is the rotation stiffness.

In above method, boundary damping is ignored while the in-
fluence of the artificial spring is taken into consideration, and
different support stiffnesses of artificial spring are used to sim-
ulate different elastic boundaries by changing the magnitude of
ku, kv, kw, kθ. According to the linear shell theory and small

deformation theory, the strain equation in the middle surface
of the shell can be described as:

 εxx
εθθ
γxθ


(0)

=

 ∂
∂x 0 0
0 1

R
∂
∂θ

1
R

1
R
∂
∂θ

∂
∂x 0

 u
v
w

 ; (1)

where subscript (0) refers to the middle surface. Based on
Donnell-Mushtari shell theory, the curvature coefficient κx, κθ
and twist coefficient χxθ at the middle surface are: κx

κθ
χxθ

 =

 0 0 − ∂2

∂x2

0 1
R2

∂
∂θ − 1

R2
∂2

∂θ2

0 1
R

∂
∂x − 2

R
∂2

∂x∂θ


 u

v
w

 . (2)

Because the deformation of the shell is closely related with
the displacement of middle surface, the strain at any point in
the shell can be written in terms of strain, curvature, and twist
coefficients in the middle surface and it can be described as: εx

εθ
γxθ

 =

 εxx
εθθ
γxθ


(0)

+ z

 κx
κθ
χxθ

 ; (3)

where z is the distance from any point in the shell to the middle
surface.

The strain-displacement relations at any point in the shell
can be derived from above equation as:

εx =
∂u

∂x
− z ∂

2w

∂x2
;

εθ =
1

R
(
∂v

∂θ
+ w)− z 1

R2

∂2w

∂θ2
+ z

1

R2

∂v

∂θ
;

γxθ =
∂v

∂x
+

1

R

∂u

∂θ
− z 2

R

∂2w

∂x∂θ
+ z

1

R

∂v

∂x
.

(4)

The physical equation of the shell can be expressed as:

σx =
E

1− µ2
(εx + µεθ);

σθ =
E

1− µ2
(εθ + µεx);

τxθ = Gγxθ;

(5)

where E is Young’s modulus and µ is Poisson’s ratio.
The expression of kinetic energy of TCS can be described

as:

T =
ρHL

2

2π∫
0

1∫
0

(
u̇2 + v̇2 + ẇ2

)
Rdθdξ; (6)

where ξ = xL, (·) = ∂/∂t is the partial derivative of time.
Taking bending and shear deformation of shell into consid-

eration, the potential energy of the shell can be expressed as:

Uε =
HL

2

1∫
0

2π∫
0

(σxεx + σθεθ + τxθγxθ)Rdθdξ. (7)

Simplifying Eq. (7), we can deduce that:

Uε =
LH

2

1∫
0

2π∫
0


E

1− µ2

[
(εx)

2
+ (εθ)

2
]

+

2µE

1− µ2
εxεθ +G(γxθ)

2

Rdθdξ; (8)
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where G = E
2(1+µ) is the shear modulus.

Because the studied TCS is under free-clamped boundary
condition, we can employ ASM to place artificial spring on two
sides of the shell, as shown in Fig. 2. It should be noted that
in this method, when the support stiffness ku0 = kv0 = kw0 =
kθ0 ≥ 108 and ku1 = kv1 = kw1 = kθ1 = 0, it represents the free-
clamped boundary condition, and the subscript 0 denotes the
fixed end while the subscript 1 denotes the free end of the shell.
When support stiffness ku0 = kv0 = kw0 = kθ0 = 105 ∼ 108

and ku1 = kv1 = kw1 = kθ1 = 0, it represents the elastic-free
boundary condition. Therefore, by changing the magnitude
of ku1 , k

v
1 , k

w
1 , k

θ
1 , we can simulate different elastic boundaries,

and the related elastic potential energy of artificial spring under
such boundary can be described as:

Usp =
1

2

∫ 2π

0

{
ku0 [u (0, θ, t)]

2
+ kv0 [v (0, θ, t)]

2

+kw0 [w (0, θ, t)]
2
kθ0

1

L2

[
∂w (0, θ, t)

∂ξ

]2}
Rdθ

+
1

2

∫ 2π

0

{
ku1 [u (1, θ, t)]

2
+ kv1 [v (1, θ, t)]

2

+kw1 [w (1, θ, t)]
2
kθ1

1

L2

[
∂w (1, θ, t)

∂ξ

]2}
Rdθ.

