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The performance of common linear algorithms in active noise control applications can be degenerated mainly
due to the unmodeled nonlinearities of loudspeakers as actuators in noise attenuation process. The aim of this
article is to propose different methods such as prediction error method (PEM), nonlinear autoregressive network
with exogenous input (NARX), and series-parallel NARX network based on neural network to experimentally
identify the nonlinear behaviour of a loudspeaker. A model of loudspeaker is being used in noise cancellation and
control algorithms; hence, its validity and robustness to input amplitude and frequency plays a crucial role in noise
control. The results of this article, which are completely based on real and experimental data, demonstrate that
neural network based series-parallel NARX model is the best estimator for the fully nonlinear behaviour of the
loudspeaker. The capability and robustness of this estimator in comparison with other methods is examined by
different test inputs with different amplitudes and frequencies.

1. INTRODUCTION

The first dynamic model to describe the electro dynamic
loudspeaker was proposed by Thiele and Small.1 Their model
utilized linear equations to present loudspeaker dynamics.
However, a loudspeaker shows nonlinearities that produce dis-
tortions. In previous studies,2, 3 the nonlinearities of the loud-
speaker dynamic are categorized in three main sources: sus-
pensions, diaphragms, and motors. Furthermore, many at-
tempts have been done to model and study the nonlinearities
of the loudspeaker dynamic. For instance, in the most recent
studies, Ravaund et al. proposed a time varying third order
model to describe the dynamic of an electro dynamic loud-
speaker.4 Also, in other study, they ranked the nonlinearities of
loudspeaker based on their importance for different input mag-
nitudes and frequencies.5 On the other hand, Faifer et al. sug-
gested a novel method to estimate nonlinear loudspeaker pa-
rameters such as stiffness by linearizing the nonlinear dynamic
of the loudspeaker.6 Chang et al. used experimental laser vi-
brometry and Finite Element Analysis to model the nonlinear
stiffness of the diaphragm.7 Also, to measure the total har-
monic distortion, the electroacoustic system is modelled by its
equivalent electrical circuit. In another research, the signif-
icant importance of coil position in improving sound quality
and reduction of total harmonic distortion is studied using a
nonlinear mathematical model of a loudspeaker.8 Considering
all the above-mentioned studies, we observe that all of them
have used grey- box models, and therefore they are completely
limited to the amplitude and the frequency of input signal. In
other words, big input signal such as big electrical current can
excite the nonlinear oscillatory behaviours of the diaphragm of
loudspeakers; therefore, simple grey- box models would not be
accurate enough to demonstrate its behaviour.

Although passive noise and vibration control have been
successfully implemented in many engineering applications
such as printed circuit boards,9, 10 jet-impingement cooling

systems,11–14 optic devices,15 and cryogenic coolers,16 active
noise control (ANC) is necessary in many other applications
where some conditions like randomness or non- stationary be-
haviour of excitation renders passive techniques ineffective.
Loudspeakers play a crucial role in active noise control. How-
ever, Azadi and Ohadi have claimed that neglecting the non-
linearities of loudspeaker can deteriorate ANC performance.17

Therefore, Azadi et al. used neural networks for modelling
the loudspeaker in the filtered gradient active fuzzy neural net-
work noise control in an enclosure.18 The aforementioned re-
searches demonstrate the vital need to use black-box models
to model the nonlinear behaviour of loudspeaker especially in
ANC application.18, 19 Therefore, in this article, the authors
will use different system identification techniques to model
loudspeaker dynamics in an offline manner with experimental
data. The most essential advantage of using offline identifi-
cation is the reduction of calculation load and increasing the
speed of ANC system. Note that, a comprehensive and accu-
rate identified model of loudspeaker in offline condition can be
used in ANC application by considering possible model vari-
ations as model disturbance and uncertainty. In order to do
so, different methods will be used and tested with a variety of
input voltage amplitudes and frequencies.

2. LINEAR AND NONLINEAR MODEL OF
LOUDSPEAKER

As stated earlier in Sec. 1, a loudspeaker may exhibit non-
linear behaviour in certain working condition, such as low fre-
quency and/or high amplitude input signals. One of the char-
acteristics of a linear system is that when a pure sine signal is
fed in the system, the respective output is comprised of the
same harmonics as the input. Whereas in a nonlinear system,
other harmonics of the input are observed in the output of the
system.4, 5 It is also the same in a loudspeaker that is driven
in a nonlinear working condition. Nonlinear behaviour can be
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Figure 1. Distorted sine signal input of 87 Hz, measured in output of nonlinear
loudspeaker.

easily revealed in fast Fourier transform (FFT) plots. In our
case, the loudspeaker shows such response as illustrated in
Fig. 1.

