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It is clearly known that support vector machine (SVM) parameters have significant effects on the accurate rate of
classification result. Adjusting the SVM parameters improves its effectiveness and accuracy, which is always a
challenge. On the other font, the Backtracking Search Optimization Algorithm (BSOA), an evolutionary algorithm
for solving optimization problems, is proposed and proven to be effective through various benchmark problems.
This paper proposes an optimization method for the SVM parameters based on BSOA. For convenience, the pro-
posed method has been named BSOA-SVM. This method is tested with some real-world benchmark data sets to
verify its robustness and effectiveness. Then, BSOA-SVM is applied for diagnosing roller bearing fault, which is a
real world problem. In this diagnosing process, the original acceleration vibration signals are first decomposed into
product function (PFs) by using the local mean decomposition (LMD) method. Next, initial feature matrices are
extracted from PFs by singular value decomposition (SVD) techniques to give single values. Finally, these values
serve as input vectors for the BSOA-SVM classifier. The results from the problem show that the combination of the
BSOA-SVM classifiers obtains higher classification accuracy with a lower cost time compared to other methods.

1. INTRODUCTION

Optimization of SVM parameters has always been a com-
plex task for researchers since it was developed. In recent
years, many algorithms were employed to handle this task,
such as the trial and error procedures,1 the grid algorithm,2 the
cross-validation method,3 the generalization error estimation
method,4 the gradient descent method,5 and so on. Unfortu-
nately, these methods still contain some drawbacks that ham-
per the effectiveness of SVM. For example, the grid method
requires complex computations and is time consuming while
the cross-validation method also requires long and complicated
calculations.2 The heuristic algorithms, such as the genetic
algorithm (GA), the particle swarm optimization (PSO),6 and
the ant colony optimization (ACO)7 were also used to opti-
mize SVM parameters. However, PSO is easily trapped into
the local optimization areas8 while GA has an expensive com-
putational cost.9

Recently, Pinar Civicioglu developed the Backtracking
Search Optimization Algorithm (BSOA), which is an evolu-
tionary algorithm (EA) for solving optimization problems. The
BSOA method could solve real-valued numerical optimiza-
tion problems for a short time and the search result was bet-
ter than other EAs.10 Unlike other methods in the EA group,
BSOA has only one control parameter in the algorithm. This
makes the method much simpler to use. Therefore, in this
paper, BSOA is combined with the SVM to give a so called
BSOA-SVM for solving classification problems. BSOA-SVM
was applied to diagnose the fault of roller bearing. In this di-
agnosing process, the original acceleration vibration signals
were first decomposed into product function (PFs) by using
the LMD method. Next, initial feature matrices were extracted
from PFs by singular value decomposition (SVD) techniques

to give single values. Finally, these values served as input vec-
tor for the BSOA-SVM classifier. The classification results
of the proposed method show a higher accuracy and lower
cost time compared with the GA-SVM, the PSO-SVM, and
the CMAES-SVM methods.

The rest of this paper is organized as follows: in Section 2,
the BSOA method is briefly reviewed. In Section 3, the param-
eter optimization algorithm based on the BSOA method is ad-
dressed. The fault diagnosis method based on LMD-SVD and
BSOA-SVM, in which initial feature matrices extracted from
a number of PFs are used as input vectors of BSOA-SVM, is
presented in Section 4. In Section 5, the fault diagnosis method
is used to diagnose the condition of actual roller bearings and
is compared with the GA, the PSO, and the CMAES methods.
Finally, the paper is concluded in Section 6.

2. BACKTRACKING SEARCH
OPTIMIZATION ALGORITHM

BSOA is an adaptive search algorithm that uses three basis
genetic operators including selection, mutation, and crossover
to generate trial individuals. The principle of BSOA, which
consists of six steps,10 is presented in the flow chart in Fig. 1.
More details of the steps are presented in following sections.

2.1. Define the Problem and Algorithm
Parameter

The mathematical formulation of a typical optimization can
be written as:
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Figure 1. The flow chart for the Backtracking Search Optimization Algorithm
(BSOA).