(9)

Next, we use orthogonal polynomials to assume shape func-
tions of the shell, and the Rayleigh-Ritz method is employed
to calculate the natural characteristics of TCS under elastic
boundary. According to Rayleigh-Ritz method, we can assume
that the vibration displacement of the shell has the following
forms: 

u = e−jωt cosnθU(ξ)

v = e−jωt sinnθV (ξ)

w = e−jωt cosnθW (ξ)

. (10)

Here, ω is the natural frequency, n is the circumferential waves
of the TCS , and U(ξ), V (ξ),W (ξ) are modal shape functions
in x, θ and z direction, respectively.

Then transforming U(ξ), V (ξ), and W (ξ) into polynomial
forms, we can have the following expression:

U(ξ) =
NT∑
m=1

amϕ
u(ξ)

V (ξ) =
NT∑
m=1

bmϕ
v(ξ)

W (ξ) =
NT∑
m=1

cmϕ
w(ξ)

. (11)

Here, am , bm , and cm are shape coefficients, ϕu(ξ), ϕv(ξ),
and ϕw(ξ) are orthogonal polynomials, which should satisfy
the geometrical boundary conditions.

Construct the following equation:

ψp2 (ξ) = (ξ −B2) ψ
p
1 (ξ) ;

ψpk (ξ) = (ξ −Bk)ψpk−1 (ξ)− Ckψ
p
k−2 (ξ) , k2;

(12)

where Bk =
∫ ξ
0
ξψpk−1

2(ξ)dξ∫ ξ
0
ψpk−1

2(ξ)dξ
, Ck =

∫ ξ
0
ξψpk−1

2(ξ)ψpk−2
2(ξ)dξ∫ ξ

0
ψpk−2

2(ξ)dξ
.

Define the 2-norm of ψ(ξ) as the following:

‖ψk (ξ)‖2 =

√∫ ξ

0

[ψpk (ξ)]
2dξ; (p = u, v, w) ; (13)

Define ϕpm(ξ) (p = u, v, w) as the orthogonal basis, which
can be expressed as:

ϕpm(ξ) =
ψpk (ξ)

‖ψpk (ξ)‖2
(p = u, v, w) ; (14)

The orthogonal basis function needs to satisfy the following
relation: ∫ 1

0

ϕpk (ξ)ϕ
p
l (ξ)dξ = δkl, (p = u, v, w) ; (15)

where δkl is Kronecker function.
Substituting Eq. (10) into Eq. (6), and further simplifying

the equation, we can obtain the expression of kinetic energy of
the shell:

T = −πρHRLω
2

2
e−2jωt

∫ 1

0

[
U2 + V 2 +W 2

]
dξ. (16)

Substituting Eq. (10) into Eq. (7), and further simplifying
the equation, we can obtain the potential energy expression of
the shell:

Uε=
LEHπ

2R (1− µ2)
e−2jωt

1∫
0


(
H2n4

12R2
+ 1

)
W 2+

n2H2

12R2
V 2
s +

(
n3H2

6R2
+2n

)
VsW

+(1− µ)


n2

2
U2
s +

nH2

6L2
W ′V ′s +

(
R2

2L2
+

H2

24L2

)
V ′2s

+
n2H2

6L2
W ′

2 − nR
L
Vs
′Us

 .

(17)
Substituting Eq. (10) into Eq. (9), and further simplifying

the equation, the elastic potential energy expression of the ar-
tificial spring can be expressed as:

U∗sp =


k̃u0 [U (0)]

2
+ k̃v0 [V (0)]

2
+

k̃w0 [W (0)]
2
+ k̃θ0

[
∂W (0)

∂ξ

]2


+


k̃u1 [U (1)]

2
+ k̃v1 [V (1)]

2
+

k̃w1 [W (1)]
2
+ k̃θ1

[
∂W (1)

∂ξ

]2
 .

(18)

Here, k̃ui , k̃
v
i , k̃

w
i , and k̃θi are dimensionless stiffness, and these

parameters can be expressed as follow:

k̃ui =
R2
(
1− µ2

)
EHL

kui ; k̃vi =
R2
(
1− µ2

)
EHL

kvi ;

k̃wi =
R2
(
1− µ2

)
EHL

kwi ; k̃θi =
R2
(
1− µ2

)
EHL3

kθi ;

(19)

where i = 0, 1, and 0 refers to the fixed end while 1 refers to
the free end.

