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Bearings are the most common components used in rotating machines. Their malfunction may result in costly
shutdowns and human causalities which can be avoided by effective condition monitoring practices. In present
study, attempt has been made to estimate the severity of defect in bearing components by a two-step process.
Initially, defects of various severities in all bearing components are classified. In the next step, if defect exist in any
of the bearing components, i.e. inner race, outer race, and rolling elements, level of severity of defect is estimated.
Various statistical features are extracted from the raw vibration signals. Two machine learning techniques; support
vector machine and artificial neural network, along with four feature ranking techniques; Chi-square, gain ratio,
ReliefF and principal component analysis are used and employed for the analysis. Results show the potential of
the proposed methodology in defect severity estimation and classification of rolling element bearings.

NOMENCLATURE
C Penalty parameter
c Number of classes
Oij Observed value in the ith interval
Eij Expected frequency of Oij

N Number of instances
n Number of samples
p Distance measurement
Zt,i Value of instance xi on feature fi
ξi Slack variable
J Number of elements in a neuron
wi Interconnection weights of vector vi
b Bias for the neuron

1. INTRODUCTION

Rolling element bearings are the backbone of almost all the
rotating machinery. Studies show that around 40% of the fail-
ures in rotating machines are due to bearing faults.1 If the
defect severity is diagnosed well in advance, bearing failure
and thus machinery shutdowns can be reduced significantly by
avoiding catastrophic failure. Various online health monitoring
(OHM) techniques2 are available which respond as the fault
initiates, but it is impossible to estimate the defect severity at
fluctuating speed and load during operation. Having various
techniques, vibration based condition monitoring techniques
are preferred due to ease of use and higher responsive towards
the faults.

Various remarkable vibration based fault diagnosis method-
ologies have been developed for bearings.3–6 However, in these
studies, authors have not considered the severity of faults in
their analysis. Classification and estimation of the specific de-
fect is an important part of machinery maintenance systems.
Faults with deferent severity levels in the same component give
same characteristic frequency which makes the estimation of
defect severity a challenging task. Inaccurate defect severity

classification misleads the maintenance program. Various au-
thors have classified the single level severity in rolling element
bearing with 100% classification accuracy. Saxena and Saad,7

Wu et al.,8 and Liu et al.9 have classified single level sever-
ity in rolling element bearing with 100% classification accu-
racy. Few attempts have been reported in the literature which
attempts to classify various defect sizes in the same component
with higher classification accuracy. Skewness, kurtosis, stan-
dard deviation, crest factor, and other statistical measures have
been utilized by Sharma et al.10 and Amarnath et al.11 In order
to increase the computational efficiency, feature ranking tech-
niques are used to select the appropriate features which contain
most significant information about the system.12–15 In their ex-
tensive study, Zhao et al.12 proposed various feature selection
techniques; such as Chi-square, ReliefF, etc. Samanta et al.13

have employed the genetic algorithm for condition monitor-
ing of machines. The concept of mutual information has been
applied by Kappaganthu and Nataraj14 and the authors con-
cluded that the fault detection accuracy improved significantly
with the use of feature ranking methods. Sharma et al.15 have
examined various feature ranking techniques for the analysis
of bearing faults and summarized that performance of analysis
can be improved in the presence of ranked features.

Catastrophic failure of the bearing and the associated sys-
tem can be reduced significantly with known defect severity.
Hong and Liang16 and Wang et al.17 used the Lempel-Ziv com-
plexity and continuous wavelet transform (CWT) based model
to quantify the defect severity. The authors conclude that the
Lempel-Ziv measure, as non-dimensional index, can be used
for fault severity estimation. Jiang et al.18 have extracted
residual signals and statistical features from the conducted ex-
periments to quantify the defect severity. The multi-frequency
band energies (MFBEs) are also extracted from the acquired
signals and summarize that varying trend of residual signals
can be a useful tool for defect severity estimation. Yaqub
et al.19 presented a defect severity estimation model based
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on wavelet packet decomposition and support vector machine
(SVM). The authors also extracted various statistical features
for the severity estimation. Moshou et al.20 have extracted sta-
tistical features for the defect severity estimation in rolling el-
ement bearing. The authors have quantified the defect severity
by graphical representation of self-organizing maps (SOMs).

