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A new method to classify and identify different types of road pavements by analysing the near field sound profile
and texture using statistical learning methods is proposed. A set of characteristics were extracted from the noise
profile and from the road surface texture. Sound measurements were carried out following the close-proximity
method with the texture descriptors being provided by a high speed profilometer system. As a first approach, it is
assumed that the features extracted from the noise and texture characteristics follow normal distributions. However,
this assumption is not completely verified for all types of road surfaces. The method presented herein exploits the
use of Bayesian analysis complemented by a neural network in order to improve the classification results.

1. INTRODUCTION

Urban road traffic noise is one of the most serious environ-
mental problems that modern societies face nowadays. Efforts
have been taken for the development and implementation of
noise abatement strategies that can be adopted in urban set-
tings and that do not pose problems of visual impact as noise
barriers generally do. Therefore, a considerable variety of dif-
ferent low noise surfaces is now available.1, 2

A good knowledge of the characteristics of the road pave-
ment surfaces regarding noise and texture is important in terms
of assessment for road conformity purposes. Statistical clas-
sification and identification of road pavements approaches by
using non-destructive methods has been addressed recently.3, 4

However, these studies focused only on the statistical Bayesian
classifier, assuming features such as normal probability density
functions and a vehicle speed of 80 km/h. The possibility of
features with different distribution functions and the evolution
of each feature set for a range of vehicle speed were left for
future study.

The present study aims to outline guidelines regard-
ing an accurate and automatic method for the classifica-
tion/identification of road pavements using both Bayesian and
neural networks classifiers for comparison purposes.5, 6 We
believe the use of noise and texture characteristics applied to
a pattern recognition approach could be a valuation tool for
pavement management systems.

2. METHODOLOGY

Macrotexture and sound pressure levels were measured to-
gether along the extension of five selected road surfaces in or-
der to extract relevant characteristics to be used on the pave-
ment classification.

The pavement surface macrotexture was estimated by the
mean profile depth (MPD) method. The pavement surface data
was acquired with a high speed Profilometer (HSP) following
the ISO 13473-1 standard.7 The sound signal was acquired,
in near field conditions, along the road segments for vehicle
speeds in the range of 30 to 100 km/h (in most tracks), in steps
of 10 km/h, following the close proximity procedure (CPX) as
described in the ISO/DIS 11819-2 standard.8

For final model validation purposes, only the speed of
80 km/h was used, which was chosen among the reference
speeds mentioned in the ISO/DIS 11819-2 standard. The tyre
used was Michel-in Energy 205/65-R15, designated as stan-
dard reference test tyre (SRTT). It is one of the two tyres rec-
ommended in the proposed ISO/DIS 11819-2 standard.

From the macrotexture and the corresponding audio signal
of each road surface, a set of features that best described the
type of data acquired were selected and analysed. The relation
macrotexture/noise was determined through this set of features
which in turn was used for evaluation and assessment of each
road surface.

After applying the feature selection procedure to the whole
set of the features considered relevant on characterizing the
road surface, a sub-set was applied to the Bayes classifier and
a neural network. Figure 1 shows the scheme of the setup used
in this research.

The road surface set chosen for this study included the ones
most commonly used in Portugal: one of dense asphalt (DA),
one of slurry surfacing (SS) and three surfaces of open-graded
asphalt rubber (OGAR), which are used extensively now.9 Ta-
ble 1 presents the maximum aggregate size and the age of each
surface. The maximum aggregate size used together with the
texture and the porosity as well as the age of the surface are
reported in literature as being the main parameters affecting
tyre/surface noise.10–14 Although this set does not cover the
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Figure 1. Scheme of the experimental and analysis setup showing details of
the classifier.

Table 1. Properties of the asphalt mixes

Type of mix
OGAR1
(type 1)

SS
(type 2)

OGAR2
(type 3)

OGAR3
(type 4)

DA (0/16)
(type 5)

Maximum aggregate
size (mm)

10 12 10 10 16

Age (years) 1 4 4 2 1

majority of road surface types and age conditions, they are
enough to prove the concept of identification of road pavement
types using different classifiers.