According to Rayleigh-Ritz method, the dimensionless fre-
quency of TCS can be written as follows

(ω∗)2 =
U∗ + U∗sp

T ∗
(20)

Here,

ω∗ = ωR
√
ρ (1− µ2)

/
E; (21)
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T ∗ =

1∫
0

[
U2 + V 2 +W 2

]
dξ; (22)

U∗ =

1∫
0

((
H2n4

12R2
+ 1

)
W 2 +

n2H2

12R2
V 2
s

+

(
n3H2

6R2
+ 2n

)
VsW +

R2

L2
U ′

2
s

+ n2V 2
s + (1− µ) (n

2

2
U2
s +

nH2

6L2
W ′V ′s+(

R2

2L2
+

H2

24L2

)
V
′2
s +

n2H2

6L2
W ′

2 − nR
L
Vs
′Us)

+ 2µ
R

L
U ′sW +

H2R2

12L4
W ′′

2 − µn2H2

6L2
W ′′W

−µnH
2

6L2
W ′′Vs + 2µn

R

L
U ′sVs

)
dξ; (23)

Taking the partial of shape coefficients am, bm, and cm
which are related to U(ξ), V (ξ), and W (ξ) in Eq. (11), we can
have the characteristic equation in Eq. (25), and bring differ-
ent ku0 , k

v
0 , k

w
0 , k

θ
0 and ku1 , k

v
1 , k

w
1 , k

θ
1 into this equation, we can

calculate the natural frequency of TCS under elastic boundary
by ASM.

∂ω∗

∂am
=
∂ω∗

∂bm
=
∂ω∗

∂cm
= 0; (24)

[
K+Kspr − ω∗2M

]
X = 0; (25)

K =

 kaa kab kac

kba kbb kbc

kca kcb kcc

 ; (26)

Ksp =

 ksaa

ksbb

kscc

 ; (27)

M =

 Maa

M bb

M cc

 ; (28)

Here, X = {am bm cm}T is Ritz vector, K, Ksp, and M
are stiffness matrix, artificial spring stiffness matrix, and mass
matrix, respectively, and the expression of the elements in the
stiffness matrix, artificial spring stiffness matrix, and mass ma-
trix can be seen in Appendix A, B, C. Besides, it should be
noted that the numbers of row and column of K, Ksp, and
M are 3NT × 3NT , where NT is the number of orthogonal
polynomials. In this research in order to ensure calculation ac-
curacy, we set NT = 7(3NT = 21), so the numbers of row
and column of K, Ksp, and M are 21× 21.

2.3. Finite Element Method (FEM)
In this section, different thickness of rubber rings are used to

simulate various types of elastic boundaries, and finite element
model of TCS under elastic boundary is established, which is
used to calculate the natural frequencies and modal shapes, so

Figure 3. Finite element model of TCS under elastic boundary condition.

Figure 4. Spring stiffnesses of finite element model of TCS in the simulation
of the constrained boundary and elastic boundary.

that vibration characteristics of elastically supported shell can
be roughly mastered.

Finite element model of TCS under elastic boundary con-
dition is established with Ansys Parametric Design Language
(APDL) in ANSYS software, as seen in Fig. 3. SOLID186 el-
ement is used to create the model of the shell which consists
of 6480 nodes and 960 elements, and MATRIX27 element is
used as spring element to simulate different thickness of rub-
ber rings in the elastic boundary by adjusting stiffness value
in the X,Y, Z directions, which consists of a total of 8 spring
elements and 80 nodes.

Eight spring elements with stiffness value of k = 1 × 107,
k = 1 × 106, k = 1 × 105 are used to simulate the elastically
supported shell with the thicknesses of 1 mm, 2 mm, and 3 mm,
as seen in Fig. 4 named as elastic boundary I, elastic boundary
II, and elastic boundary III, respectively, and then the natu-
ral frequencies and modal shapes can be calculated by Block
Lanczos method. The stiffness value of the eight spring ele-
ments is set to k = 1× 109, so as to simulate the free-clamped
boundary condition (also see in Fig. 4), and the same method
is employed to calculate the frequency and shape parameters
of TCS under constraint boundary.

2.4. Theoretical Analysis Results and
Conclusion

In the above section, ASM and FEM are used to establish the
theoretical model of elastically supported shell. In this section,
the theoretical analysis results are analysed and discussed in
detail.

