
Finite Element Modeling and Wave Propagation
Analysis for Lens-Less Line Focus Acoustic
Microscopy
Guorong Song, Dengqian Qin, Yan Lyu, Guangfu Hong, Yuyang Xu, Bin Wu and
Cunfu He
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing,
China.

(Received 29 January 2016; accepted 26 April 2016)

A finite element method for simulation of lens-less line focus acoustic microscopy is proposed in this paper to non-
destructively evaluate the leaky surface wave (LSW) velocity. The defocusing measurement model is established,
in which the geometrical focusing radius will be 20 mm. The piezoelectric polyvinylidene fluoride film is selected
as the active element. The excitation is a standard black Harris wavelet signal with a centre frequency of 5 MHz.
Simulations of measurements on typical bulk materials (Al) are carried out. Then, the time-resolved wave signal
series are acquired when the defocusing distance varies continuously. The LSW velocity will be easily determined
by the examination of the slope of the LSW’s arrival time versus the defocusing position. The LSWs’ propagat-
ing path will be analyzed geometrically in time-domain. Meanwhile, the LSWs’ velocities are also extracted by
applying the specially developed digital signal processing algorithm to the defocusing experimental data, which is
called V (f, z) analysis method based on two-dimensional fast Fourier transform. Finally, the relationship between
the time-resolved method and the V (f, z) technique is discussed, in which the interpretation of the formation of
surface waves and the description of its analysing methods will be given.

1. INTRODUCTION

Finite element method (FEM)1 has been developed rapidly
and used extensively for scientific exploration and engineering
analysis. Numerous researches have been done validating the
approach and methodology. Many efforts have been leading to
the possibility of excellent correlation between simulation and
experiment. Hence, the FEM is in dominant position in the
process of experiment design.

The mechanical performance plays a vital role in material
sciences. However, few newly developed materials, such as
nano-fabricated materials, metal glass, size-limited specimens,
etc., can be examined by the conventional destructive meth-
ods.2, 3 Thus, in recent years, many researchers contributed
great efforts to the evaluation of mechanical properties, such as
nano-indentation, acoustic microscope, laser ultrasonic, etc.4–7

Atalar et al.8 firstly monitored the variation of the amplitude
of the transducer output voltage V as a function of spacing z
from specimen toward acoustic lens, namely the V (z) curve.
The V (z) curve oscillates periodically and depends on the elas-
tic properties of the reflecting surface uniquely. Later, Weglein
and Wilson9 reported the periodicity of dips appearing in V (z)
curves. Parmon and Bertoni10 yielded a clear physical pic-
ture of signal formation in the reflection acoustic microscope
and provided a simple formula to determine the LSW veloc-
ity. The next significant move toward quantitative measure-
ments of anisotropic materials was taken by Kushibiki and col-
leagues,11 who invented the line-focus-beam (LFB) technique
by means of measuring the interference phenomena in V (z)
curves.

Based on a time-domain Green’s function formalism, D. Xi-
ang and N. N. Hsu12 designed a large aperture lens-less line-
focus transducer for material characterization by simultane-
ously measuring the surface wave velocities and the bulk wave
transit times, from which the thickness and anisotropy may

be deduced. Guorong Song, et al.13, 14 developed an ultra-
sonic measurement system for non-destructive determination
of elastic constants by this time-resolved method (TRM). The
system adopted a line focus PVDF transducer to implement
the non-destructive experiments by measuring the elastic wave
velocities, in which the directly reflected echoes and the rera-
diated Rayleigh waves are time resolved during transducer de-
focusing.15 Typical waves used for bulk material evaluation
are longitudinal waves, transverse waves, and Rayleigh surface
waves. In this case, the leaky surface wave and the specular re-
flection wave are separated in time domain and the velocities
would be easily determined from the time delay. However, it
should be mentioned that the first directly reflected echoes will
be shifted to line up, so that the slope of the Rayleigh echoes
can be used in calculation of the surface wave velocity.

