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A structural control system with smart sensors and actuators is considered and its basic dynamic equations are
given. The controlled, stochastically excited, and dissipative Hamiltonian system with a noised observation is
obtained by discretizing the nonlinear stochastic smart structure system. The estimated nonlinear stochastic system
with control is obtained, in which the optimally estimated state is determined by the observation based on the
extended Kalman filter. Then the dynamical programming equation for the estimated system is obtained based on
the stochastic dynamical programming principle. From this, the optimal control law dependent on the estimated
state is determined. The proposed optimal control strategy is applied to two nonlinear stochastic systems with
controls and noised observations. The control efficacy for stochastic vibration response reductions of the systems
is illustrated with numerical results. The proposed optimal control strategy is applicable to general nonlinear
stochastic structural systems with smart sensors, smart actuators and noised observations.

1. INTRODUCTION

The vibration control for engineering structures subjected to
strong random excitations or micro disturbances is a signifi-
cant research subject.1–3 Smart materials have been applied to
the structural vibration suppression. For example, magneto-
rheological materials are used for actuators and piezoelectric
materials are used for sensors.4–20 A structure system with dis-
tributed smart sensors, actuators, and controller is called smart
structure, which can sense structural response to external exci-
tations and produce action to control structural response.21–23

The dynamics and controls of structures with piezoelectric and
magneto-rheological materials have been studied extensively.
However, the control performance of the smart structure sys-
tem depends strongly on the used control strategy. The smart
structure system control includes two parts: state estimation
based on sensing data and response control based on an es-
timated state, which are coupled with each other.24–28 The
stochastic system control with a noised observation is called
a partially observable control. Only linear control strategies
for partially observable smart structures have been proposed
presently.

The smart structure, including multi-degree-of-freedom sys-
tems, rods, beams, plates, and shells in modal vibration can
be modeled as a controlled, excited, and dissipative Hamilto-
nian system (or quasi-Hamiltonian system) with observation.29

The stochastic optimal controls for linear and nonlinear sys-
tems have been studied and many control strategies have been

presented.29–46 However, the stochastic optimal control for a
nonlinear system with a noised observation was only consid-
ered in several studies.43 Under a specified condition, the sep-
aration theorem was applied to convert the nonlinear stochastic
system with a noised observation into a completely observable
linear system for determining optimal control, but the applica-
tion is strongly limited. Thus, an approximate estimation and
separation strategy is the alternative in practice. The extended
Kalman filter is an optimum feasible approximate filter24, 28

and can be applied to the nonlinear stochastic control system
with a noised observation. Based on the extended Kalman fil-
ter, the nonlinear stochastic control system with a noised ob-
servation is converted into another completely observable non-
linear stochastic system, and then the optimal control law is de-
termined according to the stochastic dynamical programming
principle. However, the stochastic optimal control for the par-
tially observable nonlinear stochastic smart structure system
(or quasi-Hamiltonian system) has not been studied based on
the extended Kalman filter.

In the present paper, the stochastic optimal control for the
vibration response reduction of structural quasi-Hamiltonian
systems with a noised observations is studied. A new opti-
mal control law expressed by the estimated system state is ob-
tained based on the extended Kalman filter and stochastic dy-
namical programming principle. Firstly, the differential equa-
tions for the structure system with smart sensors and actuators
are given. The equations are simplified to ordinary differential
equations of the controlled, stochastically-excited, and dissipa-
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tive Hamiltonian system with a noised observation. Secondly,
the extended Kalman filter is applied in order to convert the
controlled quasi-Hamiltonian system with a noised observation
into the nonlinear stochastic control system for the optimally
estimated state. Thirdly, the stochastic dynamical program-
ming principle is applied to derive the dynamical program-
ming equation. The optimal control law based on the estimated
state is determined by the programming equation. Finally, the
proposed optimal control strategy is applied to two nonlinear
stochastic systems with controls and noised observations. Nu-
merical results are given to illustrate the control efficacy.