First, set stiffness value of eight spring elements to k =
1×109, k = 1×107, k = 1×106, k = 1×105 in the X,Y, Z
directions, and finish the calculation work of frequency and
shape parameters of TCS under constraint boundary as well as
elastic boundary with different thickness of rubber ring. The
first eight natural frequencies of modal shapes calculated by
FEM are listed in Table 4 and Table 5. Then, set the sup-
port stiffness as ku = kv = kw = kθ = 109, 107, 106, 105,
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Figure 5. Calculated relation between natural frequency and modal shape
under different elastic boundaries by ASM and.

and ASM method is used to calculate frequency results under
the above two kinds of boundary conditions, as seen in Ta-
ble 4. Further, the differences between FEM and ASM are also
given in Table 4, and Fig. 5 gives the relation between natural
frequency and modal shape calculated by the two theoretical
methods. It should be noted that in the shape results calculated
by FEM,m represents the order of axial mode and n represents
the number of circumferential waves of TCS.

From Table 4, Table 5, and Fig. 5, it can be found that:
(I) The elastic boundary has great influence on the inherent
properties of the shell, which will lead to the decrease of the
natural frequency, e.g., the reduced values of the first 8 nat-
ural frequencies are about 10 ∼ 100 Hz. (II) For some high
order modes, their decreased degrees are very small. Taking
the 7th and 8th natural frequencies for an example, the de-
creased degrees are less than 1%. (III) Although frequencies
and shapes of TCS will be changed by different kinds of elas-
tic boundaries, the changing trend of natural frequencies with
mode shapes is constant when the order of axial mode m = 1,
which shows frequency values is up after the decline with the
increase of the number of circumferential waves n, and usually
frequency values related to n > 8 are higher than n = 2 ∼ 7.

3. TEST SYSTEM AND METHOD OF MODAL
PARAMETERS OF TCS UNDER ELASTIC
BOUNDARY

In Section 2, vibration characteristic of TCS under elastic
boundary and its influence is analysed. But due to the com-
plexity of elastic boundary, the real influence of such boundary
on modal parameters, especially the damping characteristics
of the shell cannot be accurately analysed by ASM or FEM.
Therefore, it is necessary to employ experimental test to inves-
tigate the influence of elastic boundary on modal parameters of
TCS. In this section, experiment system is first established to
accurately measure modal parameters of the shell, and the cor-
responding test procedures and identification techniques suit-
able for the thin walled shell are also proposed.

3.1. Test System of Modal Parameters of
TCS Under Elastic Boundary

On the one hand, due to light weight, closed modes, low
level and complicated local vibration of TCS, traditional ac-
celerometer will bring added mass and stiffness to the tested
shell, which will severely affect the tested frequency and
damping results,23 so laser Doppler vibrometer is used as non-
contact response sensor to measure the vibration and frequency
information of the shell. On the other hand, different excitation

techniques also will result in test error, so the disadvantages
of four common vibration excitation devices are compared in
Table 6, and vibration shaker is finally chosen as excitation
source with excitation level being precisely controlled, and test
system of modal parameters of TCS under elastic boundary is
given in Fig. 6. The instruments used in the test are as fol-
lows: (I) Polytec PDV-100 laser Doppler vibrometer; (II) king-
design EM-1000F vibration shaker systems; (III) LongWei PS-
305DM DC power supply; (IV) Aslong JGA25 DC geared mo-
tor; (V) 45◦ rotation mirror and 45◦ fixed mirror; (VI) LMS
SCADAS Mobile Front-End and Dell notebook computer.

In these devices, LMS SCADAS Mobile Front-End and Dell
notebook computer are responsible for recording and saving
response signal from laser Doppler vibrometer. Dell notebook
computer with Intel Core i7 2.93 GHz processor and 4G RAM
is used to operate LMS Test.Lab 12B software and store mea-
sured data. For the frequency and damping test, sine sweep ex-
citation is conducted with a closed loop control via accelerom-
eter on the countertop of the vibration shaker, and point1, point
2, and point 3 (being 120◦ with each other) are used to get re-
sponse signal by adjusting laser point and average is used as the
final results. In this test, natural frequency can be precisely de-
termined through each resonant peak in frequency domain, and
damping ratio can also be identified by the half-power band-
width method which is calculated by measuring the bandwidth
of the frequency curve (or approximately 3 dB) down from
the resonant peak. For modal shape test, laser rotating scan-
ning technique is used to get shape results of TCS. First, one
of natural frequencies of TCS is employed to drive the tested
shell under the resonance state by vibration shaker, and then
DC power supply is used to provide stable voltage and current
for DC geared motor. The motor is used to drive the 45◦ rota-
tion mirror to complete a set of cross sectional scans with 360◦

circumferential coverage for the tested shell, and in this way
modal shape data at certain modes can be obtained in a shorter
amount of time than traditional test methods.

3.2. Test Method of Modal Parameters of
TCS Under Elastic Boundary

In this section, the test and identification techniques suitable
for elastically supported shell are described in detail, as seen
in the following three key steps.