In this paper, we will focus on the evaluation of the leaky
surface wave (LSW) velocity of materials from the two-
dimensional finite element simulation of a line focus PVDF
transducer using PZFlex (Weidlinger Associates Inc, USA)
software package. First, the defocusing measurement model
is established, in which the geometrical focusing radius will
be 20 mm. The directly reflected echo (DRE), the leaky sur-
face wave (LSW) reradiated to the PVDF film, and the bottom
reflected echo (BRE) are clearly time resolved. The LSW ve-
locity would be determined by the examination of the slope of
the LSW’s arrival time versus the defocusing position. Then,
the LSWs’ propagating path will be analysed geometrically in
time-domain. Meanwhile, the LSWs’ velocities are also ex-
tracted by applying the specially developed digital signal pro-
cessing algorithm to the defocusing experimental data, which
is called V (f, z) analysis method based on two-dimensional
fast Fourier transform (2-DFFT). Finally, the relationship be-
tween the TRM and the V (f, z) technique is discussed, in
which the interpretation of the formation of surface waves and
the understanding of its analysing methods will be given in de-
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Figure 1. Schematic of time-resolved pulse/echo measurement.

tails.

2. THEORETICAL ANALYSIS

The time-resolved method was first developed by Hsu’s
group.12, 16 Xiang12 measured the LSW velocity in time do-
main using a lens-less line focus acoustic transducer with a
broadband pulse excitation.

The wave propagating paths are shown in Fig. 1a. Here,
F , z, h are the focal length, the defocusing distance, and the
sample’s thickness, respectively. Next, ΘR is the critical angle
of the water/sample interface. At any arbitrary defocus posi-
tion, the DRE, LSW, and BRE will appear in one waveform,
as shown in Fig. 1b, which is a typical analogue signal. As it
shows, the pulsed signals are clearly time resolved. δt denotes
the time delay of the LSW versus the DRE. A series of wave-
forms can be obtained while the defocusing distance z varies
continuously.

The LSW velocity can be determined by measuring the lin-
earity (slope m = z/δt) of the time interval between the LSW
and DRE with the defocusing distance z. When m is obtained,
the LSW velocity can be evaluated through the following equa-
tion:12, 17

CR = CW

[
1−

(
1− CW

2m

)2
]− 1

2

; (1)

where Cw is the longitudinal wave velocity in the coupling
fluid, usually water. This method also holds for broadband
pulse excitation. So, if one can determine every δz at every
single frequency included in the bandwidth, a series of con-
secutive surface wave velocities can be obtained by V (f, z)
technique. Lee, et al.18 explored the principles of this V (f, z)
measurement by a 2-D FFT waveform processing method, and
applied it on the dispersion curves of thin plates. First, as-
suming that v(t) is the time history of the transient wave func-
tion, the DRE signal can be represented as v0(t). For a non-
dispersive case, the LSW can be denoted as v1(t). Meanwhile,
the BRE signal will not affect the interference phenomenon in
V (z) curve. Cleary, v is a function of defocusing position z.
Finally, we can get the waveform representation in terms of t
and z:

v (t, z) = v0 (t, z) + v1 (t, z) . (2)

It can be observed that v1(t) and v0(t), which are also func-
tion of defocusing distance z, only differ in phase and ampli-
tude. Then we obtain:

v1 (t, z) = g (z) · v0 (t−m′z, z) ; (3)

where g(z) is an amplitude factor as a function of defocus-
ing distance z, and m′ is the ratio of time delay at different z

Figure 2. Schematic of conventional acoustic microscope with lens.