Minimize f(x)

subject to xi ∈ Di = [li, ui], i = {1, 2, . . . , N}. (1)

where f(x) is a fitness function, x = (x1, x2, . . . , xN ) is the
vector of decision variables, N is the number of decision vari-
ables, and Di is the range of feasible values for the i-th deci-
sion variable, where li and ui are the lower and upper bounds
of the i-th decision variable, respectively.

2.2. Initialization
In this phase, the setting of the algorithm was initialized and

the values of algorithmic parameters were assigned. Popula-
tion P was initialized as follows:

Pi,j ∼W (li, ui); (2)

for i = 1, 2, 3, . . . , D and j = 1, 2, 3, . . . , N , where N was
the population size (PopSize), D was the dimension of the
problem, W was the uniform distribution, and each Pj was a
target individual in the population P .

2.3. Selection-I
This stage was aimed to determine the previous population

P ′,
P ′i,j ∼W (li, ui). (3)

Based on ‘if-then’ rule, the option of redefining P ′ at the be-
ginning of iteration could be expressed as follows:

If a < b then P ′ := P | a, b ∼W (0, 1); (4)

where ‘:=’ was the update operation and a and b were random
numbers. Next,

P ′ := permuting(P ′); (5)

where the permuting function was a random shuffling func-
tion.

2.4. Mutation
This process generated the initial form of the trial popula-

tion, Mu, as follows:

Mu = P + F (P ′ − P ); (6)

where F was the control parameter that controlled the ampli-
tude of the search-direction matrix (P ′−P ). The value of this
parameter was selected as per the following equation:10

F = 3rn; (7)

where rn ∼M(0, 1), M was the standard normal distribution,
and F was the controlled parameter.

2.5. Crossover
This process generated the final form of the trial population

T , which was updated with:

Ti,j := Pi,j if mapi,j = 1; (8)

where i ∈ 1, 2, 3, . . . , D and j ∈ 1, 2, 3, . . . , D.
The crossover strategy of BSOA used the ceiling function

to define rnd ∼ W (0, 1). Furthermore, the number of ele-
ments of individuals was controlled by a mix rate parameter
(mixrate). These individuals were mutated in a trial by using
the ceiling function dmixrate · rnd ·De.

2.6. Selection-II
Based on greedy selection, the Tjs that had better fitness

values than the corresponding Pjs, were used to update the
Pjs.

In this stage, the boundary control mechanism was also used
to form the limit search space.10

3. PARAMETER OPTIMIZATION OF SVM
BASED ON BSOA

3.1. The Support Vector Machine (SVM)
SVM is a kind of machine learning techniques that is based

on the statistical learning theory. The basic idea of SVM
is mapping the training samples from the input space into a
higher-dimensional feature space by using a mapping func-
tion φ.7 Suppose that there was a given training sample set
G = {(xi, yi), i = 1, 2, . . . , l}, where each sample xi ∈ Rd

belonged to a class by y ∈ {+1,−1} and the training data was
not linearly separable in feature space, then the target function
could be expressed as follows:11

Minimize φ(ω) =
1

2
〈ω.ω〉+ C

l∑
i=1

ξi

subject to yi
(
〈ω.φ(xi)〉+ b

)
≥ 1− ξi, ξi ≥ 0,

i = {1, 2, . . . , l}. (9)

where ω was the normal vector of the hyperplane, C was the
penalty parameter, b was the bias, ξi were nonnegative slack
variables, and φ(x) was the mapping function.
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Figure 2. The parameter optimization flowchart of SVM based on BSOA.

By introducing a set of Lagrange multipliers αi ≥ 0, the
optimization problem could be rewritten as:

Maximize L(ω, b, α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C,
l∑

i=1

αiyi = 0. (10)

The decision function can be obtained as:7

f(x) = sgn

[
l∑

i=1

αiyiK(xix) + b

]
. (11)

The most common kernel function used in the SVM method
is the radial basis function kernel, as shown in the following
equation:11

K(x, xi) = exp
(
−‖x− xi‖2/2σ2

)
; (12)

where σ is the kernel parameter.