2. VIBRATION EQUATIONS OF A
QUASI-HAMILTONIAN SYSTEM

Smart materials have been applied recently to the vibration
control of engineering structures under strong random excita-
tions. For example, magneto-rheological materials are used
for smart actuators whereas piezoelectric materials are used
for smart sensors. A structure that has smart devices is a smart
system that has the ability to sense structural responses to ex-
ternal excitations and produce actions to control structural re-
sponse. System state estimations and control strategies are
two key problems for effective implementation. In general,
the nonlinear dynamic, constitutive, and geometric equations
of the main structure can be expressed as47

σij,j + fi−ρüi − cdu̇i = 0; (1)

σij = Cijkl γkl; (2)

γij =
1

2
(ui,j + uj,i + uk,iuk,j); (3)

where σ is the stress tensor, f is the body force vector, u is the
displacement vector, ρ is the mass density, cd is the damping
coefficient, γ is the strain tensor, C is the elastic constant ten-
sor, and i, j, k, and l denote Cartesian coordinates. The linear
dynamic, constitutive, and geometric equations of the sensor
structure can be expressed as48

σse
ij,j + f se

i − ρseüse
i − csed u̇se

i = 0; (4)

σse
ij = Cse

ijklγ
se
kl + ese

kijϕ
se
,k; (5)

γse
ij =

1

2
(use

i,j + use
j,i); (6)

where the superscript “se” denotes sensor, for example, piezo-
electric sensor, φ is the generalized electric potential and e is
the piezoelectric stress constant. The differential equations for
the electric displacement vector D are

Dse
i,i =ρse

em; (7)

Dse
i = ese

iklγ
se
kl − εse

ikϕ
se
,k; (8)

where ρem is the free charge density and ε is the dielectric
constant. The mechanical and electrical differential equations
for the actuator structure (e.g., piezoelectric actuator) can be
expressed as similar to Eqs. (4) to (8), where the superscript
se is replaced by ac. Equations (1)–(8) give a basic description
of the smart structure system. However, the direct use of the
equations for optimal estimation and control is impossible and
then their simplification is necessary.

Dominant modes of the main structure with sensors and ac-
tuators are used to discretize the structure system in Eqs. (1)
to (8), and the Galerkin method is used to eliminate the spa-
tial variables generally. The simplified main structure with
actuators is converted into a controlled, excited, and dissipa-
tive Hamiltonian system and the sensor structure is converted
into an observation system. The inertias of the sensors are
small and neglected. The differential equation of the con-
trolled Hamiltonian system with n degree-of-freedoms can be
expressed as44

Ẋ = J
∂Ha

∂X
+ CX +BΦa + FW (t); (9)

whereHa is the Hamiltonian,X is the state vector, J is the unit
symplectic matrix, C is the damping coefficient matrix, B is
the control coefficient matrix, Φa is the na-dimensional control
vector, F is the excitation coefficient matrix, and W is the m-
dimensional unit intensity excitation vector that is considered
to be Gaussian white noise. The equation of the observation
system can be expressed as

Φs = DX + EWs(t); (10)

where Φs is the ns-dimensional observation vector, Ws is the
ms-dimensional Gaussian white noise vector with unit inten-
sity, and D and E are coefficient matrices. The observation
noise is independent of the white noise excitation.

Equations (9) and (10) describe a nonlinear stochastic quasi-
Hamiltonian control system with a noised observation, which
is derived from the smart structure Eqs. (1) to (8). The system
state is estimated by using Eq. (10) and the estimated state is
used to determine the feedback control for the system in Eq.
(9). The optimal estimation and control need to be considered
for the nonlinear stochastic system in Eqs. (9) and (10).

