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A thin circular plate with generally restrained periphery and weakened along an internal concentric circle due to
a crack, is considered in this paper for studying its vibration characteristics. The frequency for first six modes
of plate vibration is computed for varying values of radius of crack, elastic rotational and translational restraints,
and the extent of weakening duly simulated by considering the crack as a rotational restraint on the plate. From
the results obtained, it is observed that for a plate with translation and rotational restraints, the internal weakening
decreases the fundamental frequency by around 31 per cent.

NOMENCLATURE

KT1 Translational spring stiffness at outer periphery;
KR1 Rotational spring stiffness at outer periphery;
KR2 Rotational spring stiffness at the cracked region;
T11 Non-dimensional translational Flexibility

parameter at the outer edge;
R11 Non-dimensional rotational flexibility parameter

at the outer edge;
R22 Non-dimensional rotational flexibility parameter

at the cracked region;
k Non-dimensional frequency parameter;

1. INTRODUCTION

Many structural elements are composed of circular plates in
aeronautical, civil, mechanical, and marine applications. The
problem of determination of vibration characteristics of circu-
lar plates is basic to engineering design.1–4 Several researchers
reviewed the literature on vibrations of circular plates with ba-
sic edge conditions and internal strengthening.5–9 Detection
of structural damage through analytical and experimental in-
vestigations of vibration characteristics of cracked plates has
become essential for solving design analysis problems of vari-
ous types of mechanical systems. The natural frequencies and
mode shapes of cracked elastic circular plates considerably dif-
fer from their healthy counterparts. In this respect, Dimarog-
onas has conducted a comprehensive literature search regard-
ing the effects of cracks on the vibrations of various types and
shapes of structures.10 Papadopoulos has briefly described the
history of the strain energy release rate (SERR) theory as well
as different methods of crack identification.11 Broda et al.
have discussed various models of classical and non-classical

crack- induced elastic, thermo-elastic, and dissipative nonlin-
earities.12

Lynn and Kumbasar investigated the problem of vibrations
of cracked rectangular plates by presenting the solution for the
Fredholm integral equation of the first kind and calculating
numerically the drop in the natural frequency of vibration of
plates due to the presence of cracks.13 Petyt investigated ex-
perimentally the variation of fundamental frequency of vibra-
tion as the crack length changes and, the results were verified
against analytical ones using finite element method.14 Stahl
and Keer, Hirano and Okazaki, Solecki and Yuan, and Dickin-
son studied further on vibrations of cracked plates using differ-
ent methods of analysis.15–18 Huang and Ma studied the prob-
lem of vibrations of circular plate with a radial crack using an
optical measurement system known as the AF-ESPI method.19

Liew et al.20 studied the problem of out-of-plane vibrations
of cracked plates utilizing the domain decomposition method,
confirming the results presented by Stahl and Keer, Hirano and
Okazaki, and presented results for a wide range of crack length
ratios.15, 16 Further, they examined the vibrations of a plate
having a centrally located internal crack and reported results
of frequency crossings. Ma and Huang recently studied the
problem of vibrations of a square plate with an edge crack uti-
lizing both experimental and finite element analysis.21 They
found that the variations in crack length to be having consider-
able influence on the natural frequencies and mode shapes of
the plate. Si at el. recently studied the free vibrations of cir-
cular plates with radial side cracks considering the presence of
water on one side utilizing Rayleigh-Ritz method.22

By the integration of stress intensity factors, the stiffness
matrix was derived for the cracked plate by Qian et al. for
carrying out the finite element analysis.23 Utilizing Rayleigh’s
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method and including effects of shear deformation and rotary
inertia, Lee and Lim presented results for the natural frequen-
cies and mode shapes of thick rectangular plate with a cen-
trally located crack.24 Krawczuk studied the influence of the
crack location and crack length on the natural frequencies of
both simply supported and cantilever rectangular plates.25 The
dynamic behaviour of cracked rectangular plates was inves-
tigated by Liew et al. analysing the free vibrations of rect-
angular plates either with a crack emanating from an edge or
that which is centrally located.26 Khadem and Rezaee carried
out vibration analysis for crack detection in a rectangular plate
subjected to uniform external loads.27 Krawczuk et al. studied
the fracture mechanics of a plate with an elasto-plastic through
crack by using the finite element method.28

Based on Rayleigh’s principle, Lee proposed a simple nu-
merical method for computing the first natural frequencies of
an annular plate with an internal concentric crack and applied
the same for an annular plate with two opposite edges simply
supported and the other two edges clamped.29 The effect of the
number and length of periodic radial cracks on the natural fre-
quencies of an annular plate was investigated experimentally
by Ramesh et al.30 By modelling a surface peripheral crack
as a local rotational flexibility, Anifantis et al. investigated the
problem identifying free vibration characteristics of cracked
annular plates.31 Utilizing the Ritz method, Yuan et al. studied
the influence of radial or circumferential cracks or slits through
the full thickness on the natural frequencies of free vibration of
circular and annular plates.32 By using the optimum number of
sector plate elements and joining them together with artificial
spring elements, they obtained the flexibility matrix of sector-
type element with radial crack and proved the applicability of
the derived element in the dynamic analysis of annular plates
with cracks eventually comparing the results with the experi-
mental ones available in the literature.

Very few studies33–35 exist in the literature on the vibrations
of circular plate weakened along a concentric circle due to
crack where Wang33 and Yu34 considered the basic boundary
conditions and Bhaskara Rao and Kameswara Rao35 consid-
ered an elastically restrained edge against translation. Due
to internal notching, partial crack, or fatigue crack along a
concentric circle, the plate may become weak in its bending
strength. A hinge with an elastic rotational restraint can be
considered to model the weakened position. In realistic engi-
neering circumstances, a perfect boundary condition is hardly
present. Therefore, when the boundary departs from such re-
alistic situation, an elastically restrained edge must be consid-
ered.36–39 Main intention of this work is therefore to study the
effect of weakening of thin plate along concentric circle due to
crack and the plate being elastically restrained along the outer
edge against translation and rotation using exact method of so-
lution approach. The natural frequencies of circular plate for
varying values of translation restraint and rotational restraint
along the plate periphery, along with the variations in the ra-
dius of weakened circle, Poisson’s ratio and rotational restraint
with hinge of cracked region are obtained for a wide range
of non-dimensional parameters. The results are expressed in
graphical and tabular formats for ease of use in understand-

Figure 1. Generally restrained circular plate with crack.

ing the design of such cracked and weakened circular plates in
engineering industry.

2. MATHEMATICAL FORMULATION

The circular plate under consideration is of radius R, Pois-
son’s ratio ν, density ρ, thickness h, and elastic constant E.
Figure 1 is shows a circular plate that has an outer periphery, a
generally restrained edge (at radius R), and an edge weakened
along an internal concentric circle (at radius bR). Here, b is a
fraction and is less than 1.

Here, all lengths are normalized with respect to R i.e., the
radius of outer region is 1 and radius of inner cracked region
is b. Here, r designates the distance measured from the centre
of plate whose maximum value is R. Here subscript I repre-
sents outer region b ≤ r ≤ 1 and subscript II represents inner
region 0 ≤ r ≤ b. General form of lateral displacement of
vibration of classical thin plate can be expressed as2

w = u(r) cos(nθ)eiωt; (1)

where n is the number of modal diameters, ω is the frequency,
w is the transverse displacement, and t is time.