3. PAVEMENT FEATURES

The features characterizing the road pavement were ex-
tracted from measurements of texture based on the MPD and
of sound levels. The sound pressure level is the feature that
best describes the type of surface, given its close relationship
with the noise energy level perceived by the human auditory
system. However, the sound pressure is highly dependent on
several factors such as the speed of the vehicle, the type of
tyres and the age of the pavement. Therefore, a combination
of features is necessary.

The following sections describe the vector of features
adopted in this work. It includes a set of characteristics which
are the most appropriate to relate noise and texture, after ap-
plying the feature selection procedure. This procedure has sev-
eral goals: (i) to remove any redundant characteristics, (ii) to
decrease the dimensionality of the feature vector and (iii) to
decrease the computational load of the classifier. The selec-
tion method consisted of a PCA approach. Nevertheless, the
selected vector of features has to include all the fundamental
characteristics of the road surface relevant to the classification
task.

Figure 2 depicts the ranking for the features (by backward
searching method and based on the inter-intra criterion) origi-
nally introduced in the texture and noise correlation study.15–17

The procedure of ranking the features is important to select the
most valuable features in order to derease the computational
load of the classification/identification process. These features
are shown in Table 2.

The features are sorted in descending order of relevance as

Figure 2. Rank of the noise (red bars) and texture (blue bars) features for
classification proposals.

Table 2. Pavement selected features

Feature name Obs.
LAeqFull overall sound pressure levels
LAeqLo low frequency band
LAeqMid middle frequency band
LAeqHi high frequency band
Ct centroid
CtLo centroid low frequency band
CtMid centroid middle frequency band
CtHi centroid high frequency band
FreqMaxSPL frequency band of maximum SPL
maxLAeqBand maximum SPL band
max2FreqBand secondary maximum SPL band
meanMPD mean of MPD
stdMPD standard deviation of MPD
CtMPD centroid MPD
CtLoMPD centroid MPD low frequency band
CtMidMPD centroid MPD middle frequency band
CtHiMPD centroid MPD middle frequency band
maxAmpMPD4 maximum amplitude above mean of MPD
rmsmaxAmpMPD maxima rms of MPD
maxMPD maxima of MPD
CrestF MPD Crest Factor of MPD
pk2pkMPD peak-to-peak of MPD
ZCrossMPD zero crossings of MPD
meanCorrMPD mean correlation MPD

{3 1 4 2 12 6 10 20 11 14 5 13 7 15 8 18 24 22 9 19 23
17 21 16}. As observed, the features extracted from noise
have more significance, are more decorrelated from the others
than the features from texture. Effectively, the MPD method
does not address some surface texture characteristics such as
the pavement aggregate particle shape, size and distribution.18

The method is not meant to provide a complete assessment of
pavement surface texture characteristics.

Despite these considerations, several characteristics defining
different pavements can be selected.

3.1. Noise Characteristics

The A-weighted RMS sound pressure is the acoustic fea-
ture that, at a first approach, best describes the type of sur-
face.?, 19, 21 For this reason, the A-weighting curve was applied
to the acquired sound signals. This procedure has a further
advantage of removing the low frequency band energy, gener-
ated mostly by the moving vehicle’s air flow. The A-weighted
sound pressure level should thus be the primary noise feature
to be used. There are scores of generation mechanisms that
in turn lead to a plethora of tyre/road noise scenarios. There-
fore, deciding which modelling strategy to use is rather dif-
ficult. The issue is even more problematic because of the
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complexity of the radiation conditions for both vibration and
aerodynamic sources. Therefore, the noise spectrum must be
split into several complementary frequency bands to monitor
the tyre/pavement noise generation phenomena so that the per-
formance of the classifier is enhanced. In this study, three fre-
quency bands were used: a low band (200–1400 Hz), a middle
band (1400–3000 Hz) and a high band (3000–8000 Hz). Ad-
ditionally, a 1/3 octave band analysis was considered in some
cases, for improved frequency discrimination. Full band anal-
ysis was also used to account for overall noise energy. In order
to improve the results in the classification stage and for com-
parison purposes, a smoothing technique was applied.

The noise features selected from a subset of the first 12 fea-
tures of the rank, given by Fig. 2, are as follows:

(1) Overall sound pressure level — LAeqFull (in dBA), in
the range of 200 to 8000 Hz. Most sound energy remains
in this frequency band. This feature is estimated by the
moving average method.