In this figure, the first peak is associated with the input
signal of 87 Hz frequency, and in addition, there are two
sub-harmonics that are involved in the output in approximately
172 Hz and 262 Hz, the peak values of which are less than the
first harmonic.

The nonlinear behaviour can be mathematically expressed,
as well. A mathematical model of a nonlinear loudspeaker was
introduced by Ravaud et al. as Eq. (1).4

a(i)
d3x(i)

dt3
+ b(i)

d2x(i)

dt2
+ c(i)

dx(i)

dt
+ d(i) = u(t); (1)

in which x is the displacement of loudspeaker diaphragm, u is
the input voltage of the loudspeaker, and a, b, c, and d are the
coefficients that vary with the input current and consequently,
the response will be rendered nonlinear.

3. EXPERIMENTAL SETUP

In this paper, the identification process is performed on a
Behringer loudspeaker with 8 ohms as impedance and 25 volts
as maximum input voltage. This instrument is driven using
an Advantech PCI 1710 data acquisition card, with an integra-
tion with intermediate circuits, such as a STK439 amplifier.
In order to measure the displacement of the diaphragm of the
loudspeaker, a ZS-LD80 OMRON Laser Doppler Vibrometer
(LDV) was utilized. In fact, the output is the velocity of the
diaphragm and an integrator can be used to estimate displace-
ment. Schematic diagram of the circuit of identification setup
is illustrated in Fig. 2.

As shown in this figure, using MATLAB, white noise sig-
nal is sent to the DAQ card with 4000 sample/sec rate and then
is handed to an amplifier, the output of which is the input of
the loudspeaker. This signal is sampled by the data acquisition
(DAQ) card, as well. Simultaneously, laser sends position data
to the DAQ card, which is saved in the computer’s memory.
In other words, loudspeaker input voltage as well as its di-
aphragm’s relevant displacement voltage is saved at the same
time. In this way, the input signal of loudspeaker used for
identification would not be contaminated by the dynamics of
the amplifier. The input voltage is also changed in order to
sample different working conditions for the loudspeaker, i.e.
linear and nonlinear response of the system. The saved data
will be used in Sec. 5.

4. IDENTIFICATION OF LOUDSPEAKER

As mentioned in Sec. 1, in some cases, it is necessary to
mathematically identify loudspeakers in order to incorporate
the mathematical model somewhere in processes. The identi-
fication of the nonlinear behaviour of a loudspeaker is the main
goal in this section. An important issue in the identification of
the loudspeaker in this paper is the robustness of the models.
Considering the fact that in linear systems the frequency and
amplitude of the output are proportional to the input attributes,
which is not true in nonlinear systems, the robustness of iden-
tified model with regard to the input of the system develops
into an important issue. As a result, the methods of identifi-
cation are selected here in a way to fulfil this need.

4.1. Methods of Identification
First step in all system identification techniques is select-

ing the appropriate model structure. The characteristics such
as linearity or nonlinearity and the complexity of the model
should be selected in this stage.

Due to the inevitable necessity of knowing nonlinear dy-
namics of the loudspeaker for active noise cancellation ap-
plication, dynamics of this system is identified in nonlinear
regime with several methods, and the best method among them
is selected based on the robustness and simplicity criteria.
Also note that decision about the order of model structure is
optimized with trial and error procedure and MATLAB sys-
tem identification toolbox is used in the identification process.
Considering the nonlinearity of the response of the system, the
following methods are selected as candidates capable of fol-
lowing this manner.

i. Prediction error method (PEM);

ii. Nonlinear autoregressive network with exogenous inputs
(NARX) with:

a) Sigmoidnet,

b) Wavenet,

c) Treepartition nonlinear functions,

iii. Series-parallel nonlinear autoregressive network with ex-
ogenous inputs (NARXSP),

Among these methods, PEM is used to identify linear sys-
tems and it is brought here to demonstrate its incapability of
identifying nonlinearities, which , on the contrary, other meth-
ods should be able of identifying them. Here, the brief de-
scriptions about these methods, which are used in this paper,
are presented.