The function u(r) is a linear combination of Bessel
functions Jn(kr), Yn(kr), In(kr), Kn(kr) and k =

R(ρω2/D)1/4; here D is flexural rigidity and k is the square
root of the non-dimensional frequency.3 General solutions for
regions I & II are

uI(r) = C1Jn(kr)+C2Yn(kr)+C3In(kr)+C4Kn(kr); (2)

uII(r) = C5Jn(kr) + C6In(kr). (3)

Considering the generally restrained edge at the outer periph-
ery, the boundary conditions can be formulated as

Mr(r, θ) = KR1
∂wI(r, θ)

∂r
; (4)

Vr(r, θ) = −KT1wI(r, θ); (5)

where KR1 and KT1 are, respectively, the rotational and lin-
ear spring stiffness of the elastically restrained circular plate
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boundary. Here, bending moment (Mr(r, θ)) & Kelvin-
Kirchhoff’s (Vr(r, θ)) shear force can be represented as

Mr(r, θ) = −
D

R

[
∂2wI(r, θ)

∂r2
+ v

(
1

r

∂wI(r, θ)

∂r

+
1

r2
∂2wI(r, θ)

∂θ2

)]
; (6)

Vr(r, θ) = −
D

R3

[
∂

∂r
∇2wI(r, θ)

+(1− ν)1
r

∂

∂θ

(
1

r

∂2wI(r, θ)

∂r∂θ
− 1

r2
∂wI(r, θ)

∂θ

)]
; (7)

From Eqs. (4), (6) and (5), Eq. (7) yields the following expres-
sions [

∂2wI(r, θ)

∂r2
+ v

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
= −R11

∂wI(r, θ)

∂r
; (8)

[
∂

∂r
∇2wI(r, θ) + (1− ν)1

r

∂

∂θ

(
1

r

∂2wI(r, θ)

∂r∂θ

− 1

r2
∂wI(r, θ)

∂θ

)]
= T11wI(r, θ); (9)

Equations (8) and (9) can be presented as

üI(r) + ν
[
u̇I(r)− n2uI(r)

]
= −R11u̇I(r); (10)

...
uI + üI(r)−

[
1 + n2(2− ν)

]
u̇I(r) + n2(3− ν)uI(r)

= −T11uI(r);
(11)

where R11 = KR1R
D & T11 = KT1R

D are, respectively, the
non-dimensional rotational and translational spring parameters
involving the springs constants KR1 & KT1, which are the
elastic spring stiffnesses simulating the elastic restraints at the
circular plate outer periphery.

Apart from the generally restrained edge at the outer periph-
ery, the continuity requirements33 at r = b are as follows

uI(b) = uII(b); (12)

büI(b) + νu̇I(b) = büII(b) + ν ˙uII(b); (13)

b2
...
uI(b)−

[
1 + n2(2− ν) + ν

]
u̇I(b)

= b2
...
uII(b)−

[
1 + n2(2− ν) + ν

]
˙uII(b); (14)

b2üII(b) + ν
[
b ˙uII(b)− n2uII(b)

]
= b2R22 [u̇I(b)− ˙uII(b)] ; (15)

where R22 = KR2R
D is the normalized spring constant with

KR2 being the rotational spring stiffness, which is utilized for
modelling the rotational restraint, created by the presence of

circular crack at r = b. The non-trivial solutions to Eqs. (10)–
(15) are sought. From Eqs. (2), (3), and (10)–(15) we derive
the following equations.[

k2

4
P2 +

k

2
(ν +R11)P1 −

(
k2

2
+ νn2

)
Jn(k)

]
C1+[

k2

4
Q2 +

k

2
(ν +R11)Q1 −

(
k2

2
+ νn2

)
Yn(k)

]
C2+[

k2

4
R2 +

k

2
(ν +R11)R1 +

(
k2

2
− νn2

)
In(k)

]
C3−[

k2

4
S2 −

k

2
(ν +R11)S1 +

(
k2

2
− νn2

)
Kn(k)

]
C4 = 0;

(16)

[
k3

8
P3 +

k2

4
P2 −

k

2

(
3

4
k2 + n2(2− ν) + 1

)
P1

+

(
n2(3− ν)− k2

2
− T11

)
Jn(k)

]
C1+[

k3

8
Q3 +

k2

4
Q2 −

k

2

(
3

4
k2 + n2(2− ν) + 1

)
Q1

+

(
n2(3− ν)− k2

2
− T11

)
Yn(k)

]
C2+[

k3

8
R3 +

k2

4
R2 +

k

2

(
3

4
k2 − n2(2− ν) + 1

)
R1

+

(
n2(3− ν) + k2

2
− T11

)
In(k)

]
C3+[

−k
3

8
S3 +

k2

4
S2 +

k

2

(
−3

4
k2 + n2(2− ν) + 1

)
S1

+

(
n2(3− ν) + k2

2
− T11

)
Kn(k)

]
C4 = 0; (17)

Jn(kb)C1 + Yn(kb)C2 + In(kb)C3 +Kn(kb)C4

−Jn(kb)C5 − In(kb)C6 = 0; (18)

[
bk2

4
Ṗ2 +

νk

2
Ṗ1 −

bk2

2
Jn(kb)

]
C1+[

bk2

4
Q̇2 +

νk

2
Q̇1 −

bk2

2
Yn(kb)

]
C2+[

bk2

4
Ṙ2 +

νk

2
Ṙ1 +

bk2

2
In(kb)

]
C3+[

bk2

4
Ṡ2 −

νk

2
Ṡ1 +

bk2

2
Kn(kb)

]
C4−[

bk2

4
Ṗ2 +

νk

2
Ṗ1 −

bk2

2
Jn(kb)

]
C5−[

bk2

4
Ṙ2 +

νk

2
Ṙ1 +

bk2

2
In(kb)

]
C6 = 0; (19)

(See Eqs. (20) and (21) on the top of the next page.)

3. SOLUTION

Given the set of values of n, ν, T11, R11, R22, and b, equa-
tions listed above are utilized in obtaining exact characteristics
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[
b2k3

8
Ṗ3 −

k

2

(
3b2k2

4
+ (1 + n2(2− ν) + ν)

)
Ṗ1

]
C1 +

[
b2k3

8
Q̇3 −

k

2

(
3b2k2

4
+ (1 + n2(2− ν) + ν)

)
Q̇1

]
C2+[

b2k3

8
Ṙ3 +

k

2

(
3b2k2

4
− (1 + n2(2− ν) + ν)

)
Ṙ1

]
C3 +

[
−b

2k3

8
Ṡ3 +

k

2

(
−3b2k2

4
+ (1 + n2(2− ν) + ν)

)
Ṡ1

]
C4+[

b2k3

8
Ṗ3 +

k

2

(
3b2k2

4
+ (1 + n2(2− ν) + ν)

)
Ṗ1

]
C5 +

[
−b

2k3

8
Ṙ3 +

k

2

(
−3b2k2

4
+ (1 + n2(2− ν) + ν)

)
Ṙ1

]
C6 = 0;

(20)

[
b2kR22

2
Ṗ1

]
C1 +

[
b2kR22

2
Q̇1

]
C2 +

[
b2kR22

2
Ṙ1

]
C3 −

[
b2kR22

2
Ṡ1

]
C4−[

b2k2

4
Ṗ2 +

kb

2
(ν + bR22)Ṗ1 −

(
b2k2

2
+ n2

)
Jn(kb)

]
C5 −

[
b2k2

4
Ṙ2 +

kb

2
(ν + bR22)Ṙ1 +

(
b2k2

2
− n2

)
In(kb)

]
C6 = 0;

(21)

where P1 = Jn−1(k)− Jn+1(k); P2 = Jn−2(k) + Jn+2(k); P3 = Jn−3(k)− Jn+3(k);

Q1 = Yn−1(k)− Yn+1(k); Q2 = Yn−2(k) + Yn+2(k); Q3 = Yn−3(k)− Yn+3(k);

R1 = In−1(k) + In+1(k); R2 = In−2(k) + In+2(k); R3 = In−3(k) + In+3(k);

S1 = Kn−1(k) +Kn+1(k); S2 = Kn−2(k) +Kn+2(k);K3 = Kn−3(k) +Kn+3(k);

Ṗ1 = Jn−1(kb)− Jn+1(kb); Ṗ2 = Jn−2(kb) + Jn+2(kb); Ṗ3 = Jn−3(kb)− Jn+3(kb);

Q̇1 = Yn−1(kb)− Yn+1(kb); Q̇2 = Yn−2(kb) + Yn+2(kb); Q̇3 = Yn−3(kb)− Yn+3(kb);

Ṙ1 = In−1(kb) + In+1(kb); Ṙ2 = In−2(kb) + In+2(kb); Ṙ3 = In−3(kb) + In+3(kb);

Ṡ1 = Kn−1(kb) +Kn+1(kb); Ṡ2 = Kn−2(kb) +Kn+2(kb); Ṡ3 = Kn−3(kb) +Kn+3(kb);

equations by suitably eliminating coefficients of C1, C2, C3,
C4, C5, and C6. The values of non-dimensional frequency
parameters k are obtained by solving the exact characteristic
equation by utilizing a root search method based on bisection
method and coding the same appropriately in MATHEMAT-
ICA.

