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Vibration-based energy harvesting has been investigated in this paper with the goal to utilize the ambient vibration
energy to power small electronic components by converting vibration energy into electrical energy. A simply sup-
ported beam with a bonded high density piezoelectric patch to the surface is considered for the analysis. Analytical
model for free vibration analysis is developed by starting with the linear constitutive relations for the beam and
the patch. The equation of motion for transverse vibration of the beam is developed by considering the elastic
as well as electrical properties in the generalized Hookes law and accordingly a transverse displacement function
satisfying the simply supported boundary conditions is used for achieving the modal frequencies. Additionally,
an analytical model is developed in order to estimate the energy generated under the action of a harmonic force
applied on the surface of the patch. The results of the analytical model are validated using simulation software
ANSYS and COMSOL.

The developed analytical model is used to study the behavior of a simply supported harvester with various patch
dimensions and locations. This paper throws light on parametric studies of eigen frequencies as well as extracted
power corresponding to operating conditions.

NOMENCLATURE

D, Electric charge density displacement matrix;
e, Coupling coefficient for stress-charge form;
ε, Strain;
p, Electric permittivity;
Ez , Electric Field ;
M(x, t), Moment on the beam at location x, time t;
F , Applied Force;
ρ1, Density of the material 1;
ρ2, Density of the material 2;
E1, Youngs modulus of material 1;
E2, Youngs modulus of material 2;
l, Length of the beam;
b− a, Length of patch starting at location a;
h1, Height of the beam;
h2, Height of the patch;
C, Damping coefficient;
K, Stiffness Matrix;

M , Mass Matrix;
F0, Applied force;
V0, Voltage across the load resistance;
Cp, Capacitance of the energy harvesting circuit;
R, Load Resistance for energy harvesting circuit;
P , Power Generated.

1. INTRODUCTION

The growing demand for energy in various sectors has moti-
vated researchers to look into alternative forms of energy gen-
eration at both large and small scales. Various devices have
become miniature with the advancement of nanotechno- logy.
However, this decrease in size is limited due to sizeable bat-
teries. Thus, it is becoming essential to find a way to re-
place bulky conventional batteries in order to facilitate devel-
oping micro-electronic mechanical devices. Roundy et al.1 has
shown a comparison of power scavenging from various energy
sources like vibrations, solar, and various chemical batteries
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and found that ambient vibrations are a potential source of en-
ergy for the applications where continuous power is desired
with long life. Miniature wireless electronic devices require a
very low output power; ambient vibration energy can be used
to power these devices. In light of this, our attention is focused
on vibration energy harvesting.

There are different transduction mechanisms for converting
vibration energy into useful electrical energy. These are piezo-
electric,1 electromagnetic,2 and electrostatic.3 The comparison
between maximum energy densities of these three transducers
is given in Table 1.4 In the present study, piezoelectric materi-
als have been used because they have relatively simple config-
urations and a high conversion efficiency.

Various work has been done in the past decade for estimat-
ing the vibration energy harvested using piezoelectric material.
The effect of piezoelectricity on the elasticity is considered
by applying a constitutive relation, as discussed by Tyagi and
Ghosh.5 Sodano et al.6 presented the review of the research
that has been performed in the area of power harvesting and the
future goals that must be achieved for power harvesting sys-
tems to find their way into everyday use. In another paper, the
same authors7 developed a model of the PZT power harvest-
ing device, which simplifies the design procedure necessary
for determining the appropriate size and vibration levels nec-
essary for sufficient energy to be produced and supplied to the
electronic devices. Chen et al.8 proposed a novel piezoelec-
tric cantilever bimorph micro transducer electro-mechanical
energy conversion model both analytically and experimentally.
They noted that the vibration induced voltage is inversely pro-
portional to the length of the cantilever beam. The review ar-
ticle by Priya9 provides a thorough review of developments
in the area of piezoelectric energy harvesting. Erturk and In-
man10 presented the exact analytical solution of a cantilevered
piezoelectric energy harvester with Euler-Bernoulli beam as-
sumptions. Xu et al.11 experimentally studied a high perfor-
mance bi-stable piezoelectric harvester based on simply sup-
ported buckled beam. Erturk and Inman12 evaluated the per-
formance of the bimorph device extensively for the short cir-
cuit and open circuit resonance frequency excitations and the
accuracy of the model has been shown in all the cases.

