Free Vibration Analysis of Rhombic Plate with Central Crack

Mohammad Sikandar Azam, Vinayak Ranjan and Bipin Kumar

Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad–826004, India.

(Received 29 January 2015; accepted 5 May 2016)

In this paper, free vibration analysis of rhombic plate with pre-existing central crack has been done using the finite element method. The Mindlin theory of plate has been used in the process of investigation. The following six boundary conditions at the edges of the plate have been considered. They are simply supported at all edges (SSSS), clamped at all edges (CCCC), free at all edges (FFFF), clamped-simply supported (CSSC), clamped-free (CFFC), and clamped-free-simply supported (CSFS). Effects of crack length on natural frequencies of rhombic plate with different skew angles i.e. 15° , 30° , 45° , 60° have been studied. It is observed that percentage drop in fundamental frequency due to presence of central crack in the rhombic plate increases with an increase in skew angle for CCCC, SSSS, and CSSC edge conditions at a given crack ratio (non-dimensional crack length). Under the CFFC, CSFS, and FFFF edge conditions, percentage drop in natural frequency of rhombic plate is very small for crack ratio of 0.2 at different skew angles. In case of the CFFC edge condition of the rhombic plate, percentage drop in fundamental frequency is within 0.7% at all skew angles and with all crack ratios considered. Some of the results obtained by the present method have been compared with the published results. Most of the results obtained are novel for rhombic crack plate.

1. INTRODUCTION

Applications of skew plates are found in various types of engineering structures such as aircraft wings, bridge decks, ship decks, and rail and road vehicles. Manufacturing processes and loading conditions may induce a crack in a plated structure, which significantly alters the dynamic behaviour of the plate. Therefore, dynamic analysis of skew plate is crucial for design engineers. A substantial amount of literature is available on free vibration of intact skew plates. Leissa¹ presented a monograph on vibration of plate followed by review articles²⁻⁴ on previous work carried out in the field of plate vibration. Different methods have been applied to solve the problem of free vibration of skew plates under simply supported edge condition. Raju and Hinton⁵ examined natural frequencies and mode shape of the rhombic Mindlin plate under various boundary conditions containing simply supported and clamped edges using quadrilateral isoparametric plate element. They explained the effect of skew angles and thickness ratio on mode frequency of the plate. Durvasula^{6,7} applied the Ritz method and the Galerkin method to determine natural frequencies under simply supported and clamped edge conditions. Liew and Lam⁸ adopted Rayleigh-Ritz method along with twodimensional orthogonal plate function to work out natural frequencies of the skew plate under varied edge conditions and at different skew angles. Liew et al.9 delved into the phenomenon of vibration of skew plates based on Mindlin plate theory under simply supported edge condition and for two opposite edges simply supported with the other two clamped. Stress singularities at the obtuse corner were first used by Basu et al.¹⁰ They modelled the quadrant at 60° simply supported skew plate

using hierarchical Legendre elements of the fifth order. Mc Gee^{11,12} tried to get to the bottom of vibration of cantilever skew plate considering the plate to be thick and with singularity at the corner. Huang et al.¹³ investigated the plate vibration considering stress singularities at the obtuse corner of a simply supported skew plate using Ritz method. They applied displacement function consisting of algebraic polynomial and the corner function that takes care of corner stress singularity. Mc Gee et al.¹⁴ studied the effect of stress singularity at the corner on the vibration of skew (rhombic) plate with different combinations of simply supported and clamped edges conditions. Langrangian function was obtained by the Ritz method. Transverse displacement function was constructed by making use of the algebraic polynomial and corner function, which account for kinematic boundary condition and stress singularity at the hinged -hinged and clamped-hinged corners. Further Mc Gee et al.¹⁵ investigated the singularity effect on vibration behaviour of skew plate under free and simply supported edge conditions. Woo et al.¹⁶ determined natural frequencies and mode shapes of a skew Mindlin plate using P-version of the finite element method under different sets of boundary conditions and discussed the effect of skew angle, aspect ratio, and cutout dimension on the frequency parameter. Zhou and Zheng¹⁷ came out with accurate results on vibration of skew plate by utilizing moving least square - Ritz method. Results, thus obtained, were found close to the available results in literature but certain mode frequencies deviated from the data presented by Mc Gee et al.,¹² Hung et al.,¹³ and Mc Gee et al.¹⁵ Mizusawa and Kondo¹⁸ investigated vibration of the skew plate with linearly varied thickness along longitudinal axis by using the spline spring method. By making use of

the differential quadrature method as well as polynomial and harmonic functions, Malekzadeh and Karami¹⁹ analysed free vibration of skew plate with linearly varying thickness in both directions. Based on linear and small strain theory of elasticity in three dimensions, Zhou et al.²⁰ studied the vibration of thick skew plate. Eigenvalue equation was obtained from energy functional using the Ritz method. Displacement function was formed by multiplying Chebyshev polynomial series with boundary function. Lai et al.²¹ adopted DSC-element method to analyse vibration of skew plates by using the first order shear deformation theory for continuous and discontinuous boundaries. Wang and Wu²² studied the free vibration of skew under 14 sets of boundary condition with free edges by applying modified differential quadrature method (DQM). The authors observed that problems were extremely sensitive to grid spacing and to the method of applying the multiple boundary condition at large skew angle. Wang et al.²³ further investigated the skew plate vibration phenomenon by utilizing a new version of DQM under eight sets of edge conditions consisting of free, simply supported, and clamped.

The studies referred above focus to vibration characteristic of intact skew plate. Vibration of cracked rectangular and square plates was studies by various researchers but the literature on vibration of cracked skew plate is merely available. Stahl and Keer,²⁴ Huang and Leissa,²⁵ Huang et al.,²⁶ Bachene et al.,²⁷ and Liew et al.³¹ studied the vibration of cracked rectangular and square plate with central crack, side crack and inclined crack under different boundary conditions by different methods that include the Ritz method, Rayleigh-Ritz method and finite element method. Recently, Israr et al.,²⁸ Ismail and Cartmell,²⁹ and Joshi et al.³⁰ presented closed form solution for the vibration of cracked rectangular plate. This paper deals with the effect of central crack on natural frequencies of skew plate under six different combinations of edge conditions by the finite element method.

2. METHODOLOGY

2.1. Formulation of Rectangular Plate with Crack

Let us consider an isotropic square plate with central crack in Cartesian coordinate system as shown in Fig. 1. The crack is continuous line through crack. Formulations of the displacement and the finite element equation are based upon the Mindlin plate's theory, which take into account shear deformation and rotary inertia. Let u, v, w are the displacement in x, y, and z direction respectively, then

$$u(x, y, z) = z\theta_x(x, y); \tag{1}$$

$$v(x, y, z) = z\theta_y(x, y); \tag{2}$$

$$w(x, y, z) = w_z(x, y); \tag{3}$$

where θ_x and θ_y are the rotations of the mid surface normal in x-z and y-z planes respectively.