3.2.1. Accurately determine tightening torque under
constraint boundary

Because modal parameters of TCS are closely related to
constraint boundary, in actual test, we must ensure that one
end of the tested shell be effectively clamped. To this end,
a torque wrench is used to determine the level of tightening
torque on the M8 bolts of clamping-ring, as seen in Fig. 1,
and the “pre-experiment” is adopted to determine the required
tightening torque as well as to verify whether or not the tested
shell is under constraint boundary. For instance, it should be
done at least three times to test natural frequencies, and every
time the same level of torque value should be applied on M8
bolts. If test results of the first three natural frequencies un-
der three pre-experiments are close to each other (for example
1 ∼ 3 Hz), we will regard this torque value as the determined
tightening torque under constraint boundary. If the differences
between each natural frequency are big, more than 5 ∼ 20 Hz,
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Table 4. Calculated natural frequencies of TCS under different elastic boundaries by ASM and FEM.

Constraint boundary Elastic boundary I Elastic boundary II Elastic boundary III
Modal AEM FEM Difference AEM FEM Difference AEM FEM Diff. AEM FEM Difference
order A B (A-B)/B A B (A-B)/B A B (A-B)/B A B (A-B)/B

(%) (%) (%)
1 924.5 910.4 1.5 901.4 886.5 1.7 887.6 860.5 3.1 854.3 832.6 2.6
2 987.4 965.4 2.3 966.5 934.5 3.4 917.8 899.4 2.0 884.5 878.5 0.7
3 1006.4 986.5 2.0 988.3 957.3 3.2 961.5 948.1 1.4 945.7 933.6 1.3
4 1089.2 1068.7 1.9 1065.2 1035.4 2.9 1027.7 1006.9 2.1 983.6 972.7 1.1
5 1323.6 1313.8 0.7 1312.5 1263.1 3.9 1256.7 1247.3 0.8 1227.6 1203.7 2.0
6 1365.4 1335.9 2.2 1348.8 1305.2 3.3 1313.4 1286 2.1 1284.4 1239 3.7
7 1618.1 1608.2 0.6 1584.6 1577.2 0.5 1541.6 1532.8 0.6 1521.9 1509.9 0.8
8 2017.5 2000.8 0.8 2009.6 1992.8 0.8 2001.5 1988 0.7 1998.3 1986.9 0.6

Table 5. Calculated modal shapes of TCS under different elastic boundaries by FEM.

Modal Constraint boundary Elastic boundary I Elastic boundary II Elastic boundary III
order (m,n) (m,n) (m,n) (m,n)

1 (1,4) (1,4) (1,4) (1,4)

2 (1,5) (1,5) (1,5) (1,5)

3 (1,3) (1,3) (1,6) (1,6)

4 (1,6) (1,6) (1,3) (1,3)

5 (1,7) (1,7) (1,7) (1,7)

6 (1,2) (1,2) (1,2) (1,2)

7 (1,8) (1,8) (1,8) (1,8)

8 (1,9) (1,9) (1,9) (1,9)

we need to increase torque value and repeat pre-experiments
several times.

3.2.2. Measure modal parameters of TCS under con-
straint boundary

This step involves three different measurements and identifi-
cation techniques. First, using sine sweep excitation by vibra-
tion shaker to test natural frequencies of TCS, and in order to
get precise frequency results, the small-segment FFT process-
ing technique is employed to deal with the measured sweep
signal. The time domain signal involving the 3rd natural fre-
quency of the tested shell is shown in Fig. 7(a). If FFT pro-
cessing technique is directly applied on this sweep signal, we
can obtain its frequency spectrum, as seen in Fig. 7(b), and the
frequency of the response peak is 1024.8 Hz. However, if the
whole time of sweep signal can be divided into small segments,
and we conduct FFT on each segment of them (in this exam-
ple, it is 1s with respect to the whole time of 68 s), the resulting

frequency spectrum, as seen in Fig. 7(c), is plotted through the
combination of the response peak of each segment (also treated
with interpolation and smoothing). The frequency value re-
lated to the peak is 1025.7 Hz, which is truly accurate result
of the 3th natural frequency. Therefore, for time-dependent
sweep signal of TCS, it is necessary to use the small-segment
FFT processing technique to accurately get frequency results.