It is generally accepted that a simplified analytical model
for a simply supported beam will help understand the basic
physics behind working of piezoelectric energy harvester. In
the present work an analytical model is developed for calcu-
lating the modal frequencies using the Euler-Bernoulli Beam
Equation. An analytical model is also developed for calcula-
tion of energy harvested by the piezoelectric patch bonded to a
simply supported beam and the results are verified using AN-
SYS and COMSOL.

2. FREE VIBRATION ANALYSIS

A simply supported beam with thickness h1 with an elas-
tic patch of thickness h2 that is centrally bonded to the beam
surface is considered for the analysis.

The linear constitutive relation for the beam with piezoelec-
tric patch is given by:

D = e13εxx + p33Ez. (1)

Figure 1. Reference figure for theoretical analysis.

V sin(ωt)
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Figure 2. Circuit Diagram for Analysis.

Since there is no applied voltage, i.e., D = 0, from Eq. (1), we
get:

Ez = −
[
e13εxx
p33

]
(2)

And we know that:

εxx =
du

dx
= −z

(
d2w

dx2

)
. (3)

So finally,

Ez =
ze13

(
d2w
dx2

)
p33

. (4)

According to Euler-Bernoulli beam theory:

M (x, t) = EI(x)

[
∂2w(x, t)

∂x2

]
. (5)

And equilibrium equations are:

∂Nx
∂x

= 0;
∂2Mx

dx2
− ρh

[
∂2w(x, t)

dt2

]
= 0. (6)

Hooke’s law:

σx,1 = E1εxx (For beam) ;

σx,2 = E2εxx − e13Ez (For patch) . (7)

Figure 3. Simply supported beam vibrating in mode I.
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It is assumed that the patch is perfectly bonded to the beam and
contributes to the force and moment. The equilibrium Eq. (6)
for the force and moment are written as:

∂Nx
∂x

= 0;
∂2Mx

dx2
− ρh

[
∂2w(x, t)

dt2

]
= 0; (8)

where,Nx = ∫ σx,1dz + ∫ σx,2R1dz, Mx = ∫ σx,1zdz +

∫ σx,2R1zdz, and ρh = ρ1h1 +R1ρ2h2.
Where R1 is a location function which can be expressed in

terms of a Heaviside function:

R1 =

{
0; when x < a orx > b

1; when a ≤ x ≤ b
.

Therefore, from equation Eq. (7) and (8),

Mx =

h1
2

∫
−h1

2

E1εxxz∂z+

h1+2h2
2

∫
h1
2

(
E2εxx + e13

e13εxx
p33

)
R1z∂z.

(9)
Now from equation Eq. (2), εxx = −z ∂

2w
∂x2 .

Therefore,

Mx =−
h1
2

∫
−h1

2

E1z
2 ∂

2w

∂x2
∂z

−
h1+2h2

2

∫
h1
2

(
E2 +

e13
2

p33

)
R1z

2 ∂
2w

∂x2
∂z;

Mx =− E1
∂2w

∂x2

(
h1

3

12

)
−
(
E2 +

e13
2

p33

)
R1

∂2w

∂x2

(
(h1 + 2h2)

3 − h13

24

)
;

Mx =−D1
∂2w

∂x2
−D2R1

∂2w

∂x2
; (10)

where, D1 = E1h1
3

12 ;D2 =
(
E2 + e13

2

p33

)(
(h1+2h2)

3−h1
3

24

)
.