We assume that crack path is parallel to one side of the plate and the crack stops at the end of each element as depicted

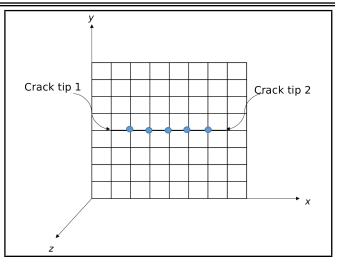


Figure 1. Discretization of plate (crack aligned with mesh, circle nodes are enriched with jump function).

in Fig. 1. The discretization of the plate may be represented $by^{27,32}$

$$\{\delta\} = \sum_{i} [N_i]\{\delta_i\} + \sum_{j} H(x)[N_j]\{\delta'_j\}.$$
 (4)

In Eq. (4), N_i and δ_i are the classical shape function and the classical nodal displacements, respectively, at node *i*. Next, *j* represents the nodes at discontinuity, and δ'_j are the nodal displacements to be enriched and H(x) is a discontinuity function. Based upon Mindlin plate theory, finite element formulation can be written as

$$\{\delta\} = \begin{cases} w_z \\ \theta_x \\ \theta_y \end{cases} = \sum_I [N_i] \{\delta_i\} + \sum_J H[N_j] \{\delta'_j\}.$$
(5)

I is set of all nodal points on the plate, J is set of all nodes of elements located on the discontinuity and

$$\{\delta_i\} = \begin{cases} w_{zi} \\ \theta_{xi} \\ \theta_{yi} \end{cases}; \tag{6a}$$

$$\{\delta'_j\} = \begin{cases} w'_{zj} \\ \theta'_{xj} \\ \theta'_{yj} \end{cases}.$$
 (6b)

The strain field ε_{xx} , ε_{yy} , γ_{xy} , γ_{xz} , and γ_{yz} can be written in matrix form as in Eq. (7) (See on top of the next page). The Eq. (7) can be symbolically written as follows

$$\{\varepsilon\} = [B_i]\{\delta_i\} + [B'_j]\{\delta'_j\}; \tag{8}$$

where $[B'_i] = H[B_i]$.

The stress field can be written as

$$\{\sigma\} = [D][B_i]\{\delta_i\} + [D][B'_j]\{\delta'_j\};$$
(9)

where [D] represents elastic coefficient matrix and $\{\sigma\}$ is generalized stress.

The potential energy of any element e of the plate is given by

$$U^{e} = \frac{1}{2} \int_{A_{e}} \{\sigma\}^{T} \{\varepsilon\} dA;$$
(10)

$$\varepsilon_{ij} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{cases} = \sum_{I} \begin{bmatrix} 0 & \frac{\partial[N_i]}{\partial x} & 0 \\ 0 & 0 & \frac{\partial[N_i]}{\partial y} \\ 0 & \frac{\partial[N_i]}{\partial y} & \frac{\partial[N_i]}{\partial x} \\ \frac{\partial[N_i]}{\partial x} & [N_i] & 0 \\ \frac{\partial[N_i]}{\partial x} & 0 & [N_i] \end{bmatrix} \begin{cases} w_{zi} \\ \theta_{yi} \end{cases} + \sum_{J} \begin{bmatrix} 0 & H\frac{\partial[N_j]}{\partial x} & 0 \\ 0 & 0 & H\frac{\partial[N_j]}{\partial y} \\ 0 & H\frac{\partial[N_j]}{\partial y} & H\frac{\partial[N_j]}{\partial x} \\ H\frac{\partial[N_j]}{\partial x} & 0 & H[N_j] \end{bmatrix} \begin{pmatrix} w'_{zj} \\ \theta'_{yj} \end{pmatrix}.$$
(7)

$$U^{e} = \frac{1}{2} \int_{A_{e}} \left(\{\delta_{i}\}^{T} [B_{i}]^{T} [D] + \{\delta_{j}'\}^{T} [B_{j}']^{T} [D] \right) \\ \left([B_{i}] \{\delta_{i}\} + [B_{j}'] \{\delta_{j}'\} \right) dA; \qquad (11)$$

where A_e = element area.

Equation (11) can be further written as

$$U^{e} = \frac{1}{2} \left\{ \{\delta_i\}^T \{\delta'_j\}^T \right\} [K^{e}] \left\{ \begin{cases} \delta_i \\ \delta'_j \end{cases};$$
(12)

where

$$[K^{e}] = \begin{bmatrix} \int [B_{i}]^{T}[D][B_{i}]dA & \int [B_{i}]^{T}[D][B'_{j}]dA \\ \int [B'_{j}]^{T}[D][B_{i}]dA & \int [B'_{j}]^{T}[D][B'_{j}]dA \\ A & A \end{bmatrix}; \quad (13a)$$

or

$$[K^e] = \begin{bmatrix} [K^e_{ii}] & [K^e_{ij}] \\ [K^e_{ji}] & [K^e_{jj}] \end{bmatrix};$$
(13b)

where $[K_{ii}^e]$ is classical stiffness matrix, $[K_{ij}^e]$, and $[K_{ji}^e]$ are coupling stiffness matrix, and $[K_{jj}^e]$ is enriched stiffness matrix.

The kinetic energy for an element of the plate is given by

$$[T^e] = \frac{1}{2} \int \{\dot{\delta}_e\}^T \rho\{\dot{\delta}_e\} h dA; \tag{14}$$

where δ_e is the first derivative of the displacement field w.r.t time and ρ is the material density of the plate.

Similarly, by proper transformation Eq. (14) may also be written as

$$T^{e} = \frac{1}{2} \left\{ \{ \dot{\delta}_{i} \}^{T} \{ \dot{\delta}_{j}' \}^{T} \right\} [M^{e}] \left\{ \dot{\delta}_{i} \\ \dot{\delta}_{j}' \right\};$$
(15)

where $[M^e]$ of the element is given as

$$[M^e] = \begin{bmatrix} \int [N_i]\rho[N_i]hdA & \int [N_i]\rho H[N_j]hdA \\ \int A_e & A_e \\ \int A_e & H[N_j]\rho[N_i]hdA & \int A_e & H[N_j]\rho H[N_j]hdA \end{bmatrix};$$
(16a)

or

$$[M^e] = \begin{bmatrix} [M^e_{ij}] & [M^e_{ij}] \\ [M^e_{ji}] & [M^e_{jj}] \end{bmatrix}.$$
(16b)

Here, $[M_{ii}^e]$ is the classical mass matrix, $[M_{ij}^e]$ and $[M_{ji}^e]$ are the coupling mass matrix, and $[M_{jj}^e]$ is enriched mass matrix.

2.2. Oblique Boundary Transformation

Figure 2 shows the geometry and co-ordinate system of rhombic plate where *a* and *b* are equal. Next, *c* indicates the crack length, and β is the skew angle of the skew plate.

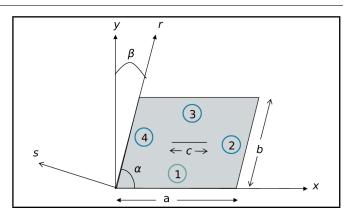


Figure 2. Geometry and co-ordinate system of rhombic plate.

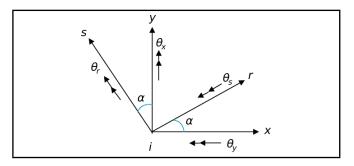


Figure 3. Global and local skew co-ordinate system for oblique boundary transformation.

For skew plate, both the edges may not be parallel to the global axes x and y. To specify the boundary conditions at such edges the local displacements w, θ_r , and θ_s as shown in Fig. 3 may be used.

Here, θ_r and θ_s are average rotations of the normal to the reference plane and are tangential and normal to the oblique edge. It is necessary to transform the element matrices corresponding to global axes (x, y) along which the boundary conditions are specified.