Then, use the half-power bandwidth technique to identify
each damping ratio of TCS from the frequency spectrum ob-
tained by small-segment FFT processing technique. Because
the resonant peak in the spectrum is already known, we can
identify two half-power bandwidth points by measuring the
bandwidth of the frequency curve (or approximately 3 dB)
down from the resonant peak, consequently according to the
damping formula to calculate the corresponding damping re-
sults based the MATLAB program. Figure 8 gives time wave-
form and frequency spectrum for the 3rd natural frequency and
damping ratio of TCS at three measuring points. In order to
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Table 6. Disadvantages of different vibration excitation devices for modal test of TCS under elastic boundary.

Modal parameters of TCS
Excitation Natural Mode Damping Disadvantage

device frequency shape ratio

Hammer
√ √

×
Pulse excitation level can not be precisely controlled and the excitation
force varies for each measurement, and double hit can often lead to test
errors.

Electromagneti c exciter × × × The related force sensor will bring added mass and stiffness to TCS,
which will severely affect test results of damping and natural frequency.

Piezoelectric Ceramic exciter
√ √

×
The excitation energy of piezoelectric ceramic exciter is often insuffi-
cient for TCS, which will result in poor response signal with low level
of signal noise ratio.

Vibration shaker
√ √ √ Excitation frequencies are not that high, which are often limited to

1 Hz ∼ 3000 Hz, and the test procedures are often complicated.

Figure 6. Schematic of test system of modal parameters of TCS under elastic boundary.

improve accuracy of frequency and damping results, the final
results is obtained by averaging the test results at these points.

Finally, using each natural frequency to excite TCS at reso-
nance state, each modal shape with obvious reduction in time
costs by laser rotating scan method is obtained.

3.2.3. Measure modal parameters of TCS under elas-
tic boundary

After finishing the measurement work under constraint
boundary, we can fill 1 mm, 2 mm, and 3 mm rubber ring made
by ZN33 elastomer into the position between the clamping-
ring and extension edge to simulate different elastic bound-
ary conditions, which named as elastic boundary I, elastic
boundary II, and elastic boundary III respectively. Then, ex-
perimental test is conducted to get natural frequencies, modal
shapes, and damping ratios with the same test methods, such as
the small-segment FFT processing technique, the half-power
bandwidth technique, and laser rotating scan technique used
in the above two steps. It should be noted that the excitation
level and the position of the three measuring points must be the
same as the ones under constraint boundary.

4. INFLUENCE ANALYSIS OF MODAL PA-
RAMETERS OF TCS UNDER ELASTIC
BOUNDARY

In this section, on the basis of both theoretical and experi-
mental results, i.e., the simulation results calculated by ASM

and FEM in Section 2 and the accurate measured data obtained
by the test system and test method described in the Section 3,
the influence on natural frequencies, modal shapes, and damp-
ing ratios of TCS under elastic boundary are analysed and dis-
cussed in detail.

4.1. Test Results of Modal Parameters of
TCS Under Elastic Boundary

According to the proposed test method and procedures in
Section 3, point 1, point 2, and point 3 are used as the response
points, which are 120◦ with each other, and in the same cross
section of the shell, the axial distance from this section to free
end of TCS is about 5mm, as seen in Fig. 6. For the natural
frequency and damping test, the following set-ups and param-
eters are chosen: (I) excitation level of 1 g; (II) sweep rate
of 1 Hz/s; (III) frequency resolution of 0.125 Hz; (IV) han-
ning window for sweep response signal with upward sweep
direction; (V) frequency range of 0–2048 Hz. For the modal
shape test, the following set-ups and parameters are chosen:
(I) excitation level of 1 g ∼ 3 g; (II) frequency resolution of
0.125 Hz; (III) rectangular window for stable response signal;
(IV) sampling frequency of 12800 Hz; (V) rotated scan speed
of 2 r/min. Besides, the first eight modal shapes of TCS are
obtained in the test, and each modal shape is assembled from
two sets of cross sectional scans, one is in the section which
includes point 1, point 2, and point 3, the other is about 25 mm
to the clamped end of the shell (restricted by the height of DC
geared motor itself, but do not affect the test results when the
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Figure 7. 3rd natural frequency of TCS obtained by different FFT processing
techniques.

order of axial mode m = 1).

The measured frequency, damping, and shape results under
constraint boundary as well as different elastic boundaries are
listed in Table 7, Table 8, and Table 9, respectively. Besides, in
order to clearly describe the effect degree and trend of the elas-
tically supported shell, the corresponding scattergrams of nat-
ural frequencies and damping ratios of TCS under such bound-
ary are also given, as shown in Fig. 9 and Fig. 10, and Fig. 11
gives the relation between natural frequency and modal shape
under elastic boundary.

Figure 8. Time waveform and frequency spectrum for the 3rd natural fre-
quency and damping ratio of TCS under constraint boundary at 3 measuring
points.