4. RESULTS AND DISCUSSIONS

Poisson’s ratio employed here is 0.3. The values ( R11 and
T11) are chosen to cover both classical and nonclassical bound-
ary conditions. Also, the values of rotational spring R22 are
chosen to simulate the intensity of the crack appropriately. A
smaller value ofR22 represents that the crack is very small and
higher value of R22 represents a concentric rigid ring support.
Frequency values for various values of R22 keeping R11 and
T11 constant [R11 = T11 = 0.0001] are computed. The first
frequencies [k] of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10,
25, 50, and 1016 and R11 = T11 = 0.0001 are computed. For
b = 1 and R22 = 0, the frequency of plate is same as that of
plate without having weakening crack. For a given value of b
& ν, the first frequency of n = 0, the modal frequency con-
verges to that of plate without weakening as R22 is increased
from a value of 0. When ν = 0.3, first six frequencies of plate
without weakening are obtained as 2.31479 [n = 2], 3.00049
[n = 0], 3.52684 [n = 3], 4.52488 [n = 1], 4.67279 [n = 4],
and 5.7874 [n = 5]. Notice that the fundamental frequency
of plate weakened along an internal concentric circle and gen-
erally restrained edge against translation and rotation occurs
at n = 2 mode. The variation of fundamental frequency of
plate for varying values of radius of weakened circle and ro-
tational restraint parameter of hinge are given in Fig. 2, for
n = 0 mode. As R22 → ∞ (as the spring becomes rigid),

Figure 2. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 0.0001, ν = 0.3, and n = 0.

the frequency parameter stays at 3.00049. For the remaining
values of R22, the frequency parameter decreases except when
b = 0 or 1.

The frequency values for various values ofR22 keepingR11

and T11 constant [R11 = T11 = 2] are computed. First fre-
quencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25, 50,
and 1016 and R11 = T11 = 2 are computed. For b = 1 and
R22 = 0, the frequency of plate is same as that of plate with-
out having weakening crack. For a given value of b & ν, the
first frequency of n = 0 modal frequency converges to that of
plate without weakening as R22 is increased from a value of 0.
When ν = 0.3, first six frequencies of plate without weaken-
ing are obtained as 1.39366 [n = 0], 1.82795 [n = 1], 2.73255
[n = 2], 3.78917 [n = 3], 4.86708 [n = 4], and 5.94356
[n = 5]. Notice that the fundamental frequency of plate weak-
ened along an internal concentric circle and resting on gener-
ally restrained edge against translation and rotation occurs at
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Figure 3. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 2, ν = 0.3, and n = 0.

n = 0 mode. As R22 → ∞ (as the spring becomes rigid), the
frequency parameter stays at 1.39366. For the remaining val-
ues of R22, the variation of frequency parameter is shown in
Fig. 3. There is an optimum location within the plate.

Internal weakening decreases fundamental frequency
1.39366, which is the fundamental frequency of plate without
the weakening by less than 1% (0.5948%). For a given value
of R22, the frequency k decreases from 1.39366 to 1.38537,
increases to 1.39366, and finally decreases to 1.374 as the
radius of the weakened circle varies from 0 to 1. The local
maximum frequency 1.39366 occurs at b = 0.8. Thus b = 0.8
is the optimum radius if the plate needs to be notched, such
as a closed hatch. The internal weakening has minute effect
[decreases fundamental frequency by less than 1% (0.5948%)]
on the fundamental frequency when 0 ≤ b ≤0.4. Where
as it has little effect on fundamental frequency [decreases
the fundamental frequency by less than 2% (1.41%)] when
b > 0.8.

The frequency values for various values ofR22 keepingR11

and T11 constant [R11 = T11 = 5] are computed. The first
frequencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 10 are computed. For b = 1
and R22 0, the frequency of plate is same as that of plate with-
out having weakening crack. For a given value of b & ν, the
first frequency of n = 0 modal frequency converges to that of
plate without weakening as R22 is increased from a value of 0.
When ν = 0.3, first six frequencies of plate without weaken-
ing are obtained as 1.73363 [n = 0], 2.16554 [n = 1], 2.97556
[n = 2], 3.97353 [n = 3], 5.01943 [n = 4], and 6.07607
[n = 5]. Notice that the fundamental frequency of plate weak-
ened along an internal concentric circle and resting on gener-
ally restrained edge against translation and rotation occurs at
n = 0 mode. As R22 → ∞ (as the spring becomes rigid), the
frequency parameter stays at 1.73363. For the remaining val-
ues of R22, the variation of frequency parameter is shown in
Fig. 4. There is an optimum location within the plate.

Internal weakening decreases the fundamental frequency
1.73363, which is fundamental frequency of the plate without
the weakening by less than 1% (0.8%). For a given value of
R22, the frequency k decreases from 1.73363 to 1.71975, in-
creases to 1.73363, and finally decreases to 1.65872 as radius
b of weakened circle varies from 0 to 1. Here, local maximum

Figure 4. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 5, ν = 0.3, and n = 0.

frequency 1.73363 occurs at b = 0.7. Thus b = 0.7 is opti-
mum radius if the plate needs to be notched, such as a closed
hatch. Here, internal weakening has minute effect [decreases
fundamental frequency by less than 1% (0.8%)] on fundamen-
tal frequency when 0 ≤ b ≤ 0.4. Where as it has more effect on
fundamental frequency [decreases the fundamental frequency
by less than 5% (4.32%)] when b > 0.7.

The frequency values for various values ofR22 keepingR11

and T11 constant [R11 = T11 = 10 ] are tabulated. First fre-
quencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 10 are presented in Tables 1
to 6. For b = 1 and R22 = 0, the frequency of plate is same
as that of plate without having weakening crack. For a given
value of b & ν, first frequency of n = 0 modal frequency con-
verges to that of plate without weakening as R22 is increased
from a value of 0. When ν = 0.3, first six frequencies of plate
without weakening are obtained as 2.03159 [n = 0], 2.46241
[n = 1], 3.19071 [n = 2], 4.13574 [n = 3], 5.15511 [n = 4]

and 6.19719 [n = 5]. Notice that the fundamental frequency of
plate weakened along an internal concentric circle and resting
on generally restrained edge against translation and rotation
occurs at n = 0 mode. As R22 → ∞ (as the spring becomes
rigid), the frequency parameter stays at 2.03159. For the re-
maining values of R22, the variation of frequency parameter is
shown in Fig. 5. There is an optimum location within the plate.

Internal weakening decreases fundamental frequency
2.03159, which is fundamental frequency of plate without
weakening by less than 9% (8.5647%). For a given value of
R22 , the frequency k decreases from 2.03159 to 2.00913,
increases to 2.03063 and finally decreases to 1.85759 as radius
b of weakened circle varies from 0 to 1. Here, local maximum
frequency 2.03063 occurs at b = 0.7. Thus b = 0.7 is the
optimum radius if plate needs to be notched, such as a closed
hatch. The internal weakening has little effect [decreases fun-
damental frequency by less than 1% (1.11%)] on fundamental
frequency when 0 ≤ b ≤ 0.4. Where as it has more effect on
fundamental frequency [decreases the fundamental frequency
by less than 9% (8.5647%)] when b > 0.7.

The frequency values for various values ofR22 keepingR11

& T11 constant [R11 = T11 = 50 ] are computed. First fre-
quencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 10 are computed. For b = 1
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Table 1. First frequency parameter, (n = 0) for different R22 and internal concentric weakened radius parameter, b , R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 2.03159 2.03159 2.03159 2.03159 2.03159 2.03159 2.03159 2.03159 2.03159 2.03159
0.1 2.02739 2.02869 2.02929 2.02979 2.02999 2.03029 2.03089 2.03119 2.03139 2.03159
0.2 2.0178 2.024 2.02639 2.0276 2.02839 2.02889 2.03039 2.03089 2.0312 2.03159
0.3 2.00962 2.0214 2.025 2.0267 2.0277 2.0284 2.03019 2.0308 2.03119 2.03159
0.4 2.00913 2.02221 2.0257 2.0273 2.0282 2.0288 2.03039 2.0309 2.03129 2.03159
0.5 2.01691 2.0259 2.028 2.029 2.0296 2.0299 2.03089 2.03119 2.03139 2.03159
0.6 2.02778 2.03019 2.03069 2.03099 2.03109 2.03119 2.03139 2.03149 2.03149 2.03159
0.7 2.03063 2.03127 2.03138 2.03139 2.03149 2.03149 2.03149 2.03159 2.03159 2.03159
0.8 2.00906 2.02368 2.02678 2.02809 2.02889 2.02939 2.03059 2.03109 2.03129 2.03159
0.9 1.94995 2.00144 2.01312 2.01831 2.02121 2.02301 2.0279 2.0297 2.0306 2.03159
1 1.85759 1.96079 1.98721 1.99928 2.00616 2.01065 2.02252 2.02691 2.0292 2.03159