Using θ_x , θ_y , θ_r , and θ_s vector as shown in Fig. 3, where $\alpha = 90^\circ - \beta$, the displacement transformation for a node *i* on the oblique boundary is given by

$$\{\delta\} = \begin{cases} w_z \\ \theta_x \\ \theta_y \end{cases} = \begin{cases} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{cases} \begin{cases} w_z \\ \theta_r \\ \theta_s \end{cases} = [R] \begin{cases} w_z \\ \theta_r \\ \theta_s \end{cases}; \quad (17)$$

where [R] is transformation matrix. This matrix is valid for three degrees of freedom per node. For nodes which are not located on the oblique boundary, it becomes a unit matrix. The element stiffness matrix and the mass matrix are then arrived at after mapping into the (r, s) co-ordinate system as

$$[\mathcal{K}^e] = \int_{A_e} [R]^T [K^e] [R] dA; \qquad (18)$$

$$[\mathcal{M}^e] = \int_{A_e} [R]^T [M^e] [R] dA.$$
⁽¹⁹⁾

The free vibration equation of the skew plate with crack can be written as

$$[\mathcal{K}] - \{\lambda\}[\mathcal{M}]\{\delta\}_{r,s} = 0; \tag{20}$$

where $\{\lambda\}$, $[\mathcal{K}]$, and $[\mathcal{M}]$ are eigenvalues, assembled stiffness matrix, and assembled mass matrix, respectively.

3. NUMERICAL RESULTS AND DISCUSSION

The approach discussed in preceding section has been applied to study free vibration of a rhombic plate with central crack as shown in Fig. 2 under different combinations of edge conditions. Skew plate having all the edges equal in length (a = b) is called a rhombic plate. Natural frequencies are presented in terms of non-dimensional frequency parameters formulated as

$$\Omega = \omega a^2 \sqrt{\frac{\rho h}{\mathcal{D}}}; \tag{21}$$

where \mathcal{D} is the bending rigidity given by $Eh^3/[12(1-\nu^2)]$. Further, ρ , E, and ν are density, Young's modulus, and Poisson's ratio, respectively, of the plate material. Next, h represents the thickness of the plate.

The present problem uses density ρ , Young's modulus E, and Poisson's ratio ν of the plate material equal to 7800 kg/m³, 200 GPa, and 0.3 respectively. Throughout, the analysis thickness to length ratio (h/a) of the plate has been kept equal to 0.001. Both intact skew plate and cracked skew plates with central crack parallel to the edge along x axis of the plate have been studied under six different combination of edge conditions as described in Table 1 with reference to Fig. 2. Crack length in terms of crack ratio has been used throughout the present investigation, which is defined as ratio of crack length c and edge length a along x axis.

3.1. Validation of Results

First, frequency parameters for intact rhombic plate are tabulated under different set of edge conditions. Table 1 displays the comparison of first five frequency parameters obtained through the present formulation with the results achieved by Wang and Wu²² for rhombic intact plate with skew angles 15°, 30°, 45°, and 60° under the FFFF edge condition. The frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ are in very good agreement. The frequency parameters of FFFF rhombic plate with skew angle 30° and 60° are also compared with those obtained by Singh and Chakerverty.³⁴ Large deviation in frequency parameter can be observed at large skew angle. Clearly, results obtained by them³⁴ are not converged at high skew angle. Table 3 shows that frequency parameters of the rhombic plate with different skew angles under SSSS edge condition agree well with the ones from Wang et al.,²³ Woo et al.,¹⁶ Liew et al.,⁹ Huang et al.,¹³ and Bardell.³³ For the skew angle of 60° , first mode frequency of the rhombic plate is slightly more than that obtained by Wang et al.²³ and Huang et al.¹³ but slightly less than that obtained by Woo et al.,¹⁶ Liew et al.,⁹ and Bardell.³³ Differences in results are more for mode 5 but the present results are close to those given by Bardell³³ for all modes. Results of intact rhombic plate under CCCC edge conditions are compared with those obtained from the investigation of Wang et al.,²³ Woo et al.,¹⁶ Liew et al.,⁹ Raju and Hinton,⁵ and Bardell.³³ The comparisons are shown in Table 4. Good agreement between the results can be seen. From the above discussion, it can be concluded that present model provides very good results for intact rhombic plate with different skew angle under different edge conditions. However, it still requires confirmation regarding crack plate.

To validate the present model for crack plate, simply supported plate with central crack is considered. Table 5 shows that the frequency parameters of a square plate with central crack under simply supported edge condition are in very close agreement with those obtained by Bechene et al.²⁷ and Stahl and Keer²⁴ and agree well with those given by Huang et al.,²⁶ and Liew et al.³¹ Huang et al.²⁶ and Liew et al.³¹ have adopted Ritz method and domain decomposition method, respectively, to investigate the vibration of crack plate. Their results are slightly on the higher side. Although results for six and seven modes are also available in literature for few cases but the comparisons are made up to 5th mode only for the sake of uniformity. Apart from the five lowest natural frequencies used for validation, results for the sixth and seventh mode frequencies are also presented in Tables 2 to 5.

This paper presents new sets of results of frequency parameters for cracked skew plates with different skew angles under SSSS, FFFF, CCCC, CFFC, CSSC, and CSFS edge conditions as described in Tables 6 to 9.

3.2. Intact Rhombic Plate

This section, first, analyses the effect of skew angle on natural frequencies of rhombic plate when the skew angle changes from 15° to 60° with an interval of 15° . Figure 4 shows the effect of skew angle on fundamental frequency of rhombic intact plate. An increase in skew angle from 0° to 60° results in an increase in fundamental frequencies of rhombic plate under SSSS, CCCC, CSSC, and CSFC edge conditions while fundamental frequency of rhombic plate decreases under FFFF edge conditions. In case of CFFC rhombic plate, fundamental frequency remains almost the same with variation of skew angle. The increase in frequency parameter with an increase in skew angle is greater when the skew angle goes beyond 45° under SSSS, CCCC, and CSSC edge conditions of the rhombic plate. Again, it can be observed from Tables 6 to 9 that higher modes frequencies (mode 2 onward) of the rhombic plate under SSSS, CCCC, CSSC, and CSFC conditions go up with an increase in skew angle. In case of CFFC edge condition, higher mode (mode 3 onward) frequencies go on increasing with an increase

Table 1. Description of six edge conditions.

Edge conditions	Edge 1	Edge 2	Edge 3	Edge 4
SSSS	Simply supported	Simply supported	Simply supported	Simply supported
FFFF	Free	Free	Free	Free
CCCC	Clamped	Clamped	Clamped	Clamped
CFFC	Clamped	Free	Free	Clamped
CSSC	Clamped	Simply supported	Simply supported	Clamped
CSFS	Clamped	Simply supported	Free	Simply supported

Table 2. Comparison of frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ for rhombic intact plate under FFFF edge condition.