Figure 9. Scattergram of natural frequencies of TCS under different elastic
boundaries.

4.2. Influence Analysis of Modal Parameters
Under Elastic Boundary

4.2.1. Influence on natural frequencies of TCS

From Table 7 and Fig. 9, it can be found that: (I) When the
boundary condition of TCS is changed into elastic boundary,
the natural frequencies of most modes will decrease within the
range of 1 ∼ 54 Hz, which are similar to the calculated results
and they verify the correctness of theoretical analysis conclu-
sion. (II) For the low order natural frequencies of the shell,
they would decrease by much more, e.g., the decreased degree
of the 1st frequency result can reach to 5%. (III) For the high
order natural frequencies of the shell, they are basically not
affected by elastic boundary. Taking the 7th and 8th natural
frequencies for an example, they only change 0.3% compared
with the ones under the fixed state. (IV) For some modes,
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Table 7. Measured natural frequencies of TCS under different elastic boundaries.

Mode Constraint Elastic Difference Elastic Difference Elastic Difference
order boundary boundary I (B-A)/A boundary II (C-A)/A boundary III (D-A)/A

A (Hz) B (Hz) (%) C (Hz) (%) D (Hz) (%)
1 906.3 896.7 -1.1 866.4 -4.4 860.6 -5
2 980.8 972.4 -0.9 966.1 -1.5 959.5 -2.2
3 1025.7 1014.6 -1.1 1040.2 1.4 1039 1.3
4 1072.3 1048.7 -2.2 1067.6 -0.4 1062.6 -0.9
5 1274.0 1248.5 -2.0 1231.3 -3.4 1219.8 -4.3
6 1312.8 1312.0 -0.1 1307.2 -0.4 1303.4 -0.7
7 1613.8 1609.3 -0.3 1608.3 -0.3 1608.5 -0.3
8 1996.3 1997.0 0 1997.3 0.1 1995.3 -0.1

Table 8. Measured damping ratios of TCS under different elastic boundaries

Mode Constraint Elastic Difference Elastic Difference Elastic Difference
order boundary boundary I (B-A)/A boundary II (C-A)/A boundary III (D-A)/A

A (Hz) B (Hz) (%) C (Hz) (%) D (Hz) (%)
1 0.20 0.54 170.0 0.70 250.0 1.16 480.0
2 0.76 0.46 -39.5 0.63 -17.1 0.63 -17.1
3 1.14 0.55 -51.8 0.50 -56.1 1.01 -12.3
4 0.27 0.4 48.1 0.44 63.0 0.62 129.6
5 0.74 0.83 12.2 0.80 8.1 0.82 10.8
6 0.37 0.4 8.1 0.39 5.4 0.68 83.8
7 0.39 0.18 -53.8 0.19 -51.3 0.20 -48.7
8 0.30 0.11 -63.3 0.27 -10.0 0.28 -6.7

Figure 10. Scattergram of damping ratios of TCS under different elastic
boundaries.

Figure 11. Measured relation between natural frequency and modal shape of
TCS under different elastic boundaries.

with the increase of the thickness of rubber ring, their natu-
ral frequencies will go up instead of decreasing. For example,
the maximum increased degree of the 3rd natural frequency of
TCS can reach to 1.4%, which might be caused by the changes
of modal shapes under elastic boundary.

Comparing the 3rd and 4th frequency results in Table 4 ob-
tained by ASM and FEM with the experiment results in Ta-
ble 7, we can find that the calculated frequency results have
declined monotonically, which are not the same as that of the
experiment results when the constraint boundary is turned into
the elastic boundary. The possible reasons for this error is
that: (I) because of the complicated connection condition un-

der elastic boundary, it is hard for ASM and FEM to simulate
such elastic boundary well, so the theoretical results may in-
evitably contain some errors. (II) the occurrence sequence of
modal shape has changed such as the 3rd and 4th modal shape
(for example, the 3rd modal shape is changed from (1,3) to
(1,6) when the constraint boundary (or elastic boundary I) is
turned into the elastic boundary II (or elastic boundary III)).
Although the calculated shape results can simulate the varia-
tion of experimental results, it is hard for the calculated fre-
quency results to be very close to all of the experiment results.
However, the decreased trend of natural frequency is true if we
observe the whole 1–8 natural frequency results (except for the
third mode) obtained by experiment in Tables 7.