(2) Narrow band sound pressure levels: low band —
LAeqLo (200–1400 Hz), middle band — LAeqMid
(1400–3000 Hz) and high band — LAeqHi (3000–
8000 Hz). This feature splits the audio frequency band
of interest in three parts for better discrimination.

(3) Spectral energy centroid — Ct. The spectral centroid
is commonly associated with the measure of the ‘bright-
ness’ of a sound. This measure is obtained by evaluating
the ‘centre of gravity’ using the Fourier transform’s fre-
quency and magnitude information. The individual cen-
troid of a spectral frame is defined as the average fre-
quency weighted by amplitudes, divided by the sum of
the amplitudes. The computation of this feature is based
on the squared magnitude of the spectrum using the short-
time Fourier transform (STFT) and performed frame-by-
frame along the time axis. The use of the squared mag-
nitude of the spectrum, a measure of the noise energy, is
aimed at getting an improved correlation with the stimulus
perceived by the human auditory system.

(4) Spectral band energy centroid — CtLo, CtMid and
CtHi. It is same as Ct computed for three frequency bands.

(5) Third octave band sound pressure levels — Oct13B.

(6) Spectral Energy Maximum — FreqMaxLAeq. This
feature corresponds to the main peak of the power spectral
density estimate. The tyre/road pavement noise spectrum
profile is characterized often by a maximum sound inten-
sity centred in the range of about 700 to 1200 Hz. This fea-
ture is evaluated by averaging N consecutive frames (mov-
ing average method) in the frequency domain.

3.2. Texture Characteristics

The criteria adopted for choosing the set of texture fea-
tures was based on the physical meaning of the data given

Figure 3. Scheme for the calculation of MPD.

by the MPD. The MPD is used to characterize the macrotex-
ture of pavements, giving a measure of the mean of the profile
depth only. The following development gives a step forward
concerning this issue. The estimation of MPD is given by
MPD = [peaklevel(1st) + peaklevel(2nd)]/2 — Average
level, after the ISO 13473-1 standard. The diagram depicted in
Fig. 3 illustrates the concept.

In order to evaluate the characteristics of the MPD in a num-
ber of simulations of different textures, a simple model was
developed to generate the longitudinal pavement profile. The
model is able to generate two types of profiles: the first type is
assigned to periodic profiles based on the selected wavelength
and the second type consists of generating the profile randomly
using a table with the pavement grading curves that gives infor-
mation about the grade percentage of the aggregates. Some ex-
amples of the type of aggregates considered are round shaped,
triangular shaped, raised cosine shaped and square shaped.

Since all parameters extracted are mean values, the best tex-
ture features (selected from a sub-set of the first 12 features of
the rank, given by Fig. 2) to be analysed in this study are as
follows:

(7) Mean of MPD, meanMPD (in mm) — it represents the
mean value of the MPD using the moving average method.

(8) Standard Deviation of MPD, stdMPD (in mm) — it pro-
vides information about the regularity of the surface.

(9) Centroid MPD, CtMPD — this feature gives information
about the centre of gravity of the spectral texture.

(10) Maxima of MPD, maxMPD (in mm) — it corresponds to
the absolute maxima of the MPD.

3.3. Evolution of Features with Vehicle
Speed

The complete analysis of the features should comprise the
dependence of each feature with the speed of the moving ve-
hicle. Therefore, the characterization/identification of a pave-
ment can be evaluated for one specific speed only. Although
for a complete analysis three velocities should be used, as rec-
ommended by the ISO/DIS 11819-2, in some circumstances,
such procedure is difficult to implement due to certain factors
like the logistics associated to in situ sound measurements.
Figures 4–5 show a set of features and their dependence on
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Figure 4. Long-term and high frequency band noise levels and centroid for
different vehicle speeds.

the vehicle speed. As a matter of simplicity, only the DA and
OGAR1 pavements are shown for comparison purposes, since
they have the same age.

Previously published works have mentioned that the sound
pressure levels follow a linear evolution with the logarithm of
the speed.2, 3 Although this is true for the long-term noise lev-
els, a deviation is observed for the high frequency bands, as
shown in Fig. 4, at least for these types of pavements. This
observation is confirmed for the centroid feature. In fact, it
should be a horizontal line.