This paper presents a new methodology for defect severity
classification and defect severity estimation of rolling element
bearings. Four feature ranking techniques are used to select
the most appropriate features. The selected features are further
used as an input to two machine learning techniques, support
vector machine (SVM), and artificial neural network (ANN)
for classification and estimation purposes.

2. FEATURE RANKING TECHNIQUES

A number of features are extracted from raw signals to inter-
pret them in meaningful results. However, not all the features
are equally important for a specific purpose. Thus, optimal fea-
ture selection is the important task in fault diagnosis and sever-
ity estimation. The objective of feature ranking techniques is
to rank the features based on information and physical spacing.
In this study four feature ranking techniques; Chi-square, gain
ratio (GR), ReliefF and principal component analysis (PCA),
are employed to select the most appropriate features from the
extracted features. The selected features are fed as input to the
machine learning techniques for defect classification and de-
fect severity estimation analysis. Feature ranking techniques
used in this study are described as follows:

2.1. Chi-square
Chi-square is a very commonly used feature selection

method. It evaluates the importance of a feature with respect
to the class by calculating the value of Chi-squared statistic.
Mathematically;

χ2 =

2∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
. (1)

The necessary steps for the analysis using Chi-square tech-
nique are summarized as follows:21

1. Calculate the Chi-square value for every pair of adjacent
intervals in a signal using Eq. (1).

2. It considers a high significance level for all numeric at-
tributes for discretization.

3. A significance level for each of the attribute (a =
1, . . . , n) is calculated and merged.

4. The consistency checking is performed after each at-
tribute’s merging.

5. Consistency checking is conducted to ensure that the dis-
cretized data set accurately represent the original one.

6. If the inconsistency rate is not exceeded, significance
level (a) is determined for attribute a’s next round of
merging; otherwise attribute a will not be involved in fur-
ther merging.

7. The process is continued until no attribute’s value is
merged to only one value. When the discretization ends,
feature ranking is accomplished.

Chi-square discretize the relevant attributes and remove irrev-
erent attributes. It automatically select the Chi-square value,
determine the interval of numeric attribute as well as select
features according to the characteristics of the data. It ensures
that the fidelity of the training data can remain after Chi-square
is applied. Chi-square feature ranking technique is a useful and
reliable tool for discretization and feature selection of numeric
attribute.

2.2. Gain Ratio
Gain ratio is based on the principle of information gain. In

GR, features are selected in an incremental manner based on
the iteration and the iteration ends when a predefined number
of features remain.22 Higher GR value indicates the higher
applicability of features in a feature set, as well as improves
the information gain by taking the inherent information of a
split into account and is expressed as;

Gain ratio =
Information gain

Splitted information
(2)

where Information gain = Unsplitted information −
Splitted information . Gain ratio is an entropy based feature
selection technique and calculates the usefulness of a feature
by evaluating the performance of feature randomly in its pres-
ence. In GR, features are ranked based on maximizing the
feature’s information gain with minimizing the number of its
value. The GR values lies between the range (0, 1), where
higher GR value of a feature indicates its higher ranking in a
feature set.23

2.3. ReliefF
ReliefF evaluates the worth of an attribute by frequently

considering an instance and by taking the value of given at-
tribute for the nearest instance of the same and different class.
Basically, it is defined for the two-class problem, but can also
be used for multiple class problems.24 For two class problem
ReliefF is;

RF (Zi) =
1

2

N∑
i=1

p(Zt,i − Zdc(xi))− p(Zt,i − Zsc(xi)) (3)

where, Zdc(xi) and Zsc(xi) indicates the value of ith feature of
nearest points to xi with different and same class label, respec-
tively.

ReliefF is a supervised feature ranking technique. It is
employed in data preprocessing as a feature subset selection
method. During the features evaluation process, a weight is
assigned to each feature based on the ability of the feature to
distinguish among the classes and selects those features whose
weight exceed a predefined threshold as a relevant feature. The
weight computation is executed based on the probability of
nearest neighbors from two different classes having different
values for a feature and the probability of two nearest neigh-
bors of the same class having the same value of the feature.
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The higher the difference between two probabilities represents
the more importance of the feature.23

ReliefF feature ranking technique is more robust and can
deal with the noisy and incomplete data. However, its larger
computational complexity can reduce the efficiency.