Table 2. First frequency parameter, (n = 1 ) for different R22 and internal concentric weakened radius parameter b, R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 2.46239 2.46239 2.46239 2.46239 2.46239 2.46239 2.46239 2.46239 2.46239 2.46241
0.1 2.44903 2.45442 2.45672 2.45802 2.45882 2.45932 2.46101 2.46161 2.46201 2.46241
0.2 2.4067 2.43805 2.44684 2.45093 2.45333 2.45492 2.45912 2.46071 2.46151 2.46241
0.3 2.33785 2.41649 2.43436 2.44215 2.44654 2.44943 2.45682 2.45952 2.46092 2.46241
0.4 2.26443 2.39335 2.42069 2.43247 2.43906 2.44335 2.45433 2.45822 2.46032 2.46241
0.5 2.21468 2.37421 2.40883 2.4239 2.43238 2.43776 2.45193 2.45702 2.45972 2.46241
0.6 2.20233 2.36444 2.40195 2.41871 2.42819 2.43428 2.45034 2.45623 2.45932 2.46241
0.7 2.22629 2.36744 2.40286 2.41902 2.4283 2.43428 2.45024 2.45613 2.45922 2.46241
0.8 2.27925 2.384 2.41253 2.4258 2.43348 2.43857 2.45204 2.45703 2.45972 2.46241
0.9 2.35036 2.41172 2.42968 2.43816 2.44325 2.44654 2.45543 2.45882 2.46052 2.46241
1 2.42166 2.44274 2.44943 2.45272 2.45472 2.45602 2.45952 2.46091 2.46161 2.46241

Table 3. First frequency parameter, (n = 2 ) for different R22 and internal concentric weakened radius parameter b, R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 3.1908 3.1908 3.1908 3.1908 3.1908 3.1908 3.1908 3.1908 3.1908 3.1908
0.1 3.1948 3.1939 3.19331 3.19291 3.19261 3.19241 3.19161 3.19121 3.19101 3.19071
0.2 3.20557 3.20009 3.19759 3.1962 3.1952 3.1945 3.19251 3.19171 3.19121 3.19071
0.3 3.21492 3.20346 3.19938 3.19729 3.19599 3.1952 3.1927 3.19181 3.19131 3.19071
0.4 3.19851 3.19426 3.19298 3.19239 3.19209 3.1919 3.1912 3.19101 3.19091 3.19071
0.5 3.12095 3.16202 3.17262 3.17752 3.18041 3.18221 3.18701 3.18881 3.18981 3.19071
0.6 2.98278 3.10605 3.1376 3.15208 3.16036 3.16565 3.17993 3.18522 3.18792 3.19071
0.7 2.83663 3.04051 3.0953 3.12085 3.13562 3.1452 3.17105 3.18063 3.18562 3.19071
0.8 2.73415 2.98644 3.05879 3.09331 3.11347 3.12674 3.16277 3.17634 3.18343 3.19071
0.9 2.7072 2.96328 3.04172 3.07984 3.10249 3.11736 3.15838 3.17404 3.18223 3.19071
1 2.77645 2.98702 3.05558 3.08961 3.10997 3.12345 3.16087 3.17524 3.18283 3.19071

Table 4. First frequency parameter, (n = 3 ) for different R22 and internal concentric weakened radius parameter b, R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 4.13572 4.13572 4.13571 4.13572 4.13571 4.13572 4.13571 4.13572 4.13571 4.13572
0.1 4.13584 4.13584 4.13574 4.13574 4.13574 4.13574 4.13574 4.13574 4.13574 4.13574
0.2 4.13774 4.13724 4.13684 4.13664 4.13654 4.13644 4.13604 4.13594 4.13584 4.13574
0.3 4.14541 4.14182 4.14013 4.13923 4.13863 4.13813 4.13684 4.13634 4.13604 4.13574
0.4 4.15824 4.14818 4.1444 4.14231 4.14111 4.14022 4.13773 4.13674 4.13624 4.13574
0.5 4.15298 4.14426 4.14139 4.1399 4.13911 4.13851 4.13693 4.13634 4.13604 4.13574
0.6 4.07023 4.10553 4.11613 4.12123 4.12424 4.12614 4.13154 4.13354 4.13464 4.13574
0.7 3.88275 4.01772 4.05886 4.07873 4.09041 4.0982 4.11926 4.12715 4.13135 4.13574
0.8 3.65521 3.90077 3.98002 4.01925 4.04271 4.05828 4.1014 4.11787 4.12666 4.13574
0.9 3.46495 3.79616 3.90776 3.96405 3.99799 4.02075 4.08433 4.10899 4.12207 4.13574
1 3.38479 3.75423 3.8792 3.94249 3.98072 4.00627 4.07784 4.10559 4.12037 4.13574

International Journal of Acoustics and Vibration, Vol. 22, No. 3, 2017 339



L. B. Rao, et al.: EXACT CLOSED-FORM SOLUTION OF VIBRATIONS OF A GENERALLY RESTRAINED CIRCULAR PLATE WITH CRACK AND. . .

Table 5. First frequency parameter, (n = 4 ) for different R22 and internal concentric weakened radius parameter b, R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 5.1551 5.1551 5.1551 5.1551 5.1551 5.1551 5.1551 5.1551 5.1551 5.1551
0.1 5.15511 5.15511 5.15511 5.15511 5.15511 5.15511 5.15511 5.15511 5.15511 5.15511
0.2 5.15531 5.15531 5.15521 5.15521 5.15521 5.15521 5.15512 5.15511 5.15511 5.15511
0.3 5.1573 5.1567 5.15631 5.15611 5.15591 5.15581 5.15541 5.15531 5.15521 5.15511
0.4 5.16545 5.16158 5.15979 5.1588 5.1582 5.1577 5.15631 5.15581 5.15541 5.15511
0.5 5.17786 5.16793 5.16406 5.16197 5.16068 5.15978 5.1572 5.15621 5.15571 5.15511
0.6 5.15333 5.15422 5.15445 5.15467 5.15477 5.15478 5.155 5.15501 5.15511 5.15511
0.7 5.00234 5.07817 5.10375 5.11664 5.12434 5.12943 5.14372 5.14922 5.15212 5.15511
0.8 4.7276 4.92987 5.00226 5.0394 5.06206 5.07734 5.12017 5.13694 5.14583 5.15511
0.9 4.4342 4.76097 4.88337 4.94766 4.98739 5.01435 5.09122 5.12167 5.13794 5.15511
1 4.22661 4.65672 4.81367 4.89544 4.94555 4.9794 5.07574 5.11368 5.13385 5.15511

Table 6. First frequency parameter, (n = 5 ) for different R22 and internal concentric weakened radius parameter b, R11 = T11 = 10, and ν = 0.3.

b R22 → 0 2 4 6 8 10 25 50 100 106

0 6.19718 6.19718 6.19718 6.19718 6.19718 6.19718 6.19718 6.19718 6.19718 6.19718
0.1 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719
0.2 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719 6.19719
0.3 6.19768 6.19748 6.19748 6.19739 6.19739 6.19739 6.19729 6.19729 6.19719 6.19719
0.4 6.20095 6.19976 6.19917 6.19877 6.19848 6.19838 6.19778 6.19749 6.19739 6.19719
0.5 6.21167 6.20622 6.20374 6.20235 6.20146 6.20076 6.19888 6.19808 6.19769 6.19719
0.6 6.21357 6.20646 6.2037 6.20212 6.20124 6.20055 6.19877 6.19798 6.19759 6.19719
0.7 6.11202 6.15145 6.16596 6.17347 6.17807 6.18117 6.18998 6.19349 6.19529 6.19719
0.8 5.8271 5.99107 6.05448 6.08814 6.10891 6.12309 6.16354 6.17961 6.1882 6.19719
0.9 5.4652 5.77154 5.89685 5.96505 6.00808 6.03754 6.1237 6.15845 6.17732 6.19719
1 5.17181 5.61856 5.79369 5.88735 5.94577 5.98571 6.10064 6.14657 6.17123 6.19719

Figure 5. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 10, ν = 0.3, and n = 0.

and R22 = 0, the frequency of plate is same as that of plate
without having weakening crack. For a given value of b & ν,
first frequency of n = 0 modal frequency converges to that of
plate without weakening as R22 is increased from a value of 0.
When ν = 0.3, first six frequencies of plate without weakening
are obtained as 2.73971 [n = 0 ], 3.36961 [n = 1 ], 3.93897
[n = 2 ], 4.67971 [n = 3 ], 5.56452 [n = 4 ], and 6.52888
[n = 5 ]. Notice that the fundamental frequency of plate weak-
ened along an internal concentric circle and resting on gener-
ally restrained edge against translation and rotation occurs at
n = 0 mode. As R22 → ∞ (as the spring becomes rigid), the
frequency parameter stays at 2.73971. For the remaining val-
ues of R22, the variation of frequency parameter is shown in
Fig. 6. There is an optimum location within the plate.