Differentiating equation Eq. (10) with respect to x, we get:

∂Mx

∂x
=−D1

∂3w

∂x3
−D2

[
∂R1

∂x

∂2w

∂x2
+R1

∂3w

∂x3

]
;

∂2Mx

∂x2
=−D1

∂4w

∂x4

−D2

[
∂2R1

∂x2
∂2w

∂x2
+ 2

∂R1

∂x

∂3w

∂x3
+R1

∂4w

∂x4

]
.

Putting this value of ∂
2Mx

∂x2 in equation Eq. (6), we get:

−D1
∂4w

∂x4
−D2

[
∂2R1

∂x2
∂2w

∂x2
+ 2

∂R1

∂x

∂3w

∂x3
+R1

∂4w

∂x4

]
=

ρh
∂2w

∂t2
. (11)

Boundary conditions for the simply supported beam are:

x = 0; w = 0;
∂2w

∂x2
= 0;

x = l; w = 0;
∂2w

∂x2
= 0.

To seek a solution, the following transverse displacement func-
tion is used for the simply supported beam:

w =
∑

Am sin
(mπx

l

)
eiωt. (12)

Putting w from Eq. (12) into Eq. (11), we get:(
−D1

π4

l4
−D2

π4

l4
R1

)∑Am

m4 sin
(mπx

l

)
+D2

π2

l2

∑Am

m2 sin
(mπx

l

) ∂2R1

∂x2

− 2D2
π3

l3

∑Am

m3 cos
(mπx

l

) ∂R1

∂x
=

ω2ρh
∑Am

sin
(mπx

l

)
. (13)

To obtain the modal solution, both the sides of equation
Eq. (13) are multiplied by and integrated over the length l of
the host beam.

−D1
π4

l4

l

∫
0

∑Am

m4 sin
(mπx

l

)
sin
(pπx

l

)
dx

−D2
π4

l4

l

∫
0
R1

∑Am

m4 sin
(mπx

l

)
sin
(pπx

l

)
dx

+D2
π2

l2

l

∫
0

∂2R1

∂x2

∑Am

m2 sin
(mπx

l

)
sin
(pπx

l

)
dx

− 2D2
π3

l3

l

∫
0

∂R1

∂x

∑Am

m3 sin
(mπx

l

)
sin
(pπx

l

)
dx =

ω2ρh
l

∫
0

∑Am

sin
(mπx

l

)
sin
(pπx

l

)
dx. (14)

We make use of following mathematical relations:

if R =

{
0; when x < a orx > b

1; when a ≤ x ≤ b
,

then
b

∫
a

dR

dx
f(x)dx =

∞
∫
−∞
{δ (x− b)− δ (x− a)} f (x) dx =

f (b)− f(a);

b

∫
a

d2R

dx2
=

∞
∫
−∞
{δ′ (x− b)− δ′ (x− a)} f (x) dx =

f ′ (a)− f ′(b).

Upon solving equation Eq. (14), we get Eq. (15).
Equation (15) is solved using MATLAB to get the modal fre-

quencies. The results are verified using modeling in ANSYS
and COMSOL software. The results obtained are discussed
later in this paper.

3. ENERGY HARVESTING

The moment equation considering the externally applied
distributed force on the patch area is given as:
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−D2
π4

l4

∑Am

m4

 sin
(

(m−p)πb
l

)
− sin

(
(m−p)πa

l

)
2π(m− p)

−
 sin

(
(m+p)πb

l

)
− sin

(
(m+p)πa

l

)
2π(m+ p)




−D2
π3

l3

∑Am

m2

 p
{

sin
(
mπb
l

)
cos
(
pπb
l

)
− sin

(
mπa
l

)
cos
(
pπa
l

)}
+m

{
sin
(
pπb
l

)
cos
(
mπb
l

)
− sin

(
pπa
l

)
cos
(
mπa
l

)}


+ 2D2
π3

l3

∑Am

m3

[
sin
(pπa

l

)
cos
(mπa

l

)
− sin

(
pπb

l

)
cos

(
mπb

l

)]
=

− ρ2h2ω2
∑Am

 sin
(

(m−p)πb
l

)
− sin

(
(m−p)πa

l

)
2π(m− p)