2.4. Principal Component Analysis

Principal component analysis is one of the major linear un-
supervised dimensionality reduction techniques. It tries to set
the data point from a higher dimensional space to a lower di-
mensional space with keeping all of the important information
intact.25 It considers the eigenvector to evaluate the influence,
to the feature extraction result of each feature element. In PCA,
the eigenvector corresponding to a large eigenvalue is able to
capture more information of samples.26

3. MACHINE LEARNING TECHNIQUES

A variety of machine learning techniques such as sup-
port vector machine,3, 4 artificial neural network,27, 28 fuzzy
logic,29, 30 genetic algorithm,31, 32 and others have been suc-
cessfully employed in many engineering applications. Among
them, support vector machine (SVM) and artificial neutral net-
work (ANN) are most widely used artificial intelligence (AI)
techniques due to their proven outstanding performance on
rolling element bearings applications.4, 33 These two super-
vised soft computing techniques are considered in this study.

3.1. Support Vector Machine

Support vector machine is a supervised machine learning
method based on structural risk minimization principle derived
in statistical learning theory. SVM is extensively used for clas-
sification and regression problems due to its high generaliza-
tion performance, robustness, ability to model non-linear rela-
tionships, and potential to handle very large feature space.34, 35

For a two-class problem SVM can be formulated as following
optimization problem;

Minimize
1

2
||W ||2 + C

n∑
i=1

ξi (4)

Subject to

{
yi
(
WTxi + q

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n
; (5)

where xi, yi is the data set and q is a real constant.
The sequential minimal optimization (SMO) is an improved

faster training algorithm, used for solving the dual problem
arising from the derivation of the SVM.

3.2. Artificial Neural Network

Artificial neural network is a group of especially intercon-
nected artificial nodes, called neurons. ANN is an adaptive
system that changes its structure according to the information
flows through the network. Having various architectures of
ANN, multilayer feed forward back propagation algorithm is
widely used for rotary machine elements.

Figure 1. Schematic representation of experimental setup.

Table 1. Drive-end side test bearing specifications.

Parameter Physical value
Bearing specification 6205-2RS JEM
Inner race diameter 25 mm
Outer race diameter 52 mm

Width 15 mm
Ball diameter 7.94 mm

Pitch circle diameter 39.04 mm
Contact angle 0◦

A single neuron consists of synapses, summing function,
and an activation function. Mathematically a neuron can be
represented as:

K = Z

(
J∑

i=1

wivi + b

)
. (6)

4. EXPERIMENTAL SETUP

The bearing vibration data used for analysis in this study
are collected from Case Western Reserve University Bearing
Data Centre website.36 Figure 1 shows the brief outlines of
the experimental test rig. The test rig has a 2HP three phase
induction motor, an encoder, and a dynamometer. The drive-
end side of the motor consists the test bearing and is loaded
by the dynamometer. Accelerometer, having magnetic base, is
mounted on the housing of the test bearing and used for acquir-
ing the vibration signals. Healthy bearing data are considered
as the baseline data in the analysis. The drive-end side test
bearing parameters used in this study are listed in Table 1. The
schematic representation of various bearing components de-
fects, i.e. inner race defect, outer race defect, and ball defect,
are shown in Fig. 2.

Various single point bearing defects considered for the anal-
ysis are:

(i) Inner race defects having 0.1778 mm, 0.3556 mm and
0.5334 mm in diameter,

(ii) Outer race defects having 0.1778 mm, 0.3556 mm and
0.5334 mm at 6 o’clock position in diameter, and

(iii) Ball defects having 0.1778 mm, 0.3556 mm and
0.5334 mm in diameter.

5. FEATURE EXTRACTION AND SELECTION

A wide set of statistical features is extracted from the vibra-
tion signals. The extracted features are described as follows:
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(a)

(b)

(c)

Figure 2. Schematic representations of defects in bearing components: (a)
inner race defect, (b) outer race defect and (c) ball defect.

5.1. Mean
Mean is referred as the average value of the signal.

Mean = x =

∑n
i=1 xi
n

. (7)

5.2. Root Mean Square (RMS)
Root mean square is the square root of the average of the

squared values of the signal.