3. STOCHASTIC OPTIMAL ESTIMATION
AND CONTROL

The optimal control of the nonlinear stochastic system (9)
and (10) includes the optimal state estimation and the optimal
control based on the estimated state, which is called the par-
tially observable optimal control.27 The optimal estimation is
to find an accurate state by minimizing the estimated error. The
error index for the observation in Eq. (10) is given by

JF (X̂) = E[lF (X − X̂) |Φs ]; (11)

where X̂ is the estimated state, E[·] is the expectation opera-
tor, and lF (·) ≥ 0 is a continuous differentiable function (e.g.,
a quadratic function). For the nonlinear stochastic system (9)
and observation (10) with index (11), the optimally estimated
state probability density with infinite dimensions is generally
difficult to be obtained exactly, and then an approximate esti-
mation is alternative. The extended Kalman filter is an opti-
mum feasible approximate filter for the nonlinear stochastic
system28 and is applied to the stochastic optimal control of
quasi-Hamiltonian systems with noised observations. Based
on the extended Kalman filter, the differential equation for the
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estimated state is obtained from Eq. (9) with observation (10)
and index (11) as28

˙̂
X = J

∂Ha(X̂)

∂X̂
+ CX̂ +BΦa +RDTR−1

s WI(t); (12)

where WI is the Gaussian white noise vector with covariance
matrix Rs = EET , and R is the covariance matrix of the esti-
mated error X̃ = X − X̂ , which is determined by

Ṙ = {J ∂
2Ha(X̂)

∂X̂2
+ C}R+R{J ∂

2Ha(X̂)

∂X̂2
+ C}T

+ FRWFT −RDTR−1
s DR; (13)

where RW = I is the identity matrix. Thus, the optimal con-
trol of the nonlinear stochastic system in Eqs. (9) and (10) is
converted into that of the estimated system in Eq. (12).

The optimal control is to find a control law by minimizing
certain performance index. The performance index for the sys-
tem in Eq. (12) is given by

JC(Φa) = E[

∫ tf

0

LC(X̂(t),Φa(t))dt+ Ψ(X̂(tf ))]; (14)

where LC(·) ≥ 0 is a continuous differentiable function,
Ψ(tf ) is a terminal cost and tf is the terminal time. Equations
(12) and (14) describe the optimal control problem of the non-
linear stochastic system with the estimated state. Based on the
stochastic dynamical programming principle,24, 25 the dynam-
ical programming equation for system (12) with index (14) is
obtained as

∂V

∂t
+ min

Φa

{1

2
tr(RDTR−1

s DR
∂2V

∂X̂2
)

+ [J
∂Ha

∂X̂
+ CX̂ +BΦa]T

∂V

∂X̂
+ LC(X̂,Φa)} = 0; (15)

where V is the value function, and tr(·) is the trace operator.
The minimization of the left side of Eq. (15) yields the alge-
braic equation for the optimal control Φ∗

a

∂LC(X̂,Φ∗
a)

∂Φ∗
a

+BT ∂V

∂X̂
= 0. (16)

The optimal control law is obtained by Eq. (16). For ex-
ample, for the function with quadratic control LC = g(X̃) +

ΦT
aRCΦa, where RC is a positive definite symmetric constant

matrix and g(X̂) ≥ 0, it is

Φ∗
a = −1

2
R−1

C BT ∂V

∂X̂
. (17)

By substituting Eq. (17) into Eq. (15), the value function equa-
tion is obtained as

∂V

∂t
+

1

2
tr(RDTR−1

s DR
∂2V

∂X̂2
)

+ [J
∂Ha

∂X̂
+ CX̂ +BΦ∗

a]T
∂V

∂X̂
+ LC(X̂,Φ∗

a) = 0. (18)

Equation (18) can be solved to obtain V and then the optimal
control Φ∗

a can be determined by Eq. (17), which is based

on the estimated state X̂ . The optimally controlled system is
determined by substituting control Φ∗

a into Eq. (12), and the
controlled state X̂ is obtained by solving the equation. The
statistics of state X can be calculated by using the state X̂
and covariance R, which are used for evaluating the control
effectiveness.