−
 sin

(
(m+p)πb

l

)
− sin

(
(m+p)πa

l

)
2π(m+ p)


whenm 6= p;

−D1
π4

l4

(
l

2

)∑
Amm

4 −D2
π4

l4

∑[
Amm

4

{
b− a

2
−

sin
(
2mπb
l

)
− sin

(
2mπa
l

)
4mπ

l

}]

−D2
π3

l3

∑Am

m3

[
sin

(
2mπb

l

)
− sin

(
2mπa

l

)]
+D2

π3

l2

∑Am

m3

[
sin

(
2mπb

l

)
− sin

(
2mπa

l

)]
= −ρ1h1ω2 l

2
− ρ2h2ω2

∑Am

[{
b− a

2
−

sin
(
2mπb
l

)
− sin

(
2mπa
l

)
4mπ

l

}]
whenm = p. (15)

∂2Mx

∂x2
= ρh

∂2ω

∂t2
−R2Fo; (16)

whereR2 is the location function of applied force Fo, which
can be expressed in terms of the Heviside function as:

R2 =

{
0; when x < c orx > d

1; when c ≤ x ≤ d
;

where Mx from equation Eq. (10) can be written as:

Mx = −D1
∂2ω

∂x2

−D3R1
∂2ω

∂x2
+
R1e13Vo

8h2

[
(h1 + 2h2)

2 − h12
]

; (17)

∂Mx

∂x
= −D1

∂3ω

∂x3

−D3

[
R1

∂3ω

∂x3
+
∂R1

∂x

∂2ω

∂x2

]
+D4

∂R1

∂x
; (18)

∂2Mx

∂x2
= −D1

∂4ω

∂x4

−D3

[
R1

∂4ω

∂x4
+ 2

∂R1

∂x

∂3ω

∂x3
+
∂2R1

∂x2
∂2ω

∂x2

]
+D4

∂2R1

∂x2
;

(19)

where, D1 = E1h1
3

12 ;D3 =
E2[(h1+2h2)

3−h1
3]

24 ;D4 =
e13V0[(h1+2h2)

2−h1
2]

8h2
.

Under the action of a harmonic force applied on the surface
of the patch, the frequency of the voltage developed and trans-
verse displacement of the beam will also be same. The expres-
sion of force, voltage, and displacement are:F = Foe

iωt; V =

Voe
iωt; ω =

∑
Am sin

(
mπx
l

)
eiωt. Substituting these ex-

pressions in the equation Eq. (16), the equation of motion is
obtained as:[
−D1

π4

l4
−D2R1

π4

l4

]∑Am

m4 sin
(mπx

l

)
+D3Vo

∂2R1

∂x2
+ 2D3

π3

l3

∑Am

m3 cos
(mπx

l

) ∂R1

∂x

+D3
π2

l2

∑Am

m2 sin
(mπx

l

) ∂2R1

∂x2
+D4

∂2R1

∂x2
=

ω2ρh
∑Am

m sin
(mπx

l

)
−R2Fo. (20)

The above equation is arranged in the matrix form as:

[
{K} − ω2 {M}

]
Am − {θ}Vo =

Fo
l

mπ

(
cos

pπd

l
− cos

pπc

l

)
; (21)

where, K = Stiffness matrix andM = Mass matrix. Account-
ing for the damping, if present, Eq. (21) becomes:

[
{K}+ iω {C} − ω2 {M}

]
Am − {θ}Vo =

Fo
l

mπ

(
cos

pπd

l
− cos

pπc

l

)
; (22)

where C is damping coefficient.
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Now from equation Eq. (1), putting Ez = Vo/R, we get:

Dz = e13ε13 − p33
Vo
h2
.