RMS =

√√√√ 1

n

n∑
i=1

x2i . (8)

5.3. Standard Deviation (SDEV)
Standard deviation is a measure of energy contain in the sig-

nal.

SDEV =

√
n
∑n

i=1x
2
i − (

∑n
i=1xi)

2

n(n− 1)
. (9)

5.4. Kurtosis
Kurtosis is used to describe the distribution of observed data

around the mean and is defined as the degree to which a statis-
tical frequency curve is peaked.

Kurtosis =

∑n
i=1 (xi − x)

4

(n− 1)(SDEV )4
. (10)

5.5. Skewness
Skewness measures the symmetry of a distribution around

its mean. Skewness can be negative or positive.

Skewness =

∑n
i=1 (xi − x)

3

(n− 1)(SDEV )3
. (11)

Figure 3. Overview of the methodology for multiclass defect severity classi-
fication and multiclass defect severity estimation.

5.6. Crest Factor
Crest factor is the ratio of peak value to RMS value of the

signal and indicates the shape of the waveform.

Crest factor =
max |xi|√
1
n

∑n
i=1(xi)

2
. (12)

5.7. Minimum Value (MIN)
Minimum value represents the minimum value of the signal.
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5.8. Maximum Value (MAX)
Maximum value represents the maximum value of the sig-

nal.

5.9. Covariance (COV)
Covariance is a measure that represents the strength of the

correlation between two random variables in a signal.

5.10. Shape Indicator
Shape indicator is defined as the ratio of the RMS value to

the mean value of the signal.

Shape indicator =
RMS

Mean
. (13)

These statistical features are initially used to form a feature
vector. To improve the defect classification and defect severity
estimation efficiency, these extracted features are fed as input
to various feature ranking techniques as discussed; thereafter,
the features are shortlisted and selected as per their ranking.
The selected features are then fed as input to machine learning
techniques, i.e. SVM and ANN. The overview of the method-
ology for defect severity classification and defect severity esti-
mation is shown in Fig. 3.

6. RESULTS AND DISCUSSION

In this study, defects in all bearing components, i.e. inner
race, outer race and rolling element, with various defect sever-
ity levels, i.e. 0.1778 mm, 0.3556 mm and 0.5334 mm, and
with healthy bearing, are considered for the fault diagnosis and
defect severity estimation. Various statistical features are ex-
tracted from the considered bearing conditions. Further, fea-
tures are selected as per their ranking using four feature rank-
ing techniques. All the extracted features are supplied to four
feature ranking techniques for their ranking. As suggested by
Wang et al.,37 (log2 fn) number of features may be used for
classification with various learning algorithms, where fn is the
number of features. Table 2 summarizes the ranking of features
corresponding to various feature ranking methods. A compar-
ative study between SVM and ANN with all feature ranking
techniques is carried out for defect classification and defect
severity estimation.

6.1. Defect Classification
As a part of analysis, first the classification among all the

considered cases is carried out, which includes the following
forty bearing conditions: four corresponding to healthy bear-
ing, twelve corresponding to inner race defects, twelve corre-
sponding to outer race defect, and twelve corresponding to ball
defect, having localized defects of 0.1778 mm, 0.3556 mm,
and 0.5334 mm in inner race, outer race, and ball and each cor-
responding to four speeds, i.e. 1797 rpm, 1772 rpm, 1750 rpm,
and 1730 rpm. A sample training/testing vector used in the in-
vestigation is shown in Table 3 (where, HY = healthy bearing,
ID = bearing having inner race defect, OD = bearing having
outer race defect and BD = bearing having ball race defect).