4. EXAMPLES AND NUMERICAL RESULTS

4.1. Example 1: single-degree-of-freedom
nonlinear stochastic control system

To illustrate the application and effectiveness of the pro-
posed optimal control strategy, we first considered the control
for a main mode vibration of geometric nonlinear beams with
a piezoelectric sensor and actuator under stochastic excitation.
The nonlinear stochastic system with a control and noised ob-
servation can be expressed as

q̈ + cq̇ + k1q+k3q
3 = bϕa + e0W (t); (19)

ϕs =dq + e1Ws(t); (20)

where q is the generalized displacement, ϕa is the control, c,
k1, and k3 are respectively the damping, linear stiffness, and
nonlinear stiffness coefficients, b is the control coefficient, e0

is the excitation amplitude,W is the Gaussian white noise with
unit intensity, ϕs is the observation, d is the observation coeffi-
cient, e1 is the observation noise amplitude, and Ws is the unit
Gaussian white noise. Equations (19) and (20) are rewritten as
Eqs. (9) and (10), respectively, where Φa = ϕa, Φs = ϕs,
p = q̇, and

Ha =
1

2
p2 +

1

2
k1q

2 +
1

4
k3q

4

X =

{
q

p

}
C =

[
0 0

0 −c

]
B =

{
0

b

}
F =

{
0

e0

}
D =

[
d 0

]
E = e1 (21)

Applying the extended Kalman filter yields the differential
Eq. (12) for the estimated state with the covariance Eq. (13).
Equation (12) is converted into the Itô differential equation for
the averaged Hamiltonian29 by using the stochastic averaging
method,

dĤa = [mh(Ĥa)+ < bϕa
∂Ĥa

∂p
>]dt+ σh(Ĥa)dξ(t); (22)

where mh and σh are the drift and diffusion coefficients, re-
spectively, ξ is the unit Wiener process, and < · > is the
averaging operator. According to the stochastic dynamical
programming principle, the dynamical programming equation
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(a)

(b)

Figure 1. Controlled and uncontrolled probability densities (solid line: ana-
lytical; dot: simulated). The (a) Probability densities of displacement q and
(b) Probability densities of velocity p.

similar to Eq. (15) is obtained. The optimal control law (17)
leads to

ϕ∗
a = − bp

2RC

dV

dĤa

. (23)

The corresponding stationary value function equation is

1

2
σ2
h(Ĥa)

d2V

dĤ2
a

+mh(Ĥa)
dV

dĤa

− b2

4RC
< p2 > (

dV

dĤa

)2 + g(Ĥa) = γ0; (24)

where γ0 is a constant. The optimal control is determined fi-
nally by Eq. (23) with (24). Then the controlled response and
its statistics can be obtained by solving Eq. (12) with Eq. (20)
numerically. The analytical system responses can be evaluated
by using the probability density, which is obtained by solving
the Fokker-Planck-Kolmogorov equation associated with the
Itô in Eq. (22).29 The proposed optimal control efficacy for
the nonlinear stochastic system with a noised observation is
evaluated based on the response statistics.

The numerical results on the control system (19) and obser-
vation (20) with c = 1.0, k1 = 10.0, k3 = 3.0, e0 = 1.0,

Figure 2. Controlled and uncontrolled RMS responses q for various observa-
tion noise amplitudes e1 (solid line: analytical; dot: simulated).

b = 1.0, d = 100.0, e1 = 0.03 and the quadratic control coef-
ficient Sc2 = 1.0 (i.e., coefficient of linear term of function g)
are obtained and shown in Figs. 1 to 10. The probability den-
sities of the controlled and uncontrolled generalized displace-
ment q and velocity p responses are shown in Figs. 1(a) and
1(b), respectively. The controlled response probability den-
sity near zero is larger than the uncontrolled probability den-
sity so that the controlled response is reduced. Figure 2 illus-
trates that the controlled Root-Mean-Square (RMS) displace-
ment response is smaller than the uncontrolled response and
the controlled RMS response decreases slightly as the obser-
vation noise amplitude e1 increases. The corresponding RMS
optimal control ϕ∗