3.2. Parameter Optimization of SVM Based
on BSOA

It is widely known that the performance of SVM is signif-
icantly affected by its parameters. The parameters need to be
chosen as a penalty factor C and the kernel parameter σ in the
Gaussian kernel function. Selecting these parameters was not
an easy task. Generally, C and σ are selected based on expe-
rience. Therefore, in this paper, BSOA was used to optimize
the parameters of SVM. As a result, C and σ became the vari-
ables and the test error of SVM became the fitness function in
the optimization problem. The test error of SVM was given as
follows:

fitness(x) = Test ErrorSVM(x); (13)

where x = (C, σ) and the test error of SVM was defined as:

Test ErrorSVM =
Number of incorrect classification in test samples

Total number of samples in test set
.

(14)
The flow chart of BSOA-SVM is shown in Fig. 2.

Table 1. Properties of the problems.

Name Data Train Test Input Class
Iris 150 105 45 4 3

Thyroid 215 151 64 5 3
Seed 210 147 63 7 3
Wine 178 125 53 13 3
E. coli 327 229 98 7 5
Glass 214 149 65 9 6

3.3. Experimental Results

To evaluate the performance of the proposed BSOA-SVM
method, six common benchmark data sets from the University
of California Irvine (UCI) benchmark were used, including the
Iris, Thyroid, Seed, Wine, Escherichia coli (E. coli), and Glass
data sets. Table 1 gives the sizes of the training and test sets.
Each sample set was divided into two sub-sets: one for training
the SVM and one for testing the obtained model. The propor-
tion of the training and test sets were 70% and 30% of the total
samples, respectively. This proportion was chosen based on
trial and error so that the performance of the obtained SVM
was optimal with the available samples.

The BSOA-SVM, the GA-SVM, the PSO-SVM, and the
CMAES-SVM methods were used to classify these data sets.
To make a fair comparison, the values of these four meth-
ods were chosen to be the same (e.g., iteration = 30 and
PopSize = 30). For the PSO, the parameters were fixed with
the values given in the literature12 (i.e., W = 0.9, c1 = 0.5,
and c2 = 1.25). For CMAES, the parameters were fixed
with the values given in the literature13 (i.e., σ′ = 0.25 and
µ = 4 + 3 log(N)). The testing results of each method were
taken as the averaged value of 30 runs. The training data and
test data were both mixed and randomly divided, as seen in
Table 1.

According to Lin et al.,14 the lower and upper bounds of C
were given in [0.01, 35000] and σ in [0.01, 32] for the BSOA-
SVM, GA-SVM, PSO-SVM, and CMAES-SVM classifiers.
Each search method gave the values of C and σ in order to
give the smallest value of the classification error. These results
are shown in Table 2.

The detailed classification results of the each data set are
provided in Tables 2 to 7 so as to illustrate the effectiveness
of the proposed method. The Iris, Thyroid, Seed, and Wine
data sets included three classes, so we needed two SVM clas-
sifiers. The E.Coli data set included five classes, so we needed
four classifiers. The Glass data set included six classes, so we
needed five classifiers. These tables show the optimal parame-
ters (C and σ), the average test error, and the average cost time
done by different algorithms.

Table 8 gives the classification results of the Iris, Thyroid,
Seed, Wine, E. Coli, and Glass data sets, respectively. It can be
seen from Table 8 that the test error and the cost time of BSOA-
SVM was lower than the one by the GA-SVM, the PSO-SVM,
and the CMAES-SVM methods. According to Civicioglu,10

BSOA used a mutation mechanism with one individual and a
complex crossover mechanism. Furthermore, BSOA took ad-
vantage of the experiences that were obtained from previous
generations by using its memory. From the tables, it can be
seen that the BSOA-SVM classifier obtained a higher classifi-
cation accuracy in a shorter amount of time compared to other
methods. The BSOA-SVM method was next applied to a roller
bearing fault diagnosis problem.
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Table 2. The identification results of the Iris data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 105 45 229.32 26.11 9.21 0.000
PSO-SVM1 105 45 214.60 3.99 22.56 0.215
GA-SVM1 105 45 306.82 18.47 17.17 0.242