(m′ = 1/m). Also, for a non-dispersive measurement, m′ is a
constant. So we get:

v (t, z) = v0 (t, z) + g (z) · v0 (t−m′z, z) . (4)

Fourier transform Eq. (4) to frequency domain:

V (f, z) = V0 (f, z) + g (z) · V0 (f, z) e−i·2πf ·m
′z. (5)

For a certain frequency f , the amplitude of |V (f, z)| is a
periodic function of z, and the oscillating period ought to be
written as:

∆z =
1

f ·m′
. (6)

Substitute m′ = 1/m and Eq. (6) into Eq. (1), the well-
known equation in acoustic microscopy11 comes up

CR = CW

[
1−

(
1− CW

2f ·∆z

)2
]− 1

2

. (7)

In dispersive case (thin plates, coatings, etc.), the slope
m will be also dispersive and non-linear, i.e. m = m(f).
So, Eq. (1) will not be used. In other words, the TRM can
only be utilized in non-dispersive measurements under pulse-
echo mode, while, usually, conventional acoustic microscopy
works in single frequency tone-burst mode.12 Figure 2 shows
the schematic of conventional acoustic microscope with lens.
This inspires us that, if the time-resolved measurements us-
ing broadband pulses are applied on dispersive materials and
analysed by V (f, z) method, a series of dispersion curves of
guided waves will be obtained. However, there still exists one
basic problem: why Eq. (7) used in conventional acoustic mi-
croscopy (with a focus lens) can be applied in time-resolved
measurements (using PVDF without lens)? They differ a lot in
geometry. Hence, a FEM model is established to illustrate the
wave propagating path from every exciting angle segment of
the PVDF. Furthermore, the V (f, z) technique is derived from
both dispersive and non-dispersive wave measurement, while
TRM is derived from non-dispersive Rayleigh wave measure-
ment.

3. MEASUREMENTS OF LSW VELOCITY
BY FEM

3.1. Finite Element Modelling
In this simulation model, piezoelectric polyvinylidene fluo-

ride (PVDF) film is chosen as the active element and the tung-

512 International Journal of Acoustics and Vibration, Vol. 22, No. 4, 2017



G. Song, et al.: FINITE ELEMENT MODELING AND WAVE PROPAGATION ANALYSIS FOR LENS-LESS LINE FOCUS ACOUSTIC MICROSCOPY

(a)

(b)

Figure 3. Finite element model and the time-frequency characteristic of exci-
tation signalt.

sten loaded epoxy as backing. The line focus transducer is
composed of backing and the PVDF film. The geometrical fo-
cusing radius, half aperture angle, and thickness of the PVDF
membrane is 20 mm, 40◦, and 40 μm, respectively. It should
be noted that PZFlex uses brick-shaped Cartesian elements to
construct the model. So, this finite element model employs the
square-shaped elements to mesh the grid. The thickness of the
aluminium specimen is 5 mm. Since a symmetry plane is as-
sumed at the y = 0, only half of the physical geometry need
to be included in the model. Figure 3a shows the 2-D finite
element model for defocus measurement. Figure 3b shows the
excitation pulse, which is a black Harris wavelet (BHW), and
its FFT spectrum.

Suitable wave propagation time and element size are impor-
tant for the accuracy of numerical solutions in finite element
calculations involving wave propagation. In this work, the ac-
tual wave propagation time is set to 35 μs. The model is dis-
cretized with 50 elements per wavelength for the longitudinal
wave in water at 5 MHz. This results in a model composed of
4000 and 2250 elements in the x- and y-direction, respectively.
The whole model contained a total of about 10 million ele-
ments. Furthermore, boundary conditions and material proper-
ties must realistically represent the experimental situation. The
symmetry plane was at y = 0 mm. The right (y = 13.5 mm)
and the top (x = 21 mm) boundary of the model was set to

absorption boundary condition in order to prevent any reflec-
tions, and the bottom (x = −5 mm) of the model was set to
free boundary condition.

The top (to backing) and the lower (to water) surface of the
PVDF film is the positive and the negative electrode separately.
In the simulation, the PVDF film is first excited. Then a tran-
sient pulse is launched into the coupling water and focused on
the sample surface subsequently, which is also the focal plane
of the transducer. When the transducer moves downward, the
focal plane will separate from the sample surface, also known
as defocusing. The wave beams incident at the Rayleigh an-
gle are converted into surface wave. While this surface wave
propagates along the sample surface, it leaks into the coupling
fluid and re-radiates back to the PVDF transducer. In this case,
the echo signals consist of not only the directly reflected waves
and the bottom reflected longitudinal waves, but also the leaky
surface waves. Figure 4 shows the wave propagation process
when the waves are at different moments.