Skew angle	Reference		Modes							
β°		1	2	3	4	5	6	7		
15	Present	12.757	20.291	27.106	30.288	39.289	57.549	63.667		
	22	12.761	20.292	27.108	30.298	39.304				
30	Present	11.528	22.645	26.652	35.359	43.915	51.673	69.387		
	22	11.531	22.646	26.659	35.364	43.933				
	34	11.690	22.926	27.254	36.512	46.214				
45	Present	10.499	24.032	27.761	41.766	51.521	61.518	66.930		
	22	10.499	24.034	27.763	41.771	51.537				
60	Present	9.779	22.265	39.296	39.854	62.674	68.575	89.716		
	22	9.779	22.268	39.316	39.859	62.686				
	34	9.824	23.140	40.033	52.669	78.110				

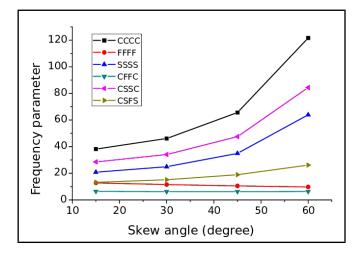


Figure 4. Effect of skew angle on fundamental frequency of intact rhombic plate.

in skew angle. However higher modes frequencies of FFFF rhombic plate such as the 2nd, 3rd, 4th, 6th, and 7th modes, show a combination of increasing and decreasing pattern of variation in natural frequencies with an increase in skew angle as shown in Fig. 5. The 5th mode frequency of FFFF rhombic plate increases smoothly with increase in skew angle.

A change in skew angle of rhombic plate results in change in the mass of the plate as well as change in the shape of the plate. Mass of the plate directly affects its natural frequency whereas a change in the shape of the plate alters the stiffness, which ultimately changes the natural frequencies of the plate. The magnitude of the change in stiffness due to change in shape (change in skew angle) also depends upon the edge condition. Figure 4 also exhibits the effect of edge conditions on fundamental frequency of the rhombic plate. Under the CFFC edge condition, rhombic plate has the lowest fundamental frequency and under the CCCC edge conditions, it has the highest fundamental frequency among the six different combinations of edge conditions considered in this paper. This observation is true for all the skew angles of the plate considered for the analysis,

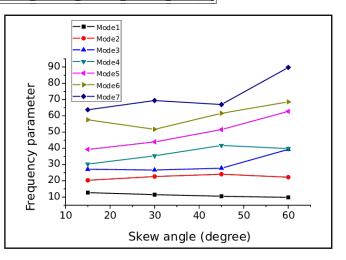


Figure 5. Effect of skew angle on natural frequencies of FFFF rhombic plate.

such as, 15° , 30° , 45° , and 60° . The effect of edge conditions can also be studied from Tables 6 to 9. It is noticed that natural frequencies increase due to higher constraint. Frequency parameter under FFFF edge condition is lowest among SSSS, FFFF, and CCCC whereas frequency parameter of CCCC edge condition is the highest. This is due to the fact that more edge constraints result in an increase in stiffness of the plate causing an increase in natural frequencies.

3.3. Rhombic Plate with Crack

Tables 6 to 9 present the seven lowest natural frequencies for CCCC, CFFC, CSSC, FFFF, CSFS, and SSSS rhombic cracked plate with skew angles 15° , 30° , 45° , and 60° . As expected, the natural frequency decreases with an increase in crack length of rhombic plates, irrespective of the skew angles and edge conditions. The decrease in natural frequencies due to the formation of crack and further decrease in frequency due to an increase in crack ratio are attributed to reduction in local stiffness of the plate. It is further noticed that a reduction in natural frequencies of a cracked rhombic plate is not proportional to the crack ratio. A small crack with a ratio c/a = 0.2

M. S. Azam, et al.: FREE VIBRATION ANALYSIS OF RHOMBIC PLATE WITH CENTRAL CRACK

Skew angle	Reference	Modes									
β °		1	2	3	4	5	6	7			
15	Present	20.858	48.192	56.089	79.010	103.981	108.857	120.432			
	23	20.868	48.205	56.107	79.043	104.000					
	16	20.873	48.204	56.130	79.0457	104.0029					
	9	20.871	48.205	56.115	79.0457	103.998					
	13	20.868	48.205	56.107	79.0427	104.000					
30	Present	24.900	52.624	71.720	83.808	122.782	122.802	140.47			
	23	24.899	52.638	71.711	83.829	122.820					
	16	25.049	52.638	72.067	83.901	122.890					
	9	24.964	52.638	71.871	83.858	122.820					
	13	24.899	52.638	71.711	83.829	122.820					
45	Present	34.935	66.266	100.287	107.446	140.766	168.275	185.06			
	23	34.755	66.277	100.250	107.010	140.800					
	16	35.403	66.292	100.654	109.302	141.372					
	9	35.333	66.277	100.429	108.323	140.802					
	13	34.749	66.277	100.250	107.040	140.800					
60	Present	63.929	104.912	148.011	196.191	208.840	248.963	293.41			
	23	62.331	104.950	147.650	196.290	205.350					
	16	68.258	105.230	150.230	199.990	217.820					
	9	66.303	104.970	148.740	196.410	213.790					
	13	62.409	104.950	147.670	196.290	205.860					
	33	64.818	104.960	148.320	196.290	210.660					

Table 4. Comparison of frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ for rhombic intact plate under CCCC edge condition.

Skew angle	Reference							
β °		1	2	3	4	5	6	7
15	Present	38.186	72.896	82.618	109.558	138.970	145.149	157.569
	23	38.187	72.896	82.618	109.560	138.970		
	16	38.175	72.902	82.665	109.645	139.310		
	9	38.186	72.895	82.616	109.558	138.970		
	5	38.215	73.242	83.003	110.342	141.826		
30	Present	46.092	81.602	105.166	119.251	164.983	165.315	186.178
	23	46.089	81.601	105.170	119.250	164.990		
	33	46.090	81.601	105.170	119.250	164.990		
	9	46.089	81.599	105.160	119.250	164.980		
45	Present	65.651	106.507	148.327	157.249	196.793	229.510	248.421
	23	65.643	106.490	148.310	157.230	196.770		
	16	65.707	106.848	150.312	159.174	203.041		
	9	65.652	106.491	148.316	157.264	196.795		
	5	65.781	107.579	151.597	158.802	204.992		
60	Present	121.634	177.710	231.729	291.496	304.732	354.605	408.631
	23	121.640	177.720	231.750	291.520	304.780		
	33	121.650	177.720	231.750	291.520	304.810		
	9	121.790	177.710	231.890	291.790	305.410		

reduces the first seven frequency parameters by less than 3% in relation to an intact CSSC rhombic plate with a skew angle of 15°. On the other hand, a crack ratio of 0.5 decreases the frequency parameter by up to 16% for the 5th mode of the CSSC skew plate. At this point of discussion percentage reduction or drop in natural frequency, Π is formulated as

$$\Pi = \frac{\Omega_{\text{uncracked}} - \Omega_{\text{cracked}}}{\Omega_{uncracked}} \times 100$$
(22)

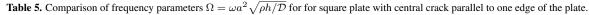
As the skew angle of rhombic plate increases, the percentage drop in fundamental frequency increases under SSSS, CCCC, and CSSC edge conditions for a particular crack ratio as shown in Figs. 6 to 10. For small cracks ($c/a \approx 0.2$), the percentage drop in fundamental frequency is very small in case of CFFC, CSFS and FFFF rhombic plate at all skew angles as observed in Fig. 6. When the crack ratio increases to 0.8, the percentage drop in fundamental frequency of CSFS and FFFF rhombic plate becomes obvious at higher skew angles as shown in

Fig. 10. It is further noted that percentage drop in fundamental frequency for CFFC rhombic plate is negligibly small (within 0.7%) at all skew angles and all crack ratios considered in this paper. It can be observed in Figs. 6 and 7 that the line of SSSS edge condition of the rhombic plate crosses the line of the CCCC edge condition. Plates under SSSS and CCCC edge conditions, having skew angle about 47° , will have equal percentage change in fundamental frequency due to the development of crack having a crack ratio of 0.2. Similarly, plates under SSSS and CCCC edge conditions having skew angle about 32° will also have the equal percentage change in fundamental frequency in fundamental frequency due to the development of 0.4. The trend of crossing the line of SSSS edge conditions with CCCC edge condition is not observed with the crack ratios of 0.5, 0.6, and 0.8.