As shown in Fig. 5, although the long-term sound pressure
levels, which are strongly dependent on the frequency band for
higher levels, follow a linear fashion with the decimal loga-
rithm of the speed, this is not true for the high frequency bands,
which reveals a linear dependence on speed. As observed, an
increase of the speed implies an increase on Ct feature, fol-
lowing a non-linear law. In fact, the offset on the spectra is
frequency band dependent.

4. CLASSIFIER PROCESSING

The classifier system is trained using the MPD and sound
features for each type of pavement. Therefore, the module
used for classification was the result of a supervised learning
approach. A database populated by entries describing different
types of surfaces was built beforehand.1 The road pavement
classification framework consists mainly of two stages: (i) fea-
ture extraction and (ii) classification.

Figure 5. 2D feature space of LAeq vs. Ct for different vehicle speeds and
for the pavements dense asphalt (DA), left and open-graded asphalt rubber
(OGAR1), right. The contours give a measure of the density of the observa-
tions on the feature space.

The data samples are classified in a specific class depending
on its location on the feature space.6 In this study, 12 features
were considered for testing.

4.1. Features Distribution

Figure 6 shows the density functions associated to LAeq and
Ct features providing guidelines to choose the most convenient
type of classifier. Similar results can be found for the remain-
ing features.

As suspected from the observation of the contours in Fig. 5
and confirmed by Fig. 6, the density functions of the features
for OGAR1 pavement do not follow a normal distribution for
some types of pavements. Therefore, Bayesian and neural net-
work classifiers were tested for comparison and complementa-
tion. Moreover, excluding the results for speeds up to 50 km/h,
due to the influence of the engine noise of the vehicle, the den-
sity functions do not exhibit the same value for Ct feature and
different shapes for LAeq are shown.

4.2. Classifier Learning

The feature vectors for each pavement class were divided
into two datasets: a training set and a test set. A randomly
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Figure 6. Density functions of feature LAeq and Ct for different vehicle speeds.

chosen subset of 30% of the vectors is assigned to the train-
ing set and the remaining 70% correspond to the test set.21

The Bayesian classifier corresponds to a quadratic discrimi-
nant analysis (QDA) and the neural network classifier is a feed-
forward network with tansigmoid transfer functions for both
the hidden layer, which uses 9 neurons and output layer. An
N-dimensional density model (where N is the length of the fea-
ture vector) is then adjusted to each class, based on the training
set.22

One advantage of using the neural networks against
Bayesian classifiers is that the assumption of normal distribu-
tion for the selected features is not required.

5. EXPERIMENTAL RESULTS

The features used in this experiment were obtained for
frames of equal 2048 samples length using rectangular or Han-
ning sliding windows, depending on the analysis.23, 24 The
sliding factor was 12.5% of the window length (hop-size of
256 samples), with sampling frequency of 32 kHz. The use of
this sliding factor (lower than 50%) allows a better identifica-
tion of the variability of the pavement texture and location of
any surface irregularities. In order to make the sampling rate
for texture and for noise measurements the same, a resampling
technique was applied to the texture data (the data provided by
the MPD measurements is 40,000 samples/km, one sample for
each 2.5 cm) for a vehicle speed of 80 km/h (R=36).

The result of the pavement classification is assessed by
means of the related confusion matrix shown in Fig. 7, for
OGAR1 (type 1), SS (type 2), OGAR2 (type 3), OGAR3
(type 4) and DA (0/16) (type 5) road surfaces. This matrix

is obtained with the test dataset and yields the error committed
by the classifier. This is a square matrix, with dimension equal
to the number of classes, in which each entry, say (k1, k2), is
an estimate of the probability that an observation (from true)
pavement class k1 is classified as belonging to class k2. The
principal diagonal of the confusion matrix corresponds to the
correct pavement classification. Thus, the confusion matrix
for the ideal classifier consists of a diagonal matrix, with only
the elements on the main diagonal of the confusion matrix be-
ing non-zero. The numeric values in each cell give the result
of classification in percentage of samples with true pavement
classification.

In order to compare the performance of the Bayes classi-
fier against the neural network classifier, the analysis was per-
formed using two different sets of features: (i) a number of se-
lected features and (ii) the complete set of features. In Fig. 7,
the first value in each cell is for the selected set of features
and the second shows the result for all features considered in
Table 2. The results showed that for both classifiers, the pave-
ments OGAR1 and SS are well identified.