3.2. Time-Resolved Method
To sum up all the considerations mentioned above, the LSW

velocities of aluminium are measured by this finite element
model. First, the sample surface is aligned with the geometric
focal plane, and the acoustic waves launched by the PVDF film
are reflected by the sample surface. The received waves will be
converted into charge signals by the top electrode of the PVDF
film. Then the defocusing position z steps continuously with
0.2 mm from z = 2 mm to z = 4 mm.

Figure 5 shows the defocusing waveforms superposed by
offsetting from different defocusing distances. The peaks in
each waveform are extracted, and linear fitting of peak points
brings out the slope of the arrival time of surface waves. Sub-
stituting the slope m and Cw = 1496 m/s into Eq. (1), one can
get the LSW velocity of aluminium easily. Finally, the simula-
tion result of LSW velocity is 3036 m/s for aluminium.

3.3. Analysis of Wave Propagation Path
In Fig. 5, the DRE, LSW (re-radiated to the PVDF film), and

the BRE can be clearly distinguished from the simulation sig-
nals in defocusing measurement. The LSWs’ propagating path
will be analyzed geometrically in time domain. The PVDF
film is cut into 40 segments equally, i.e., one degree for an in-
dependent sensing segment. Figure 6 shows the half finite ele-
ment model and the serial number of sensing elements (No.6 to
No.34 are not illustrated). These multi-angle sensing elements
are excited simultaneously, but they will receive the reflected
wave separately. Compared with the PVDF film receiving the
signal as a whole, in which the received signal is an integration
of the reflected waves, these separated elements will obtain the
detail information from each angle. In this model, z = 2 mm
and h = 5 mm are given. The longitudinal wave velocity of
aluminium is 6306 m/s. Figure 7 shows signals received by the
multi-angle elements and the integrated signal. Meanwhile, the
DREs’ signals are firstly received by the centre element. The
LSWs’ will be received by the Rayleigh angle element at last
among all the sensing elements. However, this is barely possi-
ble to observe in experiments.

The geometrically propagating path of DREs in time domain
is shown in Fig. 8. The DREs’ total propagating time from
incident element by angle Θ1 (unknown variable) to receiving
element by angle Θ is:

TDRE =
LAB + LBC

Cw
. (8)
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Figure 4. Snapshot of wave propagation when the transducer is placed at a defocused position: (a) t = 3 μs; (b) approaching the sample surface; (c) reflected
waves.

Figure 5. Time domain waveform.

The incident distance of DREs’ propagating path LAB can
be expressed as:

LAB = R− z

cos θ1
. (9)

In triangle ∆BOC, LBO = z(cosΘ1) and Θ2 = 2×(90◦−
Θ1). According to the law of sines, the distance of the reflected
wave from the sample surface should be:

LBC =
R sin

(
2× θ1 − arcsin

(
2×z sin θ1

R

))
sin (2× θ1)

. (10)

Substituting Eq. (9) and Eq. (10) into Eq. (8), one can get
the DREs’ total propagating time easily. Meanwhile, the angle
of the receiving element is:

θ = θ1 − arcsin

(
2× z sin θ1

R

)
. (11)

The geometrical propagating path of LSWs are shown in
Fig. 9. The LSWs’ total propagating time from incident ele-
ment by Rayleigh angle ΘR to receiving element by angle Θ
is:

TLSW =
LAB + LCD

Cw
+
LBC

CR
. (12)

The incident distance of LSWs’ propagating path is the same
as the DRE condition, which is:

LAB = R− z

cos θR
. (13)

Figure 6. Half of the finite element model.