The results for the two machine learning techniques, i.e.
SVM and ANN, using 10-fold cross validation are shown.
In 10-fold cross validation, data is randomly divided into ten
equal sized training and testing folds. During iterations, nine
of the 10-folds are used for training and remaining one fold
is used for testing the dataset and finally it provides a single
value after averaging all the iterations. 10-fold cross validation
is preferred due to its capability of eliminating any biasness
while dividing data into training and testing set. The detailed
accuracy for SVM and ANN using the following four feature
ranking techniques: Chi-square, GR, ReliefF, and PCA and
these are shown in Table 4. It represents 100% classification
accuracy and 0% incorrectly classified instances for each of
SVM and ANN. Results also indicate the value of Kappa statis-
tics for each of SVM and ANN with all the feature ranking
techniques as 1 (or 100%), which indicates the perfect catego-
rization of the data with the highest accuracy. Kappa statistics
is an important measure which is used to predict the agreement
between actual and predicted classes.38

6.2. Defect Severity Estimation
In the previous section, classification between defective in-

ner race, outer race and rolling elements have been carried out.
The classification accuracies of both SVM and ANN with all
the feature ranking techniques are obtained as 100%. In this
section, defect severities in bearing components are estimated.
The estimation is carried out on three different defect sever-
ities, i.e. 0.1778 mm, 0.3556 mm, and 0.5334 mm of inner
race, outer race, and rolling elements at four different speeds,
i.e. 1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm. A sample
training/testing vector used for defect severity estimation pur-
pose is shown in Table 5 (where IR = inner race, OR = outer
race, and Ball = rolling element).

The detailed accuracies of defect severity estimation of
SVM and ANN for inner race defects using various feature
ranking techniques, i.e. Chi-square, GR, ReliefF, and PCA,
are listed in Table 6. The correlation coefficients show a good
agreement between the actual class and the predicted class, as
its value is observed as 1 for all the ranking techniques for both
of SVM and ANN. The maximum percentage error is reported
as 0.2812% for ANN with PCA ranking technique. It indicates
highly correlated results having very few errors.

The results of SVM and ANN for defect severity estimation
of outer race defects with various feature ranking techniques
are listed in Table 7. The results show the superior relationship
between the actual class and the predicted class than that for
inner race. For both of the artificial intelligence techniques,
the correlation coefficient is observed as 1. Also, the maximum
percentage error is reported as 0% for both of SVM and ANN.
It shows perfectly correlated results for both SVM and ANN.

Table 8 indicates the results of defect severity estimation
of SVM and ANN for rolling element with various feature
ranking techniques. Results show that prediction capability of
SVM is better than that of ANN. The correlation coefficient
shows a perfect synchronization between the actual and pre-
dicted class for SVM while ANN has fewer prediction capa-
bilities in this case. The maximum percentage error for SVM
is observed as 0% and for ANN it is found as 3.3746%. The
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Table 2. Ranking of features using different feature ranking techniques.

Feature Feature ranking technique
ranking Chi-square Gain Ratio ReliefF PCA

1 SDEV SDEV SDEV Mean
2 RMS RMS RMS RMS
3 MAX MAX Kurtosis SDEV
4 Crest factor Crest factor MIN Kurtosis
5 Shape indicator Shape indicator MAX Skewness
6 Kurtosis Kurtosis COV Crest factor
7 MIN MIN Mean MIN
8 Mean Mean Shape indicator MAX
9 COV COV Skewness COV

10 Skewness Skewness Crest factor Shape indicator

Table 3. Sample training/testing vector for SVM and ANN for fault severity classification.

Features Class
Mean RMS SDEV Kurtosis Skewness Crest factor MIN MAX COV Shape indicator

A
m

pl
itu

de
of

fe
at

ur
es 0.0126 0.0738 0.0727 2.7643 -0.0362 4.2196 -0.2867 0.3113 0.0053 1.2399 HY

0.0126 0.0664 0.0652 2.9306 -0.1731 5.213 -0.3459 0.3175 0.0043 1.2409 HY
0.0135 0.2915 0.29131 5.3959 0.1641 5.9653 -1.3799 1.7391 0.0848 1.3957 ID
0.0058 0.2929 0.2929 5.5423 0.1305 5.3973 -1.4029 1.5808 0.0858 1.41055 ID
0.0232 0.6695 0.6691 7.6495 0.0569 5.4226 -3.4088 3.6305 0.4477 1.651 OD
0.0041 0.5919 0.5919 7.5949 0.03341 5.2577 -3.0119 3.1123 0.3504 1.6153 OD
0.0126 0.1393 0.1387 2.9847 -0.0089 4.3598 -0.6071 0.6039 0.0193 1.2526 BD
0.0039 0.1391 0.1391 2.9638 0.0075 4.7434 -0.6597 0.6397 0.0194 1.2504 BD

maximum and minimum values of correlation coefficients for
ANN are also noticed as 0.9997 and 0.999, respectively, which
are very close to 1 and show good agreement between the ac-
tual and predicted class.