Internal weakening decreases fundamental frequency
2.73971, which is fundamental frequency of the plate without
weakening by less than 4% (3.4%). For a given value of
R22, the frequency k decreases from 2.73971 to 2.64629,

Figure 6. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 50, ν = 0.3, and n = 0.

increases to 2.73971 and finally decreases to 2.12973 as
radius b of weakened circle varies from 0 to 1. Here, local
maximum frequency 2.73971 occurs at b = 0.6. Thus, b = 0.6
is optimum radius if plate needs to be notched, such as a
closed hatch. Here, the internal weakening has considerable
effect [decreases the fundamental frequency by less than 4%
(3.4%)] on fundamental frequency when 0 ≤ b ≤ 0.3. Where
as it has more effect on fundamental frequency [decreases the
fundamental frequency by less than 23% (22.264%)] when
b > 0.6.

The frequency values for various values ofR22 keepingR11

& T11 constant [R11 = T11 = 100 ] are computed. First fre-
quencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 100 are computed. For b = 1
and R22 = 0, the frequency of plate is as that of plate with-
out having weakening crack. For a given value of b & ν, the
first frequency of n = 0 modal frequency converges to that of
plate without weakening as R22 is increased from a value of 0.
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Figure 7. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 100, ν = 0.3, and n = 0.

When ν = 0.3, first six frequencies of plate without weakening
are obtained as 2.94749 [n = 0 ], 3.80332 [n = 1 ], 4.41124
[n = 2 ], 5.0759 [n = 3 ], 5.86747 [n = 4 ], and 6.75891
[n = 5 ]. Notice that the fundamental frequency of plate weak-
ened along an internal concentric circle and resting on gener-
ally restrained edge against translation and rotation occurs at
n = 0 mode. As R22 → ∞ (as the spring becomes rigid), the
frequency parameter stays at 2.94749. For the remaining val-
ues of R22, the variation of frequency parameter is shown in
Fig. 7. There is an optimum location within the plate.

Here, the internal weakening decreases fundamental fre-
quency 2.94749 that is fundamental frequency of plate with-
out weakening by less than 5% (4.69%). For a given value of
R22, the frequency k decreases from 2.94749 to 2.80925, in-
creases to 2.94749 and finally decreases to 2.17453 as radius b
of weakened circle varies from 0 to 1. Here, local maximum
frequency 2.94749 occurs at b = 0.6. Thus, b = 0.6 is opti-
mum radius if the plate needs to be notched, such as a closed
hatch. Here, internal weakening has considerable effect [de-
creases fundamental frequency by less than 5% (4.69%)] on
fundamental frequency when 0 ≤ b ≤ 0.3. Where as it has
more effect on fundamental frequency [decreases the funda-
mental frequency by less than 27% (26.22%)] when b > 0.6.

The frequency values for various values ofR22 keepingR11

& T11 constant [R11 = T11 = 1000 ] are computed. First
frequencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 1000 are computed. For b = 1
and R22 = 0, the frequency of plate is same as that of plate
without having weakening crack. For a given value of b & ν,
first frequency of n = 0 modal frequency converges to that of
plate without weakening as R22 is increased from a value of 0.
When ν = 0.3, first six frequencies of plate without weakening
are 3.17078 [n = 0 ], 4.52162 [n = 1 ], 5.68836 [n = 2 ],
6.7132 [n = 3 ], 7.61683 [n = 4 ], and 8.43981 [n = 5 ].
Notice that the fundamental frequency of plate weakened along
an internal concentric circle and resting on generally restrained
edge against translation and rotation occurs at n = 0 mode.
As R22 → ∞ (as the spring becomes rigid), the frequency
parameter stays at 3.17078. For the remaining values of R22,
the variation of frequency parameter is shown in Fig. 8. There
is an optimum location within the plate.

Figure 8. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 1000, ν = 0.3, and n = 0.

Internal weakening decreases fundamental frequency
3.17078, which is the fundamental frequency of plate without
the weakening by less than 7% (6.22%). For a given value
of R22, the frequency k decreases from 3.17078 to 2.97341,
increases to 3.17078 and finally decreases to 2.21675 as radius
b of weakened circle varies from 0 to 1. Here, local maximum
frequency 3.17078 occurs at b = 0.6. Thus b = 0.6 is optimum
radius if a plate needs to be notched, such as a closed hatch.
The internal weakening has significant effect [decreases
the fundamental frequency by less than 7% (6.22%)] on
fundamental frequency when 0 ≤ b ≤ 0.3. Where as it has
enormous effect on fundamental frequency [decreases the
fundamental frequency by less than 31% (30.0856%)] when
b > 0.6.

The frequency values for various values ofR22 keepingR11

& T11 constant [R11 = T11 = 100000 ] are computed. First
frequencies of n ≤ 5 modes with R22 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R11 = T11 = 100000 are computed. For
b = 1 and R22 = 0, the frequency of plate is same as that of
plate without having weakening crack. For a given value of
b & ν, first frequency of n = 0 modal frequency converges
to that of plate without weakening as R22 is increased from
value of 0. When ν = 0.3, first six frequencies of plate without
weakening are 3.19596 [n = 0 ], 4.61 [n = 1 ], 5.90356 [n = 2
], 7.13955 [n = 3 ], 8.33993 [n = 4 ], and 9.51523 [n = 5 ].
Notice that the fundamental frequency of plate weakened along
an internal concentric circle and resting on generally restrained
edge against translation and rotation occurs at n = 0 mode.
As R22 → ∞ (as the spring becomes rigid), the frequency
parameter stays at 3.19596. For the remaining values of R22,
the variation of frequency parameter is shown in Fig. 9. There
is an optimum location within the plate.

Here, internal weakening decreases fundamental frequency
3.19596, which is the fundamental frequency of plate without
weakening by less than 7% (6.39%). For a given value of R22,
the frequency k decreases from 3.19596 to 2.9916, increases to
3.19596 and finally decreases to 2.22145 as radius b of weak-
ened circle varies from 0 to 1. Here, local maximum frequency
3.19596 occurs at b = 0.6. Thus b = 0.6 is optimum radius if
the plate needs to be notched, such as a closed hatch. Here, in-
ternal weakening has significant effect [decreases fundamental
frequency by less than 7% (6.39%)] on fundamental frequency
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Figure 9. Fundamental frequency and concentric weakened radius parameter
for different R22 and R11 = T11 = 100000, ν = 0.3, and n = 0.

when 0 ≤ b ≤ 0.3. Where as it has enormous effect on fun-
damental frequency [decreases the fundamental frequency by
less than 31% (30.49%)] when b > 0.6.

A reduction in fundamental frequency increases from 1% (at
lower values of R22 , i.e. R22 = 2 ) to 8% (at higher values
of R22, i.e. R22 = 105 ) through 4% (for R22 = 50 ), 5% (for
R22 = 100 ), 7%( for R22 = 1000 ) at lower values of i nternal
concentric weakened radius parameter, b. A reduction in fun-
damental frequency increases as rotational restraint parameter
R22 increases.

A reduction in fundamental frequency increases from 2%
(at lower values of R22, i.e. R22 = 2 ) to 31% (at higher
values of R22, i.e. R22 = 105) through 23% (for R22 = 50
), 27% (for R22 = 100 ), 31%( for R22 = 1000 ) at higher
values of i nternal concentric weakened radius parameter, b. A
reduction in fundamental frequency increases with increase in
rotational spring stiffness parameterR22. The rotational spring
stiffness parameter R22 has immense influence on percentage
decrease in fundamental frequency parameter, at higher values
of internal concentric weakened radius parameter b that greatly
decreases the fundamental frequency.