4.2.2. Influence on damping ratios of TCS

From Table 8 and Fig. 10, it can be found that: (I) The elastic
boundary has great influence on the damping characteristics of
TCS; it will not only increase the damping of some modes, but
also may lead to the decrease of the damping for part of modes
of the shell. Therefore, in the process of vibration-reduction
design, it is necessary to choose proper frequency range, other-
wise elastic boundary may produce negative effects. (II) When
the boundary condition of TCS is changed into elastic bound-
ary, it would clearly reduce high order damping. Taking the
7th and 8th damping results for an example, the range of the
decreased degree can reach to about 53% ∼ 63%. (III) The
elastic boundary may improve damping of the low and inter-
mediate mode of TCS, especially for the 1st damping results,
the increased degree is more than 480% compared with the
ones under constraint boundary.

4.2.3. Influence on modal shapes of TCS

From Table 9 and Fig. 11, it can be found that: (I) When
the support stiffness of elastic boundary is larger, i.e., the
thickness of rubber ring is only 1 mm (which means that the
boundary condition is just turned into elastic-support from
the fixed-support), the resulting shapes of TCS can hardly be
changed. (II) As elastic boundary condition changes with in-
creased thicknesses of rubber ring, low order modal shapes of
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Table 9. Measured modal shapes of TCS under different elastic boundaries

Modal Constraint boundary Elastic boundary I Elastic boundary II Elastic boundary III
order A (m,n) B (m,n) C (m,n) D (m,n)

1 (1,4) (1,4) (1,4) (1,4)

2 (1,5) (1,5) (1,5) (1,5)

3 (1,3) (1,3) (1,6) (1,6)

4 (1,6) (1,6) (1,3) (1,3)

5 (1,7) (1,7) (1,7) (1,7)

6 (1,2) (1,2) (1,2) (1,2)

7 (1,8) (1,8) (1,8) (1,8)

8 (1,9) (1,9) (1,9) (1,9)

TCS vary that different levels, but for medium and high or-
der modes, such as the 6th, 7th, and 8th shape results, they
are unchanged and still the same as the ones under constraint
boundary. (III) Although frequencies and shapes of TCS will
be changed by different kinds of elastic boundaries, the chang-
ing trend of natural frequencies with mode shapes is constant
when the order of axial mode is m = 1, which shows fre-
quency values are up after the decline with the increase of the
number of circumferential waves n, and usually frequency val-
ues related to n > 8 are higher than n = 2 ∼ 7. This verified
the correctness of theoretical analysis conclusion.

5. CONCLUSIONS

This research combines theory with experiment to investi-
gate the influence of elastic boundary on modal parameters of
TCS. Based on the analysis and experimental results, the fol-
lowing conclusions can be drawn:

(1) FEM and ASM are adopted to roughly master vibra-
tion characteristics of shell structure, and the theoretical anal-
ysis results are helpful for us to determine measured frequency
range, build experimental model, understand geographic dis-
tributions of some nodes or nodal lines etc.

(2) Test system and method under elastic boundary is pro-
posed to accurately measure modal parameters of TCS, and the
following measurements and identification techniques are used
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to get precise frequency, damping and shape results: (I) Non-
contact laser Doppler vibrometer and vibration shaker with ex-
citation level being precisely controlled are used in the test sys-
tem; (II) “Pre-experiment” is adopted to determine the required
tightening torque under constraint boundary; (III) The small-
segment FFT processing technique is employed to accurately
measure nature frequency; (IV) Laser rotating scanning tech-
nique is used to get shape results with high efficiency.

(3) The influence on natural frequencies, modal shapes, and
damping ratios of TCS under elastic boundary are analysed
and discussed. It can be found that elastic boundary can signif-
icantly affect modal parameters of TCS, which would reduce
high order damping obviously. For example, the 7th and 8th
damping can be decreased within the range of 53% ∼ 63%.
Besides, natural frequencies of most modes will also be de-
creased within the range of 1 ∼ 54 Hz. However, high order
natural frequencies and mode shapes are still the same as the
ones under constraint condition, and the changing trend of nat-
ural frequencies with mode shapes is constant when the order
of axial mode is m = 1, which agrees well with the results
calculated by ASM and FEM.
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APPENDICES

Appendix A — The Elements in the Stiffness
Matrix K
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1∫
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Appendix B – The Elements in Artificial
Spring Stiffness Matrix KSP
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Appendix C – The Elements in Mass
Matrix M

Maa
ij =

1∫
0

ϕui ϕ
u
j dξ; (41)

M bb
ij =

1∫
0

ϕviϕ
v
jdξ; (42)

M cc
ij =

1∫
0

ϕwi ϕ
w
j dξ; (43)
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