a varying with e1 is shown in Fig. 10. Figure
3 illustrates the relative RMS response reduction K > 80%

and the relative reduction per unit RMS control µ. The rela-
tive RMS response reduction K is the ratio of absolute differ-
ence of controlled and uncontrolled RMS responses to uncon-
trolled RMS response, and the relative reduction per unit RMS
control µ is the ratio of the relative RMS response reduction
to RMS control. The stochastic system response is reduced
largely by using the proposed optimal control for various ob-
servation noise amplitudes. Figure 4 illustrates that the con-
trolled RMS displacement response is smaller than the uncon-
trolled response for various observation coefficients d. Figure
5 illustrates the large relative RMS response reduction K and
the small relative reduction per unit RMS control µ.

Figure 6 illustrates that the controlled RMS displacement
response is smaller than the uncontrolled response, and the
controlled RMS response has small increment relative to the
uncontrolled response with the excitation amplitude e0. Figure
7 illustrates the large relative RMS response reduction K and
the small relative reduction per unit RMS control µ for various
excitation amplitudes. Figure 8 illustrates that the controlled
RMS displacement response decreases as the nonlinear stiff-
ness coefficient k3 increases and the controlled RMS response
is smaller than the uncontrolled response. The corresponding
RMS optimal control ϕ∗

a varying with k3 is shown in Fig. 10.
Figure 9 illustrates the large relative RMS response reduction
K for various nonlinear stiffness coefficients. Therefore, the
proposed optimal control can reduce largely the stochastic vi-
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Figure 3. Relative response reduction K and its ratio to control µ for various
observation noise amplitudes e1.

Figure 4. Controlled and uncontrolled RMS responses q for various observa-
tion coefficients d.

Figure 5. Relative response reduction K and its ratio to control µ for various
observation coefficients d.

Figure 6. Controlled and uncontrolled RMS responses q for various excitation
amplitudes e0.

Figure 7. Relative response reduction K and its ratio to control µ for various
excitation amplitudes e0.

Figure 8. Controlled and uncontrolled RMS responses q for various nonlinear
stiffness coefficients k3.
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Figure 9. Relative response reduction K and its ratio to control µ for various
nonlinear stiffness coefficients k3.

Figure 10. RMS controls ϕ∗
a for various observation noise amplitudes e1 and

nonlinear stiffness coefficients k3 (note that k3 × 100 indicates that the value
of k3 is the product of horizontal coordinate and 100).

bration response of the nonlinear system (19) with a noised
observation (20), and the control effectiveness has good ro-
bustness for various system parameters.

4.2. Example 2: two-degree-of-freedom non-
linear stochastic control system

To further illustrate the application and effectiveness of the
proposed optimal control strategy, the control for a two-main-
mode coupling vibration of geometric nonlinear beams with
piezoelectric sensor and actuator under stochastic excitation
was considered. The nonlinear stochastic system with a con-
trol and noised observation can be described by Eqs. (9) and
(10), in which

Ha =
1

2
(p2

1 + p2
2) +

1

2
(k11q

2
1 + k12q

2
2) + k2q1q2

+
1

4
k3(q1 − q2)4,

X = [ q1 q2 p1 p2 ]T,

Φa = [ϕa1, ϕa2]T,

(a)

(b)

Figure 11. Controlled and uncontrolled probability densities (solid line: ana-
lytical; dot: simulated). The (a) Probability densities of displacement q1 and
(b) Probability densities of displacement q2.

Φs = [ϕs1, ϕs2]T,

C = diag[0, 0, −c1, −c2],

F = [ 0 0 e01 e02 ]T,

B =

[
0 0 b1 0

0 0 0 b2

]T

,

D =

[
d11 d12 0 0

d12 d22 0 0

]
,

E =

[
e11

e12

]
; (25)

where qi and pi (i = 1, 2) are respectively the generalized dis-
placement and momentum, ϕai (i = 1, 2) is the control and
ϕsi (i = 1, 2) is the observation, ci, k1i, k2, and k3 (i = 1, 2)
are the damping, linear stiffness, and nonlinear stiffness coef-
ficients, respectively. On the other hand, bi (i = 1, 2) is the
control coefficient, e0i (i = 1, 2) is the excitation amplitude,
dij (i, j = 1, 2) is the observation coefficient, and e1i (i = 1, 2)
is the observation noise amplitude.