4.2. Prediction Error Method (PEM)
In the PEM, the base goal is to find the model parameters

θ, which best predicts the outcome of the system. The method
can be used on linear or nonlinear model structures with an
arbitrary order of difference equation. However, using this
method is common on linear regressors such as (ARX and AR-
MAX) due to its simplicity. In the general form, the prediction
error is defined as:

ε(t, θ) = y(t)− ŷ(t|t− 1, θ); (2)
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Figure 2. Experimental system setup schematic circuit.

where y(t) is the real output and ỹ(t|t − 1, θ) is the predicted
output. The prediction error method encompasses of finding
the parameters θ that makes the prediction errors as small as
possible. As mentioned in20 a general linear prediction is de-
fined by:

ŷ(t|t− 1, θ) = L1(q, θ) y(t) + L2(q
−1, θ) u(t); (3)

in Eq. (3) L1 and L2 are difference operators composing esti-
mator model. The order of this model should be decided based
on its performance and using trial and error procedure, but the
parameters or coefficients of the model are designed to mini-
mize the prediction error. The cost function used for optimal
estimation of parameters θ is the mean square of the prediction
error, which is defined as:

VN (θ) =
1

N

N∑
t=1

ε2(t, θ) , θ̂ = arg min
θ

VN (θ); (4)

details about this method can be found in.20 But it is worth
mentioning that optimization problem in Eq. (4) has a closed
form solution for linear structure models such as (ARX and
ARMAX), and commercial software for example MATLAB
can solve it quickly.

4.3. Nonlinear ARX (NARX)
There are many sources of nonlinear behaviour in the loud-

speaker dynamics. Hence, the importance of nonlinear model
identification methods is obvious. Classical methods in this
category are based on polynomial approximations of the model
structure. Some of the special structures for nonlinear sys-
tems are Hammerstein and Wiener models,21, 22 which separate
primary nonlinear structure to (nonlinear-linear) and (linear-
nonlinear) series sub structures respectively.

The other common structure in the nonlinear system identifi-
cation is NARX structure. This structure is an extension of the
linear ARX structure. The structure is formed by a linear and a
nonlinear function in parallel arrangement, which is explained
in the Fig. 3.

In the mathematical form the output can be explained as:

y = LT (X − r) + g(Q(X − r)); (5)

Figure 3. Nonlinear ARX (NARX) structure.

where in Eq. (5)X, r,Q are vector of regressors, mean of the
regressors and projection Tmatrix, respectively. Also LT and
g are linear and nonlinear functions in Fig. 3, respectively.23

Most of the nonlinear functions used as g in NARX structure
are composed of limited number of nonlinear units such as
wavelet network, sigmoid network, or tree- partition network.
Fortunately, all of these nonlinear functions exist in MATLAB
system identification toolbox. In this paper, loudspeaker non-
linear dynamics is identified with these nonlinear functions and
a comparison between them is done. Details about these func-
tions are explained in.23

4.4. Neural Network

As proved in a previous study,24 neural networks are uni-
versal approximators for static nonlinearities and are conse-
quently a good alternative for polynomial approaches Further-
more, memoryless static networks can be extended with dy-
namic components to dynamic neural networks; hence, they
can be used in nonlinear system identification.25, 26 One of
the structures of neural network that can be used in the of-
fline identification of nonlinear system is series-parallel struc-
ture, which will be used in this paper. Due to the popular-
ity of neural network application in approximating the sys-
tems behaviour, in this paper, explanations are restricted only
to series parallel network. More details about the neural net-
works and series-parallel structure can be found in previous
studies.24, 27, 28 Series-parallel network uses actual system in-
put and output with specified order of unit delay operator as
shown in the Fig. 4.

Also the mathematical representation of the output after
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Figure 4. Series-parallel NARX.

Figure 5. Generic structure of system identification.

training process is given by:

ŷ(k) = fNN (u(k), u(k − 1), ..., y(k − 1), y(k − 2), ...); (6)

as mentioned before, due to the offline identification proce-
dure, which is used in this paper, the series parallel structure is
very useful and can be used easily. Furthermore, the number
of neurons and layers are selected with trial and error process,
and Levenberg Marquardt method is used to optimize the error
of estimation in training phase.

4.5. Input/output Criteria
In this article, all of the aforementioned methods are applied

on the loudspeaker data. Identification procedure is done with
white noise input signal due to its excitation persistency, and
test phase is done with pure sine wave inputs with different am-
plitudes and frequencies to study the robustness of the meth-
ods.

In order to do so, the following structure in Fig. 5 is uti-
lized, and it should be emphasized that identification process
is an offline one in this paper i.e. identification is carried out
as a post process on the data already saved in the computer
memory. In the Fig. 5, u is white noise input with maximum
amplitude equals to 15 volts and y is the actual output of the
loudspeaker. Input and output of the system are acquired with
a sampling rate of 4000 sample/sec and for 1 sec. In other
words, only 4000 data are saved for offline identification.

Figure 6. Performance of ARX model under sine input with high magnitude
(20 volts) and frequency of 155 Hz.