This can also be written as:

Dz = −h2e13
∂2ω

∂x2
− p33

Vo
h2
.

The electric charge flow across the electrodes is given by

q =
b

∫
a
Dzsdx =

b

∫
a

(
−h2e13

∂2ω

∂x2
− p33

Vo
h2

)
sdx.

Therefore, current I is given as,

I =
dq

dt
=

b

∫
a
−h2e13

∂3ω

∂x2∂t
sdx− Cp

dVo
dt

; (23)

here capacitance Cp of the patch and is defined as:

Cp =
p33s(b− a)

h2
.

Therefore, from equation Eq. (23),

Vo
R

+ Cp
dVo
dt

= −
b

∫
a
h2e13

∂3ω

∂x2∂t
sdx. (24)

Where, R is the resistance of the energy harvesting circuit.
Using the value of ω Eq. (24) can also be re-written as

Vo
R

+Cp (iω)Vo =
(mπ
l

)2 b

∫
a
h2se13 (iω)Am sin

(mπx
l

)
dx.

After integration, we get:

Vo
R

+ Cp (iω)Vo =[
cos

(
mπb

l

)
− cos

(
mπb

l

)](mπ
l

)
h2se13 (iω)Am.

Substituting the value of Am in Eq. (22), we get:{
[K] + iω [C]− ω2 [M ]

}
Vo
(
1
R + iωCp

)
smπ
l h2e13iω

[
cos
(
mπb
l

)
− cos

(
mπb
l

)] − [θ]Vo =

Fo
l

mπ

(
cos

pπd

l
− cos

pπc

l

)
. (25)

The above equation can be rearranged to get Vo as:

Vo =
iV1

V2 + iV3
; (26)

where,

V1 = Foh2e13ω

[
cos

(
mπb

l

)
− cos

(
mπb

l

)]
·
[
cos

(
pπd

l

)
− cos

(pπc
l

)]
;

V2 =
{

[K]− ω2 [M ]
} 1

R
− ω2 [C]Cp;

V3 =
{

[K]− ω2 [M ]
}
ωCp +

ω [C]

R

− [θ]
smπ

l
h2e13ω

[
cos

(
mπb

l

)
− cos

(
mπb

l

)]
.

The equation for the above circuit can be written as:

∫ i dt
C

+ iR = V sinωt.

We get the following equation in Laplace form:(
I(s)

Cs

)
+ I(s)R =

V ω

s2 + ω2
;

I(s)

(
1 +RCs

Cs

)
=

V ω

s2 + ω2
;

I (s) =
V Cωs

(1 +RCs) (s2 + ω2)
.

The voltage across resistor R is:

Vo (s) = I (s)R = V RCω

[
s

(1 +RCs) (s2 + ω2)

]
.

On inverse transformation of the Laplace equation, we get:

Vo =
−V RCω

(1 +R2C2ω2)

[
e

−t
RC + cos (ωt) +RCω sin (ωt)

]
.

(27)
The magnitude of the energy output (P ) from the vibration of
a simply supported beam under the action of a harmonic force
is given by:

P =
Vo

2

R
. (28)

The Voltage across the load resistance is calculated analyt-
ically by solving Eq. (26) in MATLAB. The power across the
load can be calculated using Eq. (28). The results are veri-
fied using COMSOL software. The software gives the voltage
across the patch, which can be used to determine COMSOL
voltage across the load using Eq. (27). The results obtained
are discussed below.