Apart from the development of crack and skew angle, changes in natural frequencies also depend upon the mode

M. S. Azam, et al.: FREE VIBRATION ANALYSIS OF RHOMBIC PLATE WITH CENTRAL CRACK

Edge	Reference	Crack	Modes								
condition		ratio	1	2	3	4	5	6	7		
SSSS	24	0	19.739	49.348	49.348	78.957	98.696				
	31		19.740	49.350	49.350	78.960	98.700				
	27		19.739	49.348	49.348	78.955	98.698				
	Present		19.738	49.347	49.347	78.953	98.697	98.697	128.2		
	26	0.1	19.660	49.340	49.350	78.960	97.790				
	Present		19.621	49.323	49.332	78.924	97.433	98.696	128.2		
	24	0.2	19.305	49.170	49.328	78.957	93.959				
	31	0.2	19.380	49.160	49.310	78.810	94.690				
	27		19.305	49.181	49.324	78.945	93.893				
	26		19.330	49.190	49.320	78.950	94.130				
	Present		19.308	49.183	49.321	78.949	93.912	98.685	127.7		
	26		10.050	10.500	10.010						
		0.3	18.850	48.500	49.240	78.890	89.730	00.675	105.0		
	Present		18.909	48.630	49.262	78.912	90.593	98.675	125.2		
	24	0.4	18.279	46.624	49.032	78.602	85.510				
	31		18.440	46.440	49.040	78.390	86.710				
	27		18.278	46.635	49.032	78.600	85.450				
	26		18.290	46.650	49.030	78.610	85.560				
	Present		18.281	46.637	49.031	78.612	85.459	98.614	112.3		
	24	0.5	17.706	43.031	48.697	77.733	82.155				
	31		17.850	42.820	48.720	77.440	83.010				
	27		17.707	43.042	48.685	77.710	82.108				
	26		17.720	43.060	48.690	77.720	82.180				
	Present		17.710	43.049	48.680	77.715	82.111	95.498	98.38		
	24	0.6	17.193	37.978	48.223	75.581	79.588				
	31	0.0	17.330	37.750	48.260	75.230	80.320				
	27		17.180	37.987	48.214	75.579	79.556				
	26		17.190	37.990	48.220	75.590	79.600				
	Present		17.180	37.989	48.218	75.580	79.559	85.485	97.98		



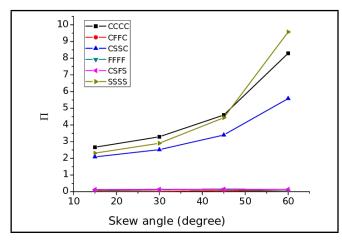


Figure 6. Effect of skew angles on percentage drop in fundamental frequency of rhombic plate for crack ratio of 0.2.

number and edge conditions of the rhombic plate. Percentage change or drop in fundamental frequency due to a change in crack ratio from zero to 0.8 is the maximum under the SSSS edge conditions and minimum under the CFFC edge condition as shown in Fig. 10. If we look at 15° rhombic plate under CCCC edge conditions, percentage drop in natural frequency is the maximum (48.59%) in second mode and minimum (12%) in third mode out of seven lowest natural frequencies for a crack ratio of 0.8.

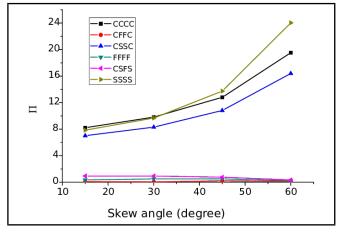


Figure 7. Effect of skew angles on percentage drop in fundamental frequency of rhombic plate for crack ratio of 0.4.

The percentage drop in natural frequency may be used for an estimation of the magnitude of crack present in rhombic plate under different edge conditions and at different skew angles. For example, a drop in natural frequency of 19.52% in the CCCC rhombic plate with the skew angle of 60° may be estimated at a crack ratio of 0.4 (Fig. 11).

M. S. Azam, et al.: FREE VIBRATION ANALYSIS OF RHOMBIC PLATE WITH CENTRAL CRACK

Table 6. Seven non-dimensional frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ of a thin rhombic plate with central horizontal crack under different boundary conditions $(h/a = 0.001, \nu = 0.3, \beta = 15^{\circ})$.

Edge	Crack				Modes			
conditions	ratio	1	2	3	4	5	6	7
CCCC	0	38.186	72.896	82.618	109.558	138.970	145.149	157.569
	0.2	37.168	72.720	82.167	109.107	135.308	141.242	156.696
	0.4	35.051	68.493	77.206	107.397	124.118	137.752	140.196
	0.5	34.101	60.296	74.934	105.261	119.731	123.380	138.478
	0.6	33.395	50.828	73.725	100.787	115.938	116.988	135.214
	0.8	32.749	37.473	72.622	83.357	111.424	112.830	130.064
CFFC	0	6.443	24.780	25.248	47.499	64.269	68.382	82.163
	0.2	6.441	24.457	25.197	46.617	64.175	68.279	81.897
	0.4	6.437	23.431	25.073	44.780	62.469	67.800	78.235
	0.5	6.433	22.721	24.935	43.813	58.463	67.160	73.774
	0.6	6.429	21.932	24.705	42.509	51.841	66.418	71.240
	0.8	6.411	20.162	23.821	35.758	45.637	64.749	67.939
CSSC	0	28.557	59.919	68.320	93.546	120.854	125.943	138.384
	0.2	27.960	59.509	68.025	93.300	118.325	122.765	137.670
	0.4	26.556	57.122	64.642	91.131	107.910	120.953	127.870
	0.5	25.802	52.780	62.059	87.969	102.021	115.684	121.543
	0.6	25.121	45.965	60.632	84.066	96.957	111.674	118.161
	0.8	24.077	34.149	59.451	74.311	87.789	108.820	111.469
FFFF	0	12.757	20.291	27.106	30.288	39.289	57.549	63.667
	0.2	12.747	20.092	26.438	30.272	39.282	56.848	63.654
	0.4	12.712	19.262	24.952	29.994	39.139	55.593	62.469
	0.5	12.677	18.467	24.280	29.564	38.901	55.138	56.889
	0.6	12.622	17.402	23.787	28.745	38.403	49.311	54.797
	0.8	12.283	14.765	23.227	24.950	35.131	40.194	53.670
CSFS	0	13.264	33.432	45.129	62.104	78.850	95.129	100.545
	0.2	13.246	32.528	44.932	62.035	78.448	95.084	99.639
	0.4	13.140	30.360	44.354	60.952	72.204	94.391	98.089
	0.5	13.015	29.176	43.800	58.254	65.512	93.419	97.495
	0.6	12.821	28.088	42.648	51.833	62.100	91.287	96.884
	0.8	12.163	26.380	35.374	45.034	59.021	78.776	95.768
SSSS	0	20.858	48.192	56.089	79.010	103.981	108.857	120.432
	0.2	20.376	48.130	55.913	78.719	101.866	105.941	119.985
	0.4	19.220	46.941	53.530	77.735	93.640	105.171	111.009
	0.5	18.578	44.305	51.324	76.767	90.130	98.315	104.486
	0.6	17.983	39.330	49.844	75.074	87.141	89.614	102.833
	0.8	17.090	28.608	48.311	66.771	82.397	83.361	97.626

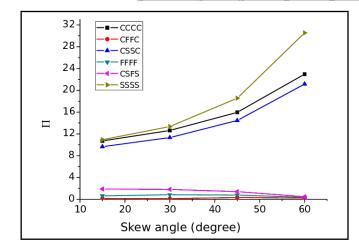


Figure 8. Effect of skew angles on percentage drop in fundamental frequency of rhombic plate for crack ratio of 0.5.