7. CONCLUSIONS

The present study deals with defect severity classification
and estimation in various rolling element bearing components.
Defects having three fault severities in inner race, outer race,
and rolling elements are considered for the analysis. A wide set
of statistical features is extracted from vibration signals. Four
feature ranking techniques are used to rank the extracted fea-
tures and the performance of two machine learning techniques,
support vector machine and artificial neural network, are eval-
uated. The following conclusions are drawn from the present
study:

• Both SVM and ANN show good performance for defect
severity classification and estimation, but ANN performs
a bit underneath for estimating the defect severity with
principal component analysis feature ranking technique.
The results obtained from SVM are superior due to its
inherent capability of generalization.

• Results indicate that the two features of standard devia-
tion and root mean square are proven to be the best two
indicators irrespective of feature ranking method.

• The classification and quantitative assessment of fault
severity of rolling element bearings can be improved sig-
nificantly with feature ranking techniques. Results show
that Chi-square method outperforms other techniques in
terms of correlation coefficient as well as the minimum
Maximum error (%).

• Proposed methodology can be effectively used for dimen-
sionality reduction of features without compromising the

performance and it would be beneficial in real practices
to analyze the defect severities accurately.

ACKNOWLEDGEMENT

The authors would like to thank Prof. K.A. Loparo and Case
Western Reserve University for their efforts to make bearing
data set available and permission to use data set.

REFERENCES
1 Singh, G. K. and Kazzaz, S. A. S. A. Induction machine

drive condition monitoring and diagnostic research-a sur-
vey, Electric Power Systems Research, 64 (2), 145–158,
(2003). https://dx.doi.org/10.1016/s0378-7796(02)00172-4

2 Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., and Wu,
B. Intelligent Fault Diagnosis and Prognosis for Engineer-
ing Systems, John Wiley & Sons, Inc., Hoboken, New Jer-
sey, (2006).

3 Sugumaran, V., Muralidharan, V., and Ramachandran,
K. I. Feature selection using decision tree and clas-
sification through proximal support vector machine for
fault diagnostics of roller bearing, Mechanical Sys-
tems and Signal Processing, 21 (2), 930–942, (2007).
https://dx.doi.org/10.1016/j.ymssp.2006.05.004

4 Harsha, S. P., Nataraj, C., and Kankar, P. K. The
effect of ball waviness on nonlinear vibration associ-
ated with rolling element bearings, International Jour-
nal of Acoustics and Vibration, 11 (2), 55–66, (2006).
https://dx.doi.org/10.20855/ijav.2006.11.2191

5 Singh, S. and Kumar, N. Combined rotor fault diagnosis in
rotating machinery using empirical mode decomposition,
Journal of Mechanical Science and Technology, 28 (12),
4869–4876, (2014). https://dx.doi.org/10.1007/s12206-
014-1107-1

54 International Journal of Acoustics and Vibration, Vol. 23, No. 1, 2018

http://dx.doi.org/10.1016/s0378-7796(02)00172-4
http://dx.doi.org/10.1016/j.ymssp.2006.05.004
http://dx.doi.org/10.20855/ijav.2006.11.2191
http://dx.doi.org/10.1007/s12206-014-1107-1
http://dx.doi.org/10.1007/s12206-014-1107-1


A. Sharma, et al.: USE OF FEATURE RANKING TECHNIQUES FOR DEFECT SEVERITY ESTIMATION OF ROLLING ELEMENT BEARINGS

Table 4. Detailed accuracy of SVM and ANN for defect classification using different feature ranking techniques.

Feature Correctly Incorrectly Kappa Classification
ranking classified classified statistics Error (%) accuracy (%)

technique instances instances
SVM ANN SVM ANN SVM ANN SVM ANN SVM ANN

Chi-square 40 40 0 0 1 1 0 0 100 100
Gain Ratio 40 40 0 0 1 1 0 0 100 100

ReliefF 40 40 0 0 1 1 0 0 100 100
PCA 40 40 0 0 1 1 0 0 100 100

Table 5. Sample training/testing vector for SVM and ANN for fault severity estimation.