Bayes classifier: the pavement OGAR2 is barely identified
with the set of 12 selected features, about 79% classified on the
true pavement, increasing to 91% with all features. With all
features (except the OGAR2 type) the true pavement is identi-
fied with a degree of confidence above 95%.

Neural network: a degree of confidence above 90% is ob-
served for the 12 selected features, for all pavements and above
96% using all the features. The OGAR2 type (pavement 3) is
well identified with this classifier.

As a conclusion, the neural network classifier leads to bet-
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Figure 7. Confusion matrices using the Bayesian (top) and neural network
(bottom) classifiers. Each non-zero cell holds the result for the selected fea-
tures (first 12 features given by the ranking method) and for all the set of
features (24 features).

ter results when compared with the Bayesian classifier. Al-
though the increase of the amount of different road pavement
types could alter the classification results slightly, this conclu-
sion will remain true since the neural network does not need
normal distributions for the features used.

Advantages of the Bayesian classifier over the neural net-
works are the time consumed for the training process, about
1:100 (all features) and 1:50 (12 selected features) and its sta-
bility. However, after the training stage, the neural network
classifier is very fast on the stage of classification. Moreover, a
normal distribution for some types of pavements is not verified,
as shown in Fig. 6, degrading the results.

6. CONCLUSIONS

A method for classification and identification of different
types of road pavements was developed and implemented. The
method was designed using statistical classification techniques
comprising an array of procedures to acquire and pre-process
road sound signals near a test tyre and macrotexture informa-
tion provided by a profilometer device.

The Bayesian and the neural network classifiers were com-
pared for the purposes of classification and identification of
different types of road pavements. The method uses features
extracted from surface texture and the noise resulting from the
traffic of light motor vehicles.

Tests were conducted with a set of five types of pavements,
including currently used dense, porous and gap-graded as-
phalts, for different vehicle speeds.

The results of road surface classification showed in general
a very good agreement with the true road pavements for the
two classifiers assessed, above 90% for the Bayesian and above
95% for the neural network. This remarkable result proves the
concept of using statistical classification approaches applied to
road pavements. Moreover, with a feature selection procedure,
the resulting accuracy of the neural network classifier is signif-
icantly better than with the Bayesian classifier, achieving about

100% of true identification pavement for all pavements tested.
This is due to the fact that the assumption of features with nor-
mal distribution is incorrect for some types of road pavements.
However, the training step time is much longer and the pre-
processing step of the data used to define the features in order
to obtain the correct neural network parameters should be a
lot more careful. Moreover, with the use of smoothing tech-
niques applied to the features an improvement in the results is
expected.

In order to evaluate the dependence of the vehicle speed on
the feature set, curve fitting methods were applied to some fea-
tures. It was found that the increase of sound pressure lev-
els for high frequency bands do not follow a linear behaviour
with the decimal logarithm of the speed, which occurs for the
long-term noise levels. The same result is observed for the Ct
feature. This type of conclusion is useful in the estimation of
features for a specific speed other than the reference speed.

The method can be used for assessing road pavements in
terms of age and degree of erosion. The procedure offers a
good and accurate characterization of the road surface noise
emission and provides valuable data both for low noise pave-
ment designers and for road engineers, builders and contrac-
tors. This method can also be used for conformity tests on new
road pavements, by comparing it with accurate data from a
reference road surface. A further application of this road pave-
ment classification system is the improvement of accuracy of
road pavement data for road traffic noise modelling and map-
ping purposes.

Due to the discrepancy of measurement data for some types
of pavements, care must be taken with the pre-processing of
the data, excluding, as much as possible, discrepancies related
to the problems of construction/degrading process of the roads
(unless the goal of the study is con-formity road assessment).

Since the speed of the vehicle is related to the resulting noise
levels, the correct surface classification should be carried out
with measurements at several speeds and at constant velocity.

In order to evaluate the dependence of the vehicle speed on
the feature set, curve fitting methods were applied to some 2D
feature space.

Finally, one can conclude that features based on the MPD
are insufficient to describe the texture accurately. As a final
remark, the correct correlation between noise and texture char-
acteristics should take into account not only the level of macro-
texture but also the microtexture and megatexture in order to
provide more information to correlate texture and noise conve-
niently, thus achieving better classification results.
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