4. MODELLING WITH ANSYS AND COMSOL

4.1. ANSYS
To model the beam in ANSYS12, we used BEAM 3 ele-

ment and solved the 2-D beam problem. The real constants for
the beam elements are given in terms of area = 2 × 10−5m2,
moment of inertia = 1.667 × 10−12m4 and height = 1 mm.
The real constants for the patch of thickness 0.2 mm are
given in terms of area = 4 × 10−6m2, moment of inertia
= 1.45333 × 10−12m4 and height = 0.2 mm. Here we con-
sider the width of both patch and beam as 1 cm. The material
properties are considered as isotropic and are given in Table 1.
The patch is constrained with the beam by coupling the degrees
of freedom for both. The constraint applied at both of the two
ends has a displacement of 0 and the moment is 0, which satis-
fies the condition for simply supported beam. The mesh size is
200 elements over the whole length of the beam, i.e., 1 element
per mm of beam length.

4.2. COMSOL
The beam is modeled in 3-D in COMSOL 4.3. The modal

analysis is done by choosing the solid mechanics physics and
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Table 1. Comparison of Energy Density.4

Type Energy Density (mJ/cm3) Assumption

Piezoelectric 35.4 PZT 5 H

Electromagnetic 24.8 0.25 T

Electrostatic 4 3x107 V m-1

Table 2. The material properties.

Parameter Host Beam Patch (PZT)

Density(kg/m3) 2800 7800

Modulus of elasticity(N/m2) 68.3e9 12e10

Poisson’s ratio 0.3 0.2

Piezoelectric constant e13 =e23(C/m2) - -5.2

Permittivity(p) - 1.5e-8

eigen frequency as the study. The constraint is applied with
Rigid connectors at both the end faces to make the beam sim-
ply supported with the rotation constrained in two directions
Rx = 0 and Rz = 0 and all the three displacement compo-
nents as 0. The mesh is generated using free tetrahedral el-
ements and the setting size is extra fine. The solution is then
computed for getting natural frequency, as tabulated in Table 3.

To carry out power calculations, transient analysis is done
with COMSOL physics as piezoelectric devices and study as
time-dependent. A boundary load, which is harmonic in na-
ture (= 2500sin(wt) Pa), is applied on the top of piezoelectric
patch and power across the top and bottom of the patch is com-
puted when the load resistance is 1000 Ω. Again, the mesh is
created using free tetrahedral elements with an extra fine size.
The results from COMSOL are compared with results of our
analytical model and are discussed in next section.

5. RESULTS AND DISCUSSION

Table 2 shows the material properties for the beam and the
patch. Results for various cases have been taken, which have
been divided in two sections. Equations (15)a and (15)b are
solved through MATLAB program to get the natural frequency
of the beam with the bonded patch. The results obtained were
verified using ANSYS software package by modeling the beam
with the bonded patch. The results obtained were in close
agreement with the results of ANSYS hence validating the the-
oretical work. This is tabulated in Table 3.

Equations 26 and 28 are solved through MATLAB program
to get the power extracted across the load resistance from the
patched beam. The results obtained were verified using COM-
SOL software package by modeling the patched beam. The
results obtained were in close agreement with the results of
COMSOL, hence validating the theoretical work.

Table 3. Result validation.

Mode Theoretical ANSYS (Hz) COMSOL (Hz)

of Frequency Frequency (Hz) Frequency (Hz) Frequency (Hz)

1 56.821 56.75 56.95

2 224.028 223.99 229.96

3 518.743 518.00 520.27

4 897.412 896.83 924.75

5 1450.408 1448.40 1462.38

Figure 4. Voltage across the PZT patch.

The PZT patch with thickness 0.2 mm and length 20 mm
is placed 90 mm from the support in a 200 mm long simply
supported beam. From the analytical model, the potential dif-
ference across the beam is found to be 14.248 V while from
COMSOL model, it is found to be 14.911 V (see Fig. 4). Sim-
ilarly, the voltage across the load resistance of 100 kΩ is found
analytically to be 7.1072 V; while using COMSOL, it is found
to be 7.438 V. The slight difference is due to the reason that
there would be some damping due to dissipation of heat across
the load, which has not been taken into account in COMSOL
model.