Features Defect
Mean RMS SDEV Kurtosis Skewness Crest factor MIN MAX COV Shape indicator Speed (rpm) Condition severity (mm)

A
m

pl
itu

de
of

fe
at

ur
es

0.004 0.314 0.314 5.291 -0.0133 5.329 -1.536 1.672 0.098 1.399 1721 IR 0.1778
0.004 0.163 0.163 21.686 0.0235 11.532 -1.88 1.854 0.026 1.652 1752 IR 0.3556
0.003 0.449 0.449 8.345 0.303 8.056 -3.087 3.614 0.201 1.482 1728 IR 0.5334
0.005 0.58 0.58 7.964 -0.003 5.576 -3.003 3.236 0.337 1.634 1725 OR 0.1778
0.004 0.097 0.097 3.024 0.0002 4.932 -0.409 0.478 0.009 1.255 1749 OR 0.3556
0.004 0.559 0.559 23.542 0.131 11.902 -6.654 6.653 0.313 2.054 1721 OR 0.5334
0.004 0.154 0.154 2.84 0.02 4.69 -0.72 0.672 0.024 1.245 1722 Ball 0.1778
0.005 0.144 0.144 9.753 0.144 12.819 -1.386 1.839 0.02 1.422 1749 Ball 0.3556
0.005 0.118 0.118 3.101 0.025 4.886 -0.493 0.577 0.014 1.259 1729 Ball 0.5334

Table 6. Detailed accuracy of SVM and ANN for defect severity estimation
of inner race using different feature ranking techniques.

Feature Correlation Maximum
ranking coefficient error (%)

technique SVM ANN SVM ANN
Chi-square 1 1 0 0
Gain Ratio 1 1 0 0

ReliefF 1 1 0 0
PCA 1 1 0 0.2812

Table 7. Detailed accuracy of SVM and ANN for defect severity estimation
of outer race using different feature ranking techniques.

Feature Correlation Maximum
ranking coefficient error (%)

technique SVM ANN SVM ANN
Chi-square 1 1 0 0
Gain Ratio 1 1 0 0

ReliefF 1 1 0 0
PCA 1 1 0 0

Table 8. Detailed accuracy of SVM and ANN for defect severity estimation
of rolling element using different feature ranking techniques.

Feature Correlation Maximum
ranking coefficient error (%)

technique SVM ANN SVM ANN
Chi-square 1 0.9992 0 0.2812
Gain Ratio 1 0.9992 0 3.0934

ReliefF 1 0.9997 0 1.9685
PCA 1 0.999 0 3.3746

6 Singh, S. and Kumar, N. Rotor faults diagnosis using artifi-
cial neural networks and support vector machines, Interna-
tional Journal of Acoustics and Vibration, 20 (3), 153–159,
(2015). https://dx.doi.org/10.20855/ijav.2015.20.3379

7 Saxena, A. and Saad, A. Evolving an artificial neural net-
work classifier for condition monitoring of rotating me-
chanical systems, Applied Soft Computing, 7 (1), 441–454
(2007). https://dx.doi.org/10.1016/j.asoc.2005.10.001

8 Wu, S.-D., Wu, P.-H., Wu, C.-W., Ding, J.-J., and Wang, C.-
C. Bearing fault diagnosis based on multiscale permutation
entropy and support vector machine, Entropy, 14 (8), 1343–
1356, (2012). https://dx.doi.org/10.3390/e14081343

9 Liu, Z., Cao, H., Chen, X., He, Z., and Shen, Z. Multi-
fault classification based on wavelet SVM with PSO al-
gorithm to analyze vibration signals from rolling ele-
ment bearings, Neurocomputing, 99 (1), 399–410, (2013).
https://dx.doi.org/10.1016/j.neucom.2012.07.019

10 Sharma, A., Amarnath, M., and Kankar, P.K. Feature ex-
traction and fault severity classification in ball bearings,
Journal of Vibration and Control, 22 (1), 176–192, (2016).
https://dx.doi.org/10.1177/1077546314528021

11 Amarnath, M., Sugumaran, V., and Kumar, H. Exploit-
ing sound signals for fault diagnosis of bearings using
decision tree, Measurement, 46 (3), 1250–1256, (2013).
https://dx.doi.org/10.1016/j.measurement.2012.11.011

12 Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand,
A., and Liu, H. Advancing feature selection research-ASU
feature selection repository, Technical Report, (2011).