4. CONCLUSIONS

Based on Mindlin plate theory, finite element formulation was carried out to find out natural frequencies of rhombic plate with central through crack. Plates with different skew angles

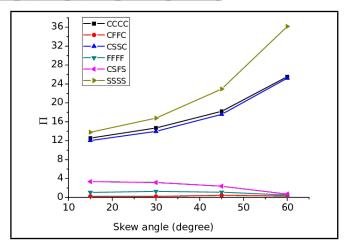


Figure 9. Effect of skew angles on percentage drop in fundamental frequency of rhombic plate for crack ratio of 0.6.

of 15°, 30°, 45°, and 60° under six different combinations of edge conditions i.e. CCCC, CSSC, CFFC, FFFF, CSFS, and SSSS were considered for the analysis. The finite element formulation requires enrichment of elements near crack only, and regular finite elements are used away from the crack. Numer-

Edge Crack Modes conditions 2 3 4 7 ratio 1 5 6 119.251 46.092 CCCC 0 81.602 105.166 164.983 165.315 186.178 162.814 44.575 81.438 104 072 118.456 164.163 178.047 0.20.4 41.561 77.436 90.569 116.799 151.587 151.763 170.567 0.5 40.270 67.599 162.572 84.677 115.020 143.530 146.314 0.6 39.323 56.331 82.668 110.493 139.606 142.123 150.094 38.280 0.8 42.103 81.228 91.069 136.809 137.112 138.252 CFFC 0 6.240 24.740 28.379 49.352 71.326 75.385 88.400 0.2 6.239 24.523 28.307 48.175 71.162 75.074 88.047 0.4 6.237 23.804 28.053 45.855 68.525 74.274 84.542 0.5 23.243 73.799 79.695 6.234 27.841 44.858 62.777 6.228 22.559 0.6 27.551 43.931 54.227 73.212 76.747 0.8 6.210 20.855 26.604 38.354 45.932 70.137 74.545 CSSC 0 34.076 66.336 86.846 100.619 143.103 143.284 161.538 0.2 33.218 86.182 100.246 141.028 142.595 155.351 65.774 0.431.244 63.560 77.382 98.188 128.785 136.042 148.659 0.5 30.221 59.357 70.002 96.137 120.219 132.582 143.025 0.6 29.319 51.201 66.935 93.165 115.139 128.707 134.640 0.8 27.997 37.752 65.405 81.028 107.610 115.676 130.478 FFFF 0 11.528 22.645 35.359 43.915 69.387 26.652 51.673 0.2 11.515 22.447 26.641 34.446 43.911 50.738 69.378 0.4 11.470 21.662 26.449 32.089 43.792 49.246 69.153 43.583 48.774 0.5 11.433 20.918 26.150 30.808 64.757 11.381 25.586 29.700 0.6 19.881 43.148 48 446 53.617 0.8 11.180 16.953 22.979 28.071 38.040 42.664 47.605 CSFS 0 15.167 35.940 55.433 64.950 94.530 98.868 119.633 0.2 15.144 35.004 54.769 64.893 94.018 98.471 118.255 0.4 15.024 32.704 64.060 84.246 96.974 114.864 52.669 0.5 14.892 31.424 50.529 62.818 73.159 96.019 113.174 30.228 0.6 14.687 46.662 60.210 65.877 93.845 112.030 0.8 13.986 28.289 36.405 55.392 61.793 80.695 108.799 SSSS 0 24.900 52.624 71.720 83.808 122.782 122.802 140,471 0.2 24.177 52.571 71.277 83.291 121.400 122.388 134.751 0.4 22.492 51.558 65.151 82.200 114.064 116.184 128.945 0.5 21.575 49.221 58.976 81.479 108.988 109.865 125.459 106.302 55.101 80.154 103.789 0.6 20.725 43.599 118.402 19.394 71.933 100.951 0.8 31.084 52.501 99.697 102.427

Table 7. Seven non-dimensional frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ of a thin rhombic plate with central horizontal crack under different boundary conditions $(h/a = 0.001, \nu = 0.3, \beta = 30^{\circ})$.

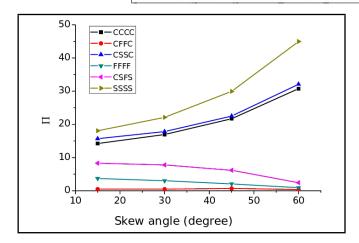


Figure 10. Effect of skew angles on percentage drop in fundamental frequency of rhombic plate for crack ratio of 0.8.

ical results obtained were shown extensively in the form of table to show the effect of crack and skew angle on natural frequencies of the rhombic plate. Most of the results presented forrhombic plate with central crack are first reported in literature. From the investigation of computed results of natural

50 45 CFFC 40 FFFF 35 30 25 20 15 10 5 0 -5 o.o 0.2 0.4 0.6 0.8 Crack ratio (c/a)

Figure 11. Effect of crack ratio on percentage drop in fundamental frequency of rhombic plate with skew angle 60°.

frequencies following may be concluded.

- (i) Natural frequency decreases with an increase in the crack length irrespective of the edge conditions and skew angles of rhombic plate.
- (ii) The percentage drop in fundamental frequency increases

Table 8. Seven non-dimensional frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ of a thin rhombic plate with central horizontal crack under different boundary conditions $(h/a = 0.001, \nu = 0.3, \beta = 45^{\circ})$.