According to the above procedure, using the extended
Kalman filter yields the differential Eq. (12) for the estimated
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state. Using the stochastic averaging method converts Eq. (12)
into the Itô differential Eq. (22) for the averaged Hamiltonian.
Using the stochastic dynamical programming principle yields
the dynamical programming equation similar to that in exam-
ple 1. The optimal control law (17) leads to

ϕ∗
ai = −1

2
R−1

Cijbjpj
dV

dĤa

. (26)

The corresponding stationary value function equation is

1

2
σ2
h(Ĥa)

d2V

dĤ2
a

+mh(Ĥa)
dV

dĤa

− 1

4
< bipiR

−1
Cijbjpj > (

dV

dĤa

)2 + g(Ĥa) = γ0. (27)

The optimal control is determined finally by Eq. (26)
with (27). Then the controlled response and its statistics can
be obtained by solving Eq. (12) with (20) or solving the
Fokker-Planck-Kolmogorov equation associated with the Itô
Eq. (22). The proposed optimal control efficacy for the non-
linear stochastic system with a noised observation is evaluated
based on the response statistics.

Numerical results on the control system and observation
with c1 = 1.0, c2 = 5.0, k11 = 1.0, k12 = 4.0, k2 = 0.01,
k3 = 1.0, e01 = 1.0, e02 = 0.3, b1 = 1.0, b2 = 0.5,
d11 = 100.0, d12 = 10.0, d22 = 80.0, e11 = 0.03, e12 = 0.03

and the quadratic control coefficient Sc2 = 1.0 (i.e., coefficient
of linear term of function g) are obtained and shown in Figs.
11 to 13. The probability densities of the controlled and un-
controlled generalized displacement responses (q1 and q2) are
shown in Figs. 11(a) and 11(b), respectively. The controlled
response probability density near zero is larger than the uncon-
trolled probability density. Figure 12 illustrates that the rela-
tive reductionK of the controlled RMS displacement response
q1 compared with the uncontrolled response and the relative re-
duction per unit RMS control µ vary with the observation noise
amplitude e11. Figure 13 illustrates that the relative reduction
K of the controlled RMS displacement response q1 and the
relative reduction per unit RMS control µ vary with the ob-
servation coefficients d11. It is seen again that the stochastic
vibration response of the two-mode coupling nonlinear system
with a noised observation is reduced largely by using the pro-
posed optimal control.

5. CONCLUSIONS

The basic dynamic equations for a nonlinear stochastic con-
trol structure system with smart sensors and actuators have
been given and simplified to the controlled, stochastically-
excited, and dissipative Hamiltonian system with a noised ob-
servation. The optimally estimated nonlinear system with con-
trol and stochastic excitation has been determined based on the
extended Kalman filter. The dynamical programming equa-
tion for the estimated system has been obtained based on the
stochastic dynamical programming principle, and the optimal
control law has been determined by the programming equa-
tion. The proposed optimal control strategy has been applied
to two nonlinear stochastic systems with controls and noised

Figure 12. Relative response reductionK and its ratio to control µ for various
observation noise amplitudes e11.

Figure 13. Relative response reductionK and its ratio to control µ for various
observation coefficients d11.

observations. Numerical results have illustrated that the pro-
posed optimal control can reduce largely the stochastic vibra-
tion response of nonlinear systems with noised observations,
and the control effectiveness is insensitive to varying system
parameters such as observation and nonlinear coefficients. The
proposed optimal control strategy is feasible and effective for
the vibration response reduction of nonlinear stochastic smart
structure systems with noised observations.
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