The distance LBC (unknown variable) of LSWs’ propagat-
ing on the interface ought to be divided into three cases:

1. LBC ≤ ztan(ΘR)

In triangle ∆DCE, LBO = ztan(ΘR), then LCE =√
((LBO − LBC)2 + z2 and Θ2 = 90◦ − ΘR +

arctan [z (LBO − LBC)]. According to the law of sines,
the distance of reflected wave from the top of sample to
multi-angle elements can be expressed as:

LCD =
R sin

(
θ2 + arcsin

(
LCE sin θ2

R

))
sin θ2

. (14)

Substituting Eq. (13) and Eq. (14) into Eq. (12), one can
get the DREs’ total propagating time easily. Meanwhile,
the angle of the receiving element is:
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Figure 7. Signals received by multi-angle elements and its integration.

Figure 8. Geometrical illustration of the DREs’ propagating path.

θ = 180◦ − θ2 − arcsin

(
LCE sin θ2

R

)
−

− arctan

(
LBO − LBC

z

)
. (15)

2. ztan(ΘR) ≤ LBC ≤ 2× ztan(ΘR)

In triangle ∆DCE, LBO = ztan(ΘR), LCE =√
(LBC − LBO)2 + z2 and Θ2 = 270◦ − ΘR −

arctan (z (LBC − LBO)). Also, according to the law of
sines, the propagating distance of the reflected wave can
be expressed as:

LCD =
R sin

(
θ2 + arcsin

(
LCE sin θ2

R

))
sin θ2

. (16)

Substituting Eq. (13) and Eq. (16) into Eq. (12), the
DREs’ total propagating time will be obtained. Then, the

angle of the receiving element is:

θ = 180◦ − θ2 − arcsin

(
LCE sin θ2

R

)
+

+ arctan

(
LBC − LBO

z

)
. (17)

3. LBC ≥ 2× ztan(ΘR)

The same applies to the third case, that in tri-
angle ∆DCE, LBO = ztan(ΘR), LCE =√

(LBC − LBO)2 + z2 and Θ2 = 90◦ + ΘR +
arctan (z (LBC − LBO)). The reflected ray will prop-
agate in:

LCD =
R sin

(
θ2 + arcsin

(
LCE sin θ2

R

))
sin θ2

. (18)

Substituting Eq. (13) and Eq. (18) into Eq. (12), the
DREs’ total propagating time is extracted, and the angle
of the receiving element is:

θ = arctan

(
LBC − LBO

z

)
+ θ2+

+ arcsin

(
LCE sin θ2

R

)
− 180◦. (19)

Figure 10 shows the geometrical propagating path of
BREs. The BREs’ total propagating time from incident
element by angle Θ1 to receiving element by angle Θ is:

TBRE =
LAB + LDE

Cw
+

2× LBC

CL
; (20)

where CL is the longitudinal wave velocity of aluminium.
Also, for BREs, the incident distance is:

LAB = R− z

cos θ1
. (21)

According to the Snell’s Law, the angle of refraction

θ2 = arcsin

(
CLsinθ1
Cw

)
. (22)

So we have:

LBC =
h

cos
(

arcsin
(
CL sin θ1
Cw

)) ; (23)

LBD = h tan

(
arcsin

(
CL sin θ1
Cw

))
. (24)

In triangle ∆EFD, LDF =
√

(LBD − ztanΘ1)2 + z2

and Θ3 = 90◦ + Θ1 + arcsin(zLDF ). According to
the law of sines, the distance of reflected wave from the
interface to multi-angle elements can be expressed by:

LDE =
R sin

(
θ3 + arcsin

(
LDF sin θ3

R

))
sinθ3

. (25)

Substituting Eq. (21), Eq. (23), and Eq. (25) into Eq. (20),
one can get the BREs’ total propagation time, and the an-
gle of the receiving element is:

θ = arccos

(
z

LDF

)
+θ3+arcsin

(
LDF sin θ3

R

)
−180◦.

(26)
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Figure 9. Geometrical schematic of the LSWs’ propagating path.

In this section, to be clear:

(1) In DREs and BREs, if Θ1 is given, the propagating time
TDRE and TBRE will be determined;

(2) In LSWs, the surface wave will leak to the water as it
propagates, which means only LBC varies. Thus, the cor-
responding element (element Θ) will receive a series of
varying signals, as shown in Fig. 11.