Edge	Crack				Modes			
conditions	ratio	1	2	3	4	5	6	7
CCCC	0	65.651	106.507	148.327	157.249	196.793	229.510	248.421
	0.2	62.633	106.237	147.085	153.059	195.871	226.406	248.151
	0.4	57.249	99.028	114.724	145.596	189.257	210.111	236.805
	0.5	55.179	82.266	107.290	143.419	186.538	193.521	218.255
	0.6	53.690	68.222	104.949	135.927	174.081	184.747	207.782
	0.8	51.398	53.494	102.173	109.115	165.118	175.791	199.426
CFFC	0	6.208	25.738	34.301	55.638	82.877	85.599	118.513
	0.2	6.203	25.613	34.224	54.150	81.372	85.427	117.833
	0.4	6.194	25.160	33.893	51.095	77.760	83.443	107.065
	0.5	6.187	24.764	33.578	49.848	71.625	80.843	94.309
	0.6	6.179	24.229	33.161	48.999	61.243	79.346	90.040
	0.8	6.164	22.671	31.994	45.408	49.270	76.505	86.534
CSSC	0	47.503	85.181	122.860	128.928	167.599	197.691	215.139
	0.2	45.887	84.025	122.396	126.698	166.373	194.604	214.384
	0.4	42.365	80.843	99.196	120.924	163.277	170.559	205.581
	0.5	40.640	73.811	85.870	118.972	159.669	161.235	194.883
	0.6	39.152	61.801	82.852	115.134	147.843	157.450	180.601
	0.8	36.805	46.109	80.667	96.183	133.951	149.627	164.560
FFFF	0	10.499	24.032	27.761	41.766	51.521	61.518	66.930
	0.2	10.484	24.027	27.534	4.171	51.484	57.729	66.889
	0.4	10.446	23.902	26.696	41.360	50.398	50.849	66.233
	0.5	10.418	23.703	25.894	40.761	47.507	49.684	65.065
	0.6	10.383	23.320	24.741	39.597	45.793	47.044	61.776
	0.8	10.279	21.210	21.433	36.139	37.486	44.678	54.080
CSFS	0	18.952	43.493	69.993	84.209	107.204	133.078	144.920
	0.2	18.923	42.234	68.690	83.672	106.905	131.040	144.001
	0.4	18.807	38.996	65.327	80.687	98.733	113.474	141.119
	0.5	18.688	37.070	61.916	76.476	86.231	109.697	139.794
	0.6	18.501	35.123	55.642	71.355	80.289	107.409	136.444
	0.8	17.780	31.308	43.378	67.012	74.360	93.673	115.036
SSSS	0	34.935	66.266	100.287	107.446	140.766	168.275	185.066
	0.2	33.386	66.180	99.442	105.650	140.352	166.561	184.824
	0.4	30.137	64.733	85.583	98.356	136.268	157.204	181.536
	0.5	28.456	61.038	72.007	97.814	133.685	149.036	170.170
	0.6	26.928	51.882	66.652	96.445	131.794	136.014	157.590
	0.8	24.467	35.903	62.924	84.747	113.749	128.842	146.347

for SSSS, CCCC, and CSSC rhombic plates with an increase in skew angles at agiven crack ratio.

- (iii) With a small crack ratio of $c/a \approx 0.2$, the percentage drop in fundamental frequency is very small for CFFC, CSFC and FFFF rhombic plate at different skew angles.
- (iv) central crack with c/a = 0.8 reduces the fundamental frequency only by 0.7% in relation to that of intact plate under CFFC edge condition of the rhombic plate.
- (v) Fundamental frequency of rhombic intact plate remains almost the same with variation of skew angle (up to 60° has been considered in this paper) under CFFC conditions.

Although rhombic thin plate with crack were analysed herein, present methodology can be applied to treat thick plate, as the formulation is based on Mindlin plate theory, which is suitable for moderately thick plate. This approach can be applied to treat other shape of plates such as triangular plate and skew trapezoidal plate with central crack and side crack. Furthermore, it will be interesting to extend the methodology to analyse vibration of rhombic plate with multiple cracks.

REFERENCES

- ¹ Leissa, A. W. Vibration of Plates, NASA SP-160, (1969).
- ² Leissa, A. W. Recent research in plate vibrations: classical theory, *Shock and Vibration Digest*, **9** (10), 13–24, (1977). https://dx.doi.org/10.1177/058310247700901005
- ³ Leissa, A. W. Plate vibrations research 1976-1980: classical theory, *Shock and Vibration Digest*, **13** (9), 11–22, (1981). https://dx.doi.org/10.1177/058310248101300905
- ⁴ Leissa, A. W. Recent studies in plate vibrations 1981-1985: part I classical theory, *Shock and Vibration Digest*, **19** (2), 11–18, (1987). https://dx.doi.org/10.1177/058310248701900204
- ⁵ Raju, K. K. and Hinton, E. Natural frequencies and modes of rhombic Mindlin plates, *Earthquake Engi*-

Edge	Crack				Modes			
conditions	ratio	1	2	3	4	5	6	7
CCCC	0	121.634	177.710	231.729	291.496	304.732	354.605	408.631
	0.2	111.551	176.693	228.965	274.824	290.684	352.587	402.563
	0.4	97.892	143.800	173.680	227.108	284.435	317.562	354.314
	0.5	93.689	115.401	166.869	218.476	261.612	282.844	345.846
	0.6	90.561	99.442	161.912	192.595	242.599	279.334	339.564
	0.8	84.234	84.738	150.689	153.096	234.136	240.889	320.358
CFFC	0	6.295	27.006	46.597	63.790	107.167	114.220	145.075
	0.2	6.294	26.958	46.506	62.953	102.034	114.109	141.328
	0.4	6.287	26.758	45.855	60.759	94.149	112.014	131.626
	0.5	6.281	26.555	45.223	59.628	91.024	101.283	118.103
	0.6	6.277	26.241	44.452	58.717	82.245	93.206	114.823
	0.8	6.272	25.151	42.644	57.508	63.970	89.585	106.073
CSSC	0	84.414	138.420	186.641	241.274	245.539	298.881	348.093
	0.2	79.703	134.115	185.841	231.954	238.958	297.195	332.758
	0.4	70.576	125.615	137.924	182.024	236.596	271.310	296.207
	0.5	66.570	103.329	128.387	177.009	222.585	243.607	292.353
	0.6	63.117	86.124	125.168	165.901	196.519	235.604	286.895
	0.8	65.413	67.431	115.618	132.024	186.104	207.807	253.912
FFFF	0	9.779	22.265	39.296	39.854	62.674	68.575	89.716
	0.2	9.774	22.264	39.074	39.850	62.646	68.398	89.630
	0.4	9.756	22.190	38.111	39.834	61.842	65.905	82.659
	0.5	9.744	22.067	37.118	39.813	58.668	64.064	74.426
	0.6	9.729	21.820	35.607	39.720	51.788	63.441	67.722
	0.8	9.688	20.438	30.684	37.726	38.728	57.467	62.805
CSFS	0	26.198	62.600	97.101	138.638	146.379	186.903	224.672
	0.2	26.160	60.780	92.554	137.830	144.251	185.604	216.414
	0.4	26.106	55.084	85.665	119.518	134.927	151.919	186.292
	0.5	26.075	50.935	83.221	96.445	129.277	143.653	183.574
	0.6	26.017	46.219	79.240	83.078	122.589	139.593	171.937
	0.8	25.561	37.044	64.946	78.083	110.095	127.456	134.808
SSSS	0	63.929	104.912	148.011	196.191	208.840	248.963	293.41
	0.2	57.811	104.621	145.777	194.042	196.826	247.203	290.553
	0.4	48.565	99.975	117.919	144.641	191.820	242.463	259.587
	0.5	44.403	84.542	101.054	143.882	189.790	209.546	246.597
	0.6	40.804	66.881	95.846	140.061	173.163	188.703	240.717
	0.8	35.185	45.822	86.961	110.706	148.040	180.740	220.645

Table 9. Seven non-dimensional frequency parameters $\Omega = \omega a^2 \sqrt{\rho h/D}$ of a thin rhombic plate with central horizontal crack under different boundary conditions $(h/a = 0.001, \nu = 0.3, \beta = 60^{\circ})$.

neering and Structural Dynamics, **8**, 55–62, (1980). https://dx.doi.org/10.1002/eqe.4290080106

- ⁶ Durvasula, S. Free vibration of simply supported parallelogrammic plates, *Journal of Aircraft*, **6** (1), 61–68, (1969). https://dx.doi.org/10.2514/3.44005
- ⁷ Durvasula, S. Natural frequencies and modes of clamped skew plates, *American Institute of Aeronautics and Astronautics Journal*, **7** (6), 1164–1166, (1969). https://dx.doi.org/10.2514/3.5296
- ⁸ Liew, K. M. and Lam, K. Y. Application of two dimensional orthogonal plate function to flexural vibrations of skew plates, *Journal of Sound and Vibration*, **139** (2), 241–252, (1990). https://dx.doi.org/10.1016/0022-460X(90)90885-4
- ⁹ Liew K. M., Xiang Y., Kitipornchai, S., and Wang, C. M. Vibration of thick skew plates based on Mindlin shear deformation plate theory, *Journal* of Sound and Vibration, **168** (1), 39–69, (1993). https://dx.doi.org/10.1006/jsvi.1993.1361