In all the cases discussed above, when b = 1, the structure is
corresponding to circular plate with elastic edge. Fundamental
frequencies for R22 = 0 case, which impersonates a friction-
less hinge/trough circular crack, are shown in the Table 7.

The frequency values for various values ofR11 keepingR22

& T11 constant ( R22 = T11 = 10 ) are tabulated. First fre-
quencies [k] of n ≤ 5 modes with R11 = 0, 2, 4, 6, 8, 10, 25,
50, and 1016 and R22 = T11 = 10 are shown in Tables 8 to 13.
For b = 1 and R11 = 0 , the frequency of plate is same as that
of plate without having weakening crack. For a given value
of b & ν, first frequency of n = 0 modal frequency converges
to that of plate without weakening as R11 is increased from a
value of 0. When ν = 0.3, first six frequencies of plate without
weakening are obtained as 1.85759 [n = 0 ], 2.43992 [n = 1
], 2.98961 [n = 2 ], 3.84106 [n = 3 ], 4.84171 [n = 4 ], and
5.88973 [n = 5 ]. Notice that the fundamental frequency of
plate weakened along an internal concentric circle and resting
on elastically restrained edge occurs at n = 0 mode.

The frequency values for various values of T11 keeping R11

& R22 constant ( R11 = R22 = 10 ) are tabulated. First fre-
quencies [k] of n ≤ 5 modes with T11 = 0, 2, 4, 6, 8, 10, 25,

50, and 1016 and R11 = R22 = 10 are shown in Tables 14
to 19. For b = 1 and T11 = 0 , the frequency of plate is
same as that of plate without having weakening crack. For
a given value of b & ν, the first frequency of n = 0 modal fre-
quency converges to that of plate without weakening as T11 is
increased from a value of 0. When ν = 0.3, first six frequen-
cies of plate without weakening are obtained as 1.56837 [n = 1
], 2.69693 [n = 2 ], 3.5696 [n = 0 ], 3.78149 [n = 3 ], 4.8612
[n = 4 ] and 5.89884 [n = 5 ]. Notice that the fundamental
frequency of plate weakened along an internal concentric cir-
cle and resting on elastically restrained edge occurs at n = 1
mode.

According to the author’s acquaintance, the results for cir-
cular plate with generally restrained edge conditions presented
here, are quite new and are not available in literature. Hence,
results could be compared only with those available in the lit-
erature as follows. (i) For the basic boundary such as simply
supported and clamped plate33 by setting the translational and
rotational restraints with T11 →∞ & R11 → 0 and T11 →∞
&R11 →∞, respectively. Here, internal weakening decreases
fundamental frequency by less than 1% when b is 0 or 1 for
simply supported plate and less than 1% for clamped plate. (ii)
For the basic boundary such as movable edge and free34 by set-
ting the translational and rotational restraints with T11 → 0 &
R11 →∞ and T11 → 0 & R11 → 0, respectively. Here, inter-
nal weakening decreases fundamental frequency by less than
1% when 0 ≤ b ≤ 0.26 for the plate with movable edge and
less than 1% for the free plate. (iii) For non-classical bound-
ary such as translational restrained edge35 by setting rotational
restraint R11 → 0. Here, an internal weakening decreases fun-
damental frequency by less than 12% for a circular plate with
translational restrained edge.

5. CONCLUSIONS

The exact vibration solutions of plates that are weakened
along internal circle and that have generally restrained edges
are presented. It is observed that the fundamental frequency of
plate weakened along internal circle due to a crack and rest-
ing on generally restrained edges against translation and rota-
tion occurs at n = 0 mode corresponding to R22 = 0, 2, 4,
6, 8, 10, 25, 50, and 1016, R11 = T11 = 2, 5, 50, 10, 50,
100, 1000, and 105, and R11 = 0, 2, 4, 6, 8, 10, 25, 50, and
1016, R22 = T11 = 10 and at n = 1 mode corresponding to
T11 = 0, 2, 4, 6, 8, 10, 25, 50, and 1016 & R11 = R22 = 10.
Here, an internal weakening greatly decreases the fundamental
frequency by less than 31% (30.49%). In addition, the fre-
quencies are given for variable elastic restraints ( T11 & R11

) at boundary which simulate the translational and rotational
restraints where T11 → ∞ & R11 → ∞ represents a clamped
support and T11 → ∞ & R11 → 0 represents a simply sup-
ported boundary. These exact solutions serve as benchmark
solutions for verifying approximate results by other methods.
Here, results presented are useful in the design of hatches and
doors used in various industrial applications such as aerospace
and automobile.

In summary, in this paper, the effect on fundamental fre-
quency due to the influence of the presence of a crack is in-
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Table 7. Fundamental frequency parameters, k for a circular hinge (R22 = 0, and for different values of R11 and ν = 0.3).

b R22 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R11 = T11 = 10-3 2.31479 2.31968 2.33405 2.3561 2.38104 2.40017 2.40176 2.37951 2.33862 2.29143 2.17876
R11 = T11 = 0.5 2.03159 2.02739 2.0178 2.00962 2.00913 2.01691 2.02778 2.03063 2.00906 1.94995 1.85759
R11 = T11 = 2 1.39361 1.39256 1.39006 1.38707 1.38537 1.38577 1.38837 1.39186 1.39365 1.38926 1.374
R11 = T11 = 5 1.73362 1.73143 1.72623 1.72124 1.71975 1.72285 1.72903 1.73351 1.7287 1.70556 1.65872
R11 = T11 = 10 2.03159 2.02739 2.0178 2.00962 2.00913 2.01691 2.02778 2.03063 2.00906 1.94995 1.94995
R11 = T11 = 50 2.73979 2.71805 2.67328 2.64629 2.65856 2.70238 2.73905 2.69805 2.5432 2.33372 2.12973
R11 = T11 = 100 2.94748 2.91268 2.84521 2.80925 2.83227 2.89985 2.94745 2.86418 2.6474 2.3993 2.17453
R11 = T11 = 1000 3.17077 3.11603 3.01805 2.97341 3.01324 3.11488 3.16778 3.01734 2.73996 2.45934 2.45934
R11 = T11 = 105 3.19596 3.13862 3.03715 2.9916 3.03373 3.13965 3.19206 3.03315 2.74966 2.46594 2.22145
R11 = T11 = 1016 3.19616 3.13892 3.03735 2.9918 3.03393 3.13995 3.19235 3.03325 2.74976 2.46603 2.22145

Table 8. First frequency parameter, (n = 0 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 1.85759 1.96996 2.00196 2.01702 2.0258 2.03159 2.04705 2.05282 2.05592 2.05902
0.1 1.8532 1.96776 2.00027 2.01553 2.02441 2.03029 2.04595 2.05184 2.05483 2.05802
0.2 1.84802 1.96527 1.99837 2.01393 2.02301 2.02889 2.04485 2.05074 2.05383 2.05702
0.3 1.84413 1.96387 1.99748 2.01324 2.02241 2.0284 2.04445 2.05044 2.05353 2.05682
0.4 1.84224 1.96387 1.99768 2.01354 2.02281 2.0288 2.04486 2.05094 2.05403 2.05722
0.5 1.84254 1.96517 1.99898 2.01484 2.02391 2.0299 2.04596 2.05194 2.05503 2.05822
0.6 1.84483 1.96727 2.00067 2.01633 2.02531 2.03119 2.04695 2.05274 2.05583 2.05892
0.7 1.84852 1.96926 2.00187 2.01703 2.0258 2.03149 2.04675 2.05233 2.05532 2.05832
0.8 1.85261 1.96995 2.00117 2.01563 2.0239 2.02939 2.04385 2.04924 2.05203 2.05482
0.9 1.8561 1.96766 1.99688 2.01034 2.01802 2.02301 2.03637 2.04136 2.04395 2.04654
1 1.85759 1.96079 1.98721 1.99928 2.00616 2.01065 2.02252 2.02691 2.0292 2.03159