5.1. Parametric Study
This section deals with a parametric study of several vari-

ables in order to determine how the natural frequency and
power are affected by the variables. After a certain thickness,
the natural frequency starts decreasing for all modes because
of the dominance of the mass and the stiffness of the patch in
comparison to stiffness contribution by the host beam because
of the electrical properties (see Fig. 5). As depicted from the
moment and force equations, electrical properties contribute
towards stiffness of the plate which results in increase in the
frequency for all the modes (see Fig. 6). The natural frequency
increases as the length of the patch increases. The location of
the patch also affects the natural frequency of the combination,
as shown in Fig. 7. The placement of piezoelectric patch at the
centre of the beam is the maximum displacement position for
the first mode which in turn gives more contribution to stiff-
ness.

For energy harvesting, the PZT length and thickness, along
with the beam thickness, has been studied. The position of the
external forcing function will be optimized for maximum out-
put as well. To calculate the energy output one has to do free
vibration analysis first in order to evaluate the fundamental fre-
quencies and the results are used in the calculations of energy
harvesting. Figures 8, 9, and 10 show the maximum energy
harvested (Pmax) for patch of thickness 0.2 mm and 0.5 mm
respectively against the load resistance for various areas. This
means that the kinetic energy input due to external excitation
remains constant whereas the energy harvested varies with the
PZT patch length, patch thickness and with the resistance of
energy harvesting circuit.
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Figure 5. Effect of Patch Thickness on Natural Frequency (a=90mm and b-
a=2mm).

Figure 6. Effect of Patch Length on the Natural Frequency (h2=0.2mm and
a=90mm).

Figure 7. Effect of Patch Location on Natural Frequency (h2=0.2mm and
b-a=20mm).

Figure 8. Power with Rl at different patch thicknesses.

Figure 9. Power with different locations of the excitation force at different
patch thicknesses.

Figure 10. Power with length of patch at different patch thicknesses.
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As the PZT length increases, it starts to affect the over-
all characteristics of the beam system, changing the effective
cross-section, Young’s modulus, and natural frequencies. This
will have adverse effects, reducing the beam deflections, strain
experienced by the PZT, and overall power produced.10

The farther away the forcing function is from the beam’s
hinged end, the larger the moment applied to the beam through
force. So, it follows that the optimal location for the force is at
the centre of the beam, which creates the largest moment.

6. CONCLUSIONS

The above study is carried out with the help of the gener-
alized Hooke’s Law and by considering electrical properties
of the PZT. Theoretical analysis went forward from Euler-
Bernoulli Beam Theory and moment equation. The results ob-
tained are verified with the help of MATLAB, ANSYS, and
COMSOL. Similar study can be carried out for the cantilever
beam, as it will generate more power output but in the cost of
reduced safety factor.

The effect of electrical properties of the patch on the trans-
verse vibration of a simply supported beam with PZT patch
has been investigated for varying thickness and for different
positions taken by the patch. The formulation and analytical
determination of the coupling effects were demonstrated to be
related to modal frequencies. Electrical properties significantly
affected the response of transverse vibration frequencies. As
the length of piezoelectric patch increased, an increase in the
modal frequency was achieved experimentally.

Similarly, the parametric study with various patch thickness,
patch length, load resistance and location of excitation force
was done. It was found that the energy harvested varies with
the PZT patch length, patch thickness and with the resistance
of energy harvesting circuit.

Some of the unsolved problems with this project are as-
sumption of isotropy in the analysis part and accumulation
of continuous power generated by PEG. Piezoelectric mate-
rial is not isotropic, and there might be some numerical differ-
ences if an anisotropic analysis is used. The stiffness differs
slightly in different directions, and the Poisson’s ratio differs
by a very small amount. It is unlikely that this anisotropic
problem causes a major difference in the power generation
from the above analysis with an isotropic patch assumption,
but there is an argument for carrying out the analysis.
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