- ¹⁰ Basu, P. K., Rossow, M. P., and Szabo, B. A. Theoretical Manual and Users Guide for COMET-X, Report FRA/ORD-77/60, Washington University, (1977).
- ¹¹ McGee, O. G. and Leissa, A. W. Three-dimensional free vibrations of thick skewed cantilevered plates, *Journal of Sound and Vibration*, **144** (2), 305–322, (1991). https://dx.doi.org/10.1016/0022-460X(91)90751-5
- ¹² McGee, O. G., Leissa, A. W., and Huang, S.Vibrations of cantilevered skewed plates with corner stress singularities, *International Journal for Numerical Methods in Engineering*, **35** (2), 409–424, (1992). https://dx.doi.org/10.1002/nme.1620350211
- ¹³ Huang, C. S., McGee, O. G., Leissa, A. W., and Kim, J.W. Accurate vibration analysis of simply supported rhombic plates by considering stress singularities, *Journal of Vibration and Acoustics*, **117** (3A), 245–251, (1995). https://dx.doi.org/10.1115/1.2874440
- ¹⁴ McGee, O. G., Kim, J. W., Kim, Y. S., and Leissa, A. W. Corner stress singularity effects on the vibration of rhombic

plates with combinations of clamped and simply supported edges, *Journal of Sound and Vibration*, **193** (3), 555–580, (1996). https://dx.doi.org/10.1006/jsvi.1996.0302

- ¹⁵ McGee, O. G., Kim, J. W., and Leissa A. W. The influence of corner stress singularities on the vibration characteristics of rhombic plates with combinations of simply supported and free edges, *Int. J. Mech. Sc.*, **41** (1), 17–41, (1999). https://dx.doi.org/10.1016/S0020-7403(97)00120-3
- ¹⁶ Woo, K. S., Hong, C. H., Basu, P. K., and Seo, C. G. Free vibration of skew plates by p-version of F. E.M., *Journal of Sound and Vibration*, **268** (4), 637–656, (2003). https://dx.doi.org/10.1016/S0022-460X(02)01536-5
- ¹⁷ Zhou, L. and Zheng, W. X. Vibration of skew plates by the MLS-Ritz method, *Internal Journal* of Mechanical Sciences, **50** (7), 1133–1141, (2008). https://dx.doi.org/10.1016/j.ijmecsci.2008.05.002
- ¹⁸ Mizusawa, T. and Kondo, Y. Application of the spline element method to analyze vibration of skew Mindlin plates with varying thickness in one direction, *Journal of Sound and Vibration*, **241** (3), 485–501, (2001). https://dx.doi.org/10.1006/jsvi.2000.3303
- ¹⁹ Malekzadeh, P. and Karami, G. Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates, *Engineering Structures*, **27** (10), 1563–74, (2005). https://dx.doi.org/10.1016/j.engstruct.2005.03.017
- ²⁰ Zhou, D., Lo, S. H., Au F. T. K., Cheung Y. K., and Liu W. Q. 3-D vibration analysis of skew thick plates using plates using Chebyshev-Ritz method, *International Journal of Mechanical Sciences*, **48** (12), 1481–93, (2006). https://dx.doi.org/10.1016/j.ijmecsci.2006.06.015
- ²¹ Lai, S. K., Zhou, L., Zhang, Y. Y., and Xiang, Y. Application of the DSC-Element method to flexural vibration of skew plates with continuous and discontinuous boundaries, *Thin-Walled Structures*, **49** (9), 1080–1090, (2011). https://dx.doi.org/10.1016/j.tws.2011.03.019
- ²² Wang, X. and Wu, Z. Differential quadrature analysis of free vibration of rhombic plates with free edges, *Applied Mathematics and Computation*, **225**, 171–183, (2013). https://dx.doi.org/10.1016/j.amc.2013.09.018
- ²³ Wang, X., Wang, Y., and Yuan, Z. Accurate vibration analysis of skew plates by the new version of the differential quadrature method, *Applied Mathematical Modelling*, **38** (3), 926–937, (2014). https://dx.doi.org/10.1016/j.apm.2013.07.021
- ²⁴ Stahl, B. and Keer, L. M. Vibration and stability of cracked rectangular plates, *International Journal of Solids and Structure*, 8 (1), 69–91, (1972). https://dx.doi.org/10.1016/0020-7683(72)90052-2

- ²⁵ Huang, C. S. and Leissa, A. W. Vibration analysis of rectangular plates with side cracks via the Ritz method, *Journal of Sound and Vibration*, **323** (3–5), 974–988, (2009). https://dx.doi.org/10.1016/j.jsv.2009.01.018
- ²⁶ Huang, C. S., Leissa, A. W., and Chan, C. W. Vibrations of rectangular plates with internal cracks or slits, *Internal Journal of Mechanical Sciences*, **53** (6), 436–445, (2011). https://dx.doi.org/10.1016/j.ijmecsci.2011.03.006
- ²⁷ Bachene, M., Tiberkak, R., and Rechak, S. Vibration analysis of cracked plates using the extended finite element method, *Archive of Applied Mechanics*, **79** (3), 249–262, (2009). https://dx.doi.org/10.1007/s00419-008-0224-7
- ²⁸ Israr, A., Manoach, E., Trendafilova, I., Ostachowicz, M., Krawczuk, M., and Zak, A. Analytical modeling and vibration analysis of partially cracked rectangular plates with different boundary conditions and loading, *Journal of Applied Mechanics*, **76**, (2009). https://dx.doi.org/10.1115/1.2998755
- ²⁹ Ismail, R. and Cartmell, M. P. An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation, *Journal of Sound and Vibration*, **331** (12), 2929–2948, (2012). https://dx.doi.org/10.1016/j.jsv.2012.02.011
- ³⁰ Joshi, P. V., Jain, N. K., and Ramtekkar, G. D. Analytical modeling and vibration analysis of internally cracked rectangular plates, *Journal of Sound and Vibration*, **333** (22), 5851–5856, (2014). https://dx.doi.org/10.1016/j.jsv.2014.06.028
- ³¹ Liew, K. M., Hung, K. C., and Lim, M. K. A solution method for analysis of cracked plates under vibration, *Engineering Fracture Mechanics*, **48** (3), 393–404, (1994). https://dx.doi.org/10.1016/0013-7944(94)90130-9
- ³² Moes, N., Dolbow. J., and Belytschko, T. A finite element method for crack growth without remeshing, *International Journal of Numerical Methods in Engineering*, **46** (1), 131–50, (1999). https://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.3.CO;2-A
- ³³ Bardell, N. S. The free vibration of skew plates using the hierarchical finite element method, *Computers & Structures*, 45 (5–6), 841–74, (1992). https://dx.doi.org/10.1016/0045-7949(92)90044-Z
- ³⁴ Singh, B. and Chakraverty, S. Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables, *Journal* of Sound and Vibration, **173** (2), 157–178. (1994) https://dx.doi.org/10.1006/jsvi.1994.1224