vestigated. Also, the variation of fundamental frequency with
respect to the location of the crack is investigated for different
values of R11 and T11. In addition, the influence of the inten-
sity of the crack on fundamental frequency is investigated in
detail. From the various results obtained and presented, it is
found that the fundamental frequency decreases as the crack
moves away from the centre of the plate and it reduces with
the reduction in the intensity of the crack.
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Table 9. First frequency parameter, (n = 1 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 2.44 2.45249 2.45729 2.45978 2.46129 2.46239 2.4654 2.46658 2.46719 2.46788
0.1 2.43772 2.44982 2.45442 2.45682 2.45832 2.45932 2.46222 2.46342 2.46402 2.46462
0.2 2.43442 2.44592 2.45023 2.45252 2.45392 2.45492 2.45762 2.45872 2.45932 2.45992
0.3 2.43063 2.44113 2.44513 2.44723 2.44853 2.44943 2.45193 2.45284 2.45343 2.45394
0.4 2.42654 2.43604 2.43955 2.44145 2.44255 2.44335 2.44555 2.44635 2.44685 2.44735
0.5 2.42315 2.43146 2.43456 2.43616 2.43706 2.43776 2.43967 2.44037 2.44077 2.44117
0.6 2.42155 2.42887 2.43157 2.43287 2.43378 2.43428 2.43588 2.43658 2.43688 2.43719
0.7 2.42286 2.42947 2.43187 2.43308 2.43378 2.43428 2.43568 2.43629 2.43659 2.43689
0.8 2.42745 2.43386 2.43616 2.43737 2.43807 2.43857 2.43987 2.44037 2.44067 2.44097
0.9 2.43423 2.44144 2.44394 2.44524 2.44604 2.44654 2.44795 2.44845 2.44875 2.44905
1 2.43992 2.44962 2.45282 2.45442 2.45532 2.45602 2.45772 2.45842 2.45882 2.45922

Table 10. First frequency parameter, (n = 2 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 2.98959 3.09309 3.1382 3.16344 3.17951 3.1908 3.22393 3.23752 3.24499 3.25278
0.1 2.9909 3.0945 3.13971 3.16506 3.18123 3.19241 3.22565 3.23932 3.24671 3.25459
0.2 2.9927 3.09649 3.1418 3.16705 3.18332 3.1945 3.22784 3.24151 3.2489 3.25688
0.3 2.99399 3.09748 3.1426 3.16785 3.18392 3.1952 3.22833 3.24191 3.24929 3.25718
0.4 2.99359 3.09578 3.1402 3.16505 3.18082 3.1919 3.22433 3.23761 3.2449 3.25258
0.5 2.99089 3.08999 3.13271 3.15656 3.17173 3.18221 3.21316 3.22583 3.23272 3.24001
0.6 2.9858 3.07971 3.11974 3.1419 3.15597 3.16565 3.1942 3.20588 3.21217 3.21886
0.7 2.98001 3.06715 3.10368 3.12374 3.13642 3.1452 3.17076 3.18114 3.18673 3.19262
0.8 2.97673 3.05697 3.08991 3.10778 3.11896 3.12674 3.14911 3.15819 3.16308 3.16827
0.9 2.97953 3.05468 3.08452 3.10059 3.11057 3.11736 3.13712 3.14501 3.1493 3.1537
1 2.98961 3.06436 3.0929 3.10788 3.11716 3.12345 3.14151 3.1486 3.15239 3.15638

Table 11. First frequency parameter, (n = 3 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 3.84103 3.97959 4.04817 4.08909 4.11635 4.13572 4.19552 4.22127 4.23555 4.25104
0.1 3.84106 3.97961 4.04819 4.08922 4.11637 4.13574 4.19564 4.2214 4.23567 4.25105
0.2 3.84156 3.98011 4.04879 4.08982 4.11697 4.13644 4.19634 4.22209 4.23637 4.25184
0.3 3.84295 3.98171 4.05048 4.09151 4.11876 4.13813 4.19813 4.22399 4.23826 4.25374
0.4 3.84514 3.98389 4.05257 4.0936 4.12085 4.14022 4.20012 4.22587 4.24015 4.25562
0.5 3.84683 3.98429 4.05216 4.09259 4.11945 4.13851 4.19741 4.22267 4.23675 4.25182
0.6 3.84533 3.97839 4.04368 4.08241 4.10797 4.12614 4.18204 4.2059 4.21918 4.23346
0.7 3.83864 3.96303 4.02312 4.05846 4.08172 4.0982 4.14851 4.16988 4.18166 4.19434
0.8 3.82927 3.94078 3.99349 4.02414 4.0442 4.05828 4.10111 4.11918 4.12917 4.13975
0.9 3.82608 3.92312 3.96744 3.9928 4.00917 4.02075 4.05529 4.06967 4.07756 4.08604
1 3.84106 3.92661 3.96355 3.98411 3.99719 4.00627 4.03303 4.04401 4.05 4.05629

Table 12. First frequency parameter, (n = 4 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 4.84169 4.97687 5.05146 5.09868 5.13132 5.1551 5.23208 5.26682 5.2866 5.30826
0.1 4.84171 4.9769 5.05148 5.0987 5.13125 5.15511 5.2321 5.26684 5.28661 5.30828
0.2 4.84181 4.97699 5.05158 5.0988 5.13135 5.15521 5.23219 5.26694 5.28671 5.30838
0.3 4.84221 4.97749 5.05207 5.0994 5.13195 5.15581 5.23289 5.26764 5.28741 5.30908
0.4 4.8437 4.97918 5.05386 5.10119 5.13384 5.1577 5.23488 5.26973 5.2895 5.31126
0.5 4.84639 4.98167 5.05625 5.10347 5.13602 5.15978 5.23666 5.27131 5.29098 5.31265
0.6 4.84787 4.98086 5.05384 5.09997 5.13162 5.15478 5.22937 5.26292 5.28199 5.30286
0.7 4.84258 4.96808 5.03617 5.07891 5.10816 5.12943 5.19763 5.22809 5.24536 5.26413
0.8 4.82842 4.93914 4.99805 5.0345 5.05936 5.07734 5.13435 5.15952 5.1738 5.18928
0.9 4.81795 4.90771 4.95384 4.9819 5.00077 5.01435 5.05669 5.07526 5.08565 5.09683
1 4.84171 4.90831 4.94006 4.95863 4.97081 4.9794 5.00566 5.01675 5.02293 5.02952
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Table 13. First frequency parameter, (n = 5 ) for different R11 and internal concentric weakened radius parameter b, R22 = T11 = 10, and ν = 0.3.

b R11 → 0 2 4 6 8 10 25 50 100 106

0 5.88972 6.01304 6.08684 6.13595 6.171 6.19718 6.28555 6.32739 6.35177 6.37902
0.1 5.88974 6.01305 6.08685 6.13598 6.17103 6.19719 6.28557 6.32741 6.35178 6.37894
0.2 5.88973 6.01305 6.08685 6.13598 6.17103 6.19719 6.28557 6.32741 6.35178 6.37904
0.3 5.88983 6.01315 6.08704 6.13617 6.17113 6.19739 6.28576 6.32761 6.35197 6.37924
0.4 5.89053 6.01395 6.08784 6.13707 6.17212 6.19838 6.28685 6.3287 6.35316 6.38033
0.5 5.89281 6.01623 6.09022 6.13945 6.1745 6.20076 6.28934 6.33118 6.35564 6.3829
0.6 5.89549 6.01811 6.0913 6.14003 6.17468 6.20055 6.28782 6.32906 6.35303 6.37979
0.7 5.89199 6.00912 6.07852 6.12445 6.15691 6.18117 6.26246 6.30061 6.32278 6.34735
0.8 5.87353 5.97629 6.0361 6.07515 6.10262 6.12309 6.1908 6.22216 6.24034 6.26041
0.9 5.85348 5.93148 5.97542 6.00358 6.02316 6.03754 6.08458 6.10595 6.11824 6.13182
1 5.88973 5.93358 5.95615 5.96983 5.97902 5.98571 6.00638 6.01547 6.02056 6.02606

Table 14. First frequency parameter, (n = 0 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 3.67597 1.40294 1.65497 1.81687 1.9368 2.03159 2.41131 2.64156 2.79104 2.95826
0.1 3.64793 1.40274 1.65458 1.81618 1.9358 2.03029 2.40753 2.63439 2.78059 2.94293
0.2 3.62648 1.40254 1.65418 1.81548 1.9347 2.02889 2.40364 2.62751 2.77063 2.92897
0.3 3.62838 1.40244 1.65398 1.81518 1.9343 2.0284 2.40225 2.62533 2.76804 2.92579
0.4 3.64843 1.40254 1.65408 1.81538 1.9346 2.0288 2.40374 2.62842 2.77283 2.93356
0.5 3.67026 1.40264 1.65448 1.81598 1.9355 2.0299 2.40713 2.63479 2.78219 2.9471
0.6 3.67445 1.40284 1.65488 1.81668 1.9365 2.03119 2.41052 2.64057 2.79005 2.95746
0.7 3.65221 1.40294 1.65498 1.81687 1.9367 2.03149 2.41091 2.64036 2.78875 2.95387
0.8 3.61401 1.40264 1.65438 1.81577 1.9351 2.02939 2.40453 2.6286 2.77152 2.92887
0.9 3.58008 1.40174 1.65218 1.81228 1.93021 2.02301 2.38799 2.60111 2.73496 2.88173
1 3.5696 1.39985 1.6479 1.80531 1.92054 2.01065 2.3588 2.55688 2.68026 2.81682