The arriving time of DREs, LSWs, and BREs are shown in
red solid line, blue dash line, and pink dash line, respectively,
in Fig. 11, in which we could see their variation clearly. It
should be noted that, the receiving angle ΘR is always the last
one to collect the LSW signal, and this feature can be used to
determine the Rayleigh angle of the specimen. This geomet-
rical analysis result is compared with the simulation. There
is a good agreement between the results and the simulation.
Finally, the integrated time domain waveform, like Fig. 7b, is
able to be decomposed into multi-angle signals. In this pro-
cess, the formation of the integrated signal appears clearly.

3.4. V (f, z) Analysis Method
According to the V (f, z) analysis method,18 the defocus-

ing distance and interval here are 4 mm and 0.04 mm, respec-

tively. Thus, 101 groups of simulation waveforms are acquired.
It should be mentioned that each of the waveforms is shifted
in time domain so that the arrival time of the DRE is coin-
cident to the original time reference. The waveform ampli-
tudes will be normalized with respect to the magnitude of the
DRE. Figure 12a shows all the normalized waveforms from
top view, while Fig. 5 shows some equally selected ones. In
order to obtain oscillation periods of the defocusing distance at
different frequencies, the normalized time domain waveforms
v(t, z) are Fourier transformed with respect to time t into fre-
quency domain f , hereinafter referred to as V (f, z) data shown
in Fig. 12b. As a matter of fact, they both are induced by
the interference between the DRE and LSW. In order to de-
termine the oscillating period ∆z in V (f, z) curve accurately,
the V (f, z) data are Fourier transformed to wave number k
domain (which is in fact the inverse of z) with respect to z,
referred to as V (f, k) data shown in Fig. 13a. From Fig. 3b,
it can be found that the excitation pulse centred at the 5 MHz.
However, the frequency domain is extended to 20 MHz. Even
if there is a little energy in the high frequency domain, the
V (f, z) method, which is a “normalized” method with respect
to frequency, can extract the periodical oscillation in z direc-
tion, as shown in Fig. 12b. The oscillating period ∆z will be
determined by tracing the maxima on the “ridge”, and it can be
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Figure 10. Geometrical schematic of the BREs’ propagating path.

Figure 11. Signals received by multi-angle elements.

observed that the tracing range can extend from several MHz to
over 15 MHz. Once the ∆z is determined, the SAW velocities
will be obtained by Eq. (7), as shown in Fig. 13b. It appears
that the velocities are very close to a constant from 4 MHz to
10 MHz with a discrepancy of less than 100 m/s. The simula-
tion results of LSW velocity is 3045 m/s by V (f, z) technique.

4. DISCUSSION

This paper presents a FEM to simulate the lens-less line fo-
cus acoustic microscopy for non-destructive evaluation of the
leaky surface wave (LSW) speed. The DRE, LSW reradiated
to the PVDF film, and BRE are clearly time resolved in sim-
ulations of defocusing measurements on typical bulk materi-
als (Al). More importantly, an analytical geometric model
is established to illustrate the formation of the time-resolved
waveform. From the multi-angle signal, the LSWs’ propagat-
ing path is analyzed geometrically in time-domain. Also, this
model reveals the mechanism of wave propagation in line fo-
cus acoustic field. Meanwhile, the time-resolved wave signal
series are acquired when the defocusing distance varies con-
tinuously. Next, V (f, z) analysis method is carried out and
applied on these defocusing measurement data to obtain the
surface wave velocity. The former simulation model shows
the spatial analysis, so that one can understand how the LSW
emerged from the DRE. The latter V (f, z) analysis gives a
time-frequency observation, so that the relationship of the
time-resolved method and this V (f, z) method can be linked

(a)

(b)

Figure 12. (a) Normalized waveforms of 3D-time; (b) Fourier transform with
respect to t.

up. Furthermore, the multi-angle signal carries the structure’s
detailed information so that this method can be used to extract
the characteristics (such as the orientation and depth) of the
surface crack quantitatively.
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