13 Samanta, B., Al-Balushi, K. R., and Al-Araimi, S. A. Ar-
tificial neural networks and genetic algorithm for bearing
fault detection, Soft Computing, 10 (3), 264–271, (2006).
https://dx.doi.org/10.1007/s00500-005-0481-0

14 Kappaganthu, K. and Nataraj, C. Feature selection for fault
detection in rolling element bearings using mutual infor-
mation, ASME Journal of Vibration and Acoustics, 133 (6),
061001, (2012). https://dx.doi.org/10.1115/1.4003400

15 Sharma, A., Amarnath, M., and Kankar P. K. Novel en-
semble techniques for classification of rolling element bear-
ing faults, Journal of the Brazilian Society of Mechani-
cal Sciences and Engineering, 39 (3), 709–724, (2016).
https://dx.doi.org/10.1007/s40430-016-0540-8

16 Hong, H. and Liang, M. Fault severity assessment for
rolling element bearings using the Lempel–Ziv com-
plexity and continuous wavelet transform, Journal of
Sound and Vibration, 320 (1–2), 452–468, (2009).
https://dx.doi.org/10.1016/j.jsv.2008.07.011

International Journal of Acoustics and Vibration, Vol. 23, No. 1, 2018 55

http://dx.doi.org/10.20855/ijav.2015.20.3379
http://dx.doi.org/10.1016/j.asoc.2005.10.001
http://dx.doi.org/10.3390/e14081343
http://dx.doi.org/10.1016/j.neucom.2012.07.019
http://dx.doi.org/10.1177/1077546314528021
http://dx.doi.org/10.1016/j.measurement.2012.11.011
http://dx.doi.org/10.1007/s00500-005-0481-0
http://dx.doi.org/10.1115/1.4003400
http://dx.doi.org/10.1007/s40430-016-0540-8
http://dx.doi.org/10.1016/j.jsv.2008.07.011


A. Sharma, et al.: USE OF FEATURE RANKING TECHNIQUES FOR DEFECT SEVERITY ESTIMATION OF ROLLING ELEMENT BEARINGS

17 Wang, J., Cui, L., Wang, H., and Chen, P. Improved com-
plexity based on time-frequency analysis in bearing quan-
titative diagnosis, Advances in Mechanical Engineering, 5,
1–11, (2013). https://dx.doi.org/10.1155/2013/258506

18 Jiang, F., Li, W., Wang, Z., and Zhu, Z. Fault severity
estimation of rotating machinery based on residual sig-
nals, Advances in Mechanical Engineering, 4, 1–8, (2012).
https://dx.doi.org/10.1155/2012/518468

19 Yaqub, M. F., Gondal, I., and Kamruzzaman, J. Machine
fault severity estimation based on adaptive wavelet nodes
selection and SVM, Proc. of the IEEE International Con-
ference on Mechatronics and Automation, Beijing, China,
(2011). https://dx.doi.org/10.1109/icma.2011.5986279

20 Moshou, D., Kateris, D., Sawalhi, N., Loutridis, S., and
Gravalos, I. Fault severity estimation in rotating mechani-
cal systems using feature based fusion and self-organizing
maps, Proc. of Artificial Neural Networks-ICANN, 20th
International Conference, Thessaloniki, Greece, (2010).
https://dx.doi.org/10.1007/978-3-642-15822-3 49

21 Liu, H. and Setiono, R. Chi2: feature selection
and discretization of numeric attributes, Proc. of
7th IEEE International Conference on Tools with
Artificial Intelligence, Herndon, VA, USA, (1995).
https://dx.doi.org/10.1109/tai.1995.479783

22 Sharma, A. and Dey, S. Performance investigation of fea-
ture selection methods and sentiment lexicons for sentiment
analysis, International Journal of Computer Applications,
Special Issue on Advanced Computing and Communication
Technologies for HPC Applications, 15–20, (2012).
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