Table 15. First frequency parameter, (n = 1 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 1.66531 1.9257 2.10646 2.24722 2.36323 2.46239 2.94164 3.34731 3.72084 4.30624
0.1 1.66095 1.92223 2.10329 2.24415 2.36026 2.45932 2.93797 3.34204 3.71257 4.28781
0.2 1.65486 1.91734 2.0988 2.23976 2.35587 2.45492 2.93218 3.33315 3.69779 4.25278
0.3 1.64738 1.91145 2.09332 2.23447 2.35048 2.44943 2.92469 3.32157 3.67844 4.20901
0.4 1.6382 1.90437 2.08703 2.22838 2.3445 2.44335 2.91701 3.3103 3.6612 4.17802
0.5 1.62743 1.89669 2.08035 2.2223 2.33871 2.43776 2.91153 3.30434 3.65524 4.17933
0.6 1.61535 1.88891 2.07446 2.21752 2.33473 2.43428 2.91084 3.30754 3.66592 4.2176
0.7 1.60259 1.88222 2.07047 2.21522 2.33363 2.43428 2.91633 3.32031 3.69034 4.27481
0.8 1.58992 1.87754 2.06938 2.21642 2.33653 2.43857 2.927 3.33765 3.71545 4.30623
0.9 1.57824 1.87584 2.07207 2.2215 2.3433 2.44654 2.93826 3.34751 3.71704 4.26818
1 1.56837 1.87793 2.07845 2.22998 2.35258 2.45602 2.94125 3.33206 3.67021 4.15757

Table 16. First frequency parameter, (n = 2 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 2.83713 2.92015 2.99601 3.06574 3.13043 3.1908 3.54753 3.93833 4.39911 5.55402
0.1 2.83915 2.92207 2.99782 3.06747 3.13214 3.19241 3.54904 3.93984 4.40082 5.55823
0.2 2.84184 2.92467 3.00021 3.06986 3.13433 3.1945 3.55083 3.94143 4.4023 5.558
0.3 2.84323 2.92586 3.00121 3.07066 3.13512 3.1952 3.55072 3.94022 4.39889 5.53072
0.4 2.84083 2.92326 2.99851 3.06776 3.13192 3.1919 3.54602 3.93282 4.3856 5.4648
0.5 2.83185 2.91418 2.98932 3.05848 3.12254 3.18221 3.53454 3.91765 4.36235 5.39402
0.6 2.81409 2.89692 2.97236 3.04171 3.10588 3.16565 3.51769 3.89891 4.33973 5.37288
0.7 2.78795 2.87227 2.94901 3.01947 3.08463 3.1452 3.50103 3.88606 4.33318 5.4288
0.8 2.75621 2.84413 2.92387 2.99682 3.06418 3.12674 3.49286 3.88886 4.35193 5.52572
0.9 2.72378 2.81818 2.90311 2.98045 3.0516 3.11736 3.49983 3.9098 4.38672 5.54383
1 2.69693 2.80112 2.89373 2.97725 3.05349 3.12345 3.52218 3.93583 4.3971 5.40798
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Table 17. First frequency parameter, (n = 3 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 3.95635 3.99457 4.03153 4.06736 4.10208 4.13572 4.35999 4.65502 5.07354 6.75599
0.1 3.95638 3.99461 4.03164 4.06747 4.1021 4.13574 4.36011 4.65503 5.07356 6.75632
0.2 3.95707 3.9953 4.03233 4.06807 4.1028 4.13644 4.36071 4.65573 5.07435 6.7591
0.3 3.95887 3.9971 4.03413 4.06986 4.10459 4.13813 4.3624 4.65732 5.07594 6.75865
0.4 3.96126 3.99948 4.03632 4.07205 4.10668 4.14022 4.36399 4.6583 5.07562 6.72428
0.5 3.96055 3.99848 4.03521 4.07074 4.10518 4.13851 4.36098 4.6531 5.06582 6.63323
0.6 3.94947 3.9872 4.02363 4.05896 4.0931 4.12614 4.34661 4.63523 5.04067 6.541
0.7 3.92153 3.95926 3.99569 4.03092 4.06506 4.0982 4.31817 4.60551 5.00837 6.53889
0.8 3.87662 3.91545 3.95298 3.98921 4.02434 4.05828 4.28395 4.57838 4.99242 6.65873
0.9 3.82431 3.86644 3.90706 3.94629 3.98412 4.02075 4.26259 4.57598 5.01536 6.75635
1 3.78149 3.8304 3.87711 3.92183 3.96485 4.00627 4.27486 4.61219 5.06654 6.61541

Table 18. First frequency parameter, (n = 4 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 5.05056 5.07222 5.09341 5.11427 5.13483 5.1551 5.29775 5.50518 5.83866 7.93035
0.1 5.05059 5.07216 5.09342 5.11428 5.13485 5.15511 5.29777 5.5052 5.83869 7.93038
0.2 5.05069 5.07226 5.09352 5.11438 5.13495 5.15521 5.29777 5.5053 5.83878 7.93097
0.3 5.05129 5.07285 5.09411 5.11498 5.13554 5.15581 5.29846 5.5059 5.83948 7.93393
0.4 5.05328 5.07484 5.09601 5.11687 5.13744 5.1577 5.30035 5.50778 5.84126 7.92598
0.5 5.05557 5.07713 5.09829 5.11915 5.13962 5.15978 5.30194 5.50866 5.84064 7.8587
0.6 5.05156 5.07292 5.09389 5.11445 5.13482 5.15478 5.29553 5.49986 5.82684 7.72757
0.7 5.02751 5.04857 5.06933 5.0897 5.10976 5.12943 5.26819 5.46933 5.79003 7.64986
0.8 4.97431 4.99558 5.01654 5.03711 5.05737 5.07734 5.2174 5.42034 5.74435 7.74586
0.9 4.90284 4.9259 4.94856 4.97082 4.99279 5.01435 5.16549 5.38401 5.73237 7.92328
1 4.84612 4.87388 4.90113 4.92779 4.95384 4.9794 5.1568 5.40656 5.79155 7.79604

Table 19. First frequency parameter, (n = 5 ) for different T11 and internal concentric weakened radius parameter b, R11 = R22 = 10, and ν = 0.3.

b T11 → 0 2 4 6 8 10 25 50 100 106

0 6.12986 6.14357 6.15713 6.17061 6.18399 6.19718 6.29282 6.43937 6.69385 9.08574
0.1 6.1299 6.14358 6.15715 6.17063 6.18401 6.19719 6.29284 6.4394 6.69387 9.08575
0.2 6.1299 6.14357 6.15715 6.17063 6.18401 6.19719 6.29284 6.4394 6.69387 9.08585
0.3 6.13 6.14377 6.15735 6.17083 6.18411 6.19739 6.29293 6.43959 6.69407 9.08732
0.4 6.13099 6.14467 6.15824 6.17172 6.1851 6.19838 6.29393 6.44059 6.69516 9.08865
0.5 6.13347 6.14725 6.16083 6.1742 6.18758 6.20076 6.29631 6.44286 6.69713 9.05246
0.6 6.13375 6.14733 6.16081 6.17419 6.18747 6.20055 6.29539 6.44075 6.69251 8.9186
0.7 6.11558 6.12896 6.14224 6.15532 6.1683 6.18117 6.27422 6.41659 6.66236 8.77277
0.8 6.05799 6.07127 6.08435 6.09743 6.11031 6.12309 6.21534 6.35641 6.60001 8.81281
0.9 5.96765 5.98192 5.996 6.00998 6.02386 6.03754 6.13658 6.28804 6.54981 9.05407
1 5.89884 5.91661 5.93419 5.95156 5.96873 5.98571 6.10702 6.28922 6.59581 8.95778
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