Table 1. Characteristics of the piezoelectric layers and flexible appendages.14

na nb nc

55 55 55

5. RESULTS

The results of identification are divided into three groups,
one for each method described in Sec. 4.

5.1. Identification Using PEM
A PEM method with the properties as indicated in Table 1 is

used to best fit the input/output of the system.
Parameters in Table 1 are degrees of numerator, denomina-

tor of input/output filter model, and the denominator of noise
filter model, respectively. Having performed the identification
process, the fitness of PEM method on the nonlinear response
of loudspeaker was turned out to be 78.94% for white noise,
which is good for a linear identifier in a nonlinear system.
However, this is to remind that the resulting transfer func-
tion would have a degree of 55, as shown in Table 1, which
exerts a huge amount of computational load on the processor.
Moreover, the test result illustrated in Fig. (6) shows that PEM
is not suitable choice for this nonlinear system.

5.2. Identification Using NARX
For the NARX method, the system that best follows the

nonlinear behaviour of the loudspeaker is described in Table 2,
where parameters in Table 2 are NARX model parameters in
MATLAB Identification Toolbox. Having performed the iden-
tification process, the fitness of NARX method on the non-
linear response of loudspeaker with white noise input turned
out to be 83.54%, 71.54%, and 90.8% for sigmoid, treepar-
tition, and wavenet functions, respectively . Comparing Ta-
ble 2 with Table 1 and taking into consideration the fitness
values of abovementioned methods and nonlinear functions,
it is observed that NARX method exhibits approximately the
same results with a very lower model degree. In order to study
the robustness of the proposed methods regarding input am-
plitude and frequency uncertainties, designed NARX models
are tested with two pure sine inputs. Figure 7 and 8 show the
performance of the aforementioned NARX models.

Table 2. Characteristics of the piezoelectric layers and flexible appendages.14

Nonlinear Function na nb nk Number of units
Sigmoid 5 5 5 10

Treepartition 8 8 8 255
Wavenet 12 12 12 17
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Figure 7. Performance of NARX model under sine input with low magnitude
(10 volts) and frequency of 121 Hz.

Figure 8. Performance of NARX model under sine input with high magnitude
(20 volts) and frequency of 155 Hz.

Based on Fig. 7 and Fig. 8, wavenet best followed nonlinear
response of the loudspeaker in both of the tests. Especially for
high magnitude and frequency input, Fig. 8 shows that treepar-
tition model had a huge amount of error.

5.3. Identification Using Series-Parallel
NARX

For the NARXSP method, the system that best follows the
nonlinear behaviour of the loudspeaker is a neural network
with three layers, which has 10, 10, and 5 neurons in the first,
second, and third layer, respectively. The training method is
also chosen to be Levenberg Marquardt. In addition, the num-
ber of delays is four samples. The nonlinear function of every
neuron in hidden layers is hyperbolic tangent sigmoid, too.

Having performed the identification process, the perfor-
mance of NARXSP method on nonlinear response of loud-
speaker was turned. The training error for white noise input is
illustrated in Fig. 9, which shows its extreme smallness. Also,
the robustness of this model is tested with the previous sine
inputs in Fig. 10 and Fig. 11. Figure 10 and 11 demonstrate
the series parallel model ability in facing input uncertainties.
Comparison of Fig. 7 with Fig. 10 and Fig. 8 with Fig. 11
depicts the advantages and the better performance of series-
parallel NARX model in comparison with conventional NARX
model. This advantage can be related to neural network ability
in modelling nonlinear functions. Therefore, this structure is
the most suitable choice for noise attenuation application.

6. CONCLUSIONS

One of the important and contemporary applications of
loudspeakers is in noise attenuation and noise cancellation.
However, in order to get high performance, it is a vital need
to model loudspeaker nonlinear dynamics. Therefore, in this
article different methods to identify the nonlinear dynamic of

Figure 9. Training error of series-parallel NARX.

Figure 10. Performance of series-parallel NARX model under low magnitude
(10 volts) sine input with frequency of 121 Hz.

loudspeaker were studied. In fact, PEM, NARX, and series-
parallel NARX methods were utilized to model the relation
between input voltage and the displacement of the loudspeaker
diaphragm in nonlinear regime. White noise was used to train
these models and pure sine inputs with a variety of amplitudes
and frequencies were exerted to examine model performance
regarding input uncertainty. The results of this study demon-
strated that series-parallel NARX model, which utilized neural
network, was the best choice to model loudspeaker dynamics.
Furthermore, NARX model with wavenet block was the sec-
ond appropriate choice after neural network. Finally, linear
model even with a high degree could not be robust against in-
put variations.
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