CMAES-SVM1 105 45 299.34 7.67 15.28 1.411
BSOA-SVM2 75 30 265.76 21.68 7.41 3.112
PSO-SVM2 75 30 320.75 5.55 15.77 4.118
GA-SVM2 75 30 169.36 31.72 13.37 4.202

CMAES-SVM2 75 30 206.49 11.94 13.57 4.811

Table 3. The identification results of the Thyroid data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 151 64 29300.97 0.36 17.28 2.344
PSO-SVM1 151 64 21607.25 10.44 39.31 2.358
GA-SVM1 151 64 6880.24 0.75 32.18 2.442

CMAES-SVM1 151 64 24468.10 10.54 30.13 2.922
BSOA-SVM2 45 20 32570.13 24.75 16.24 0.000
PSO-SVM2 45 20 8896.08 4.74 37.54 0.089
GA-SVM2 45 20 23584.73 29.99 29.18 0.265

CMAES-SVM2 45 20 10571.69 27.29 27.75 0.253

Table 4. The identification results of the Seed data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 147 63 16099.27 20.95 24.53 2.910
PSO-SVM1 147 63 27681.87 13.98 48.82 2.918
GA-SVM1 147 63 8338.74 19.4 39.28 4.589

CMAES-SVM1 147 63 18234.38 27.26 39.21 2.997
BSOA-SVM2 98 42 20976.92 24.35 16.97 0.000
PSO-SVM2 98 42 34276.51 5.6 44.98 0.098
GA-SVM2 98 42 27888.75 7.39 35.17 1.546

CMAES-SVM2 98 42 28738.10 17.54 36.19 0.282

Table 5. The identification results of the Wine data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 124 54 9411.199 5.867 14.92 0.0617
PSO-SVM1 124 54 32665.452 4.422 33.02 0.0617
GA-SVM1 124 54 0.704 2.792 22.11 2.1711

CMAES-SVM1 124 54 22099.552 4.286 24. 31 0.1852
BSOA-SVM2 84 35 18028.496 30.345 14.61 1.3836
PSO-SVM2 84 35 26695.179 29.837 33.89 1.5723
GA-SVM2 84 35 2.925 2.145 30.91 2.5786

CMAES-SVM2 84 35 4441.430 2.473 26.32 2.3899

Table 6. The identification results of the E. coli data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 229 98 7920.09 23.81 26.73 4.341
PSO-SVM1 229 98 6174.79 28.60 59.43 4.364
GA-SVM1 229 98 290.97 17.86 44.78 4.797

CMAES-SVM1 229 98 8213.08 31.02 42.52 7.814
BSOA-SVM2 130 54 25949.05 14.46 25.21 10.200
PSO-SVM2 130 54 19606.28 12.53 53.24 10.200
GA-SVM2 130 54 19860.53 12.83 42.91 10.892

CMAES-SVM2 130 54 337.55 32.00 40.41 11.925
BSOA-SVM3 75 32 33525.82 8.92 23.38 7.742
PSO-SVM3 75 32 33965.60 6.56 47.33 7.777
GA-SVM3 75 32 8421.75 13.26 39.83 7.972

CMAES-SVM3 75 32 31350.95 26.08 38.22 8.728
BSOA-SVM4 50 22 165.11 25.69 17.21 6.315
PSO-SVM4 50 22 10.77 5.89 44.25 6.382
GA-SVM4 50 22 1.01 1.45 37.81 7.111

CMAES-SVM4 50 22 331.07 4.83 37.37 7.647
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Table 7. The identification results of the Glass data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 149 65 19822.58 27.91 64.12 0.620
PSO-SVM1 149 65 34301.94 29.24 139.92 0.626
GA-SVM1 149 65 10226.04 3.67 134.82 0.854

CMAES-SVM1 149 65 14153.06 18.37 91.15 0.462
BSOA-SVM2 100 44 504.61 19.37 62.45 2.080
PSO-SVM2 100 44 839.26 29.64 137.53 2.084
GA-SVM2 100 44 11808.45 6.84 110.35 2.365

CMAES-SVM2 100 44 2391.84 24.94 85.83 2.137
BSOA-SVM3 48 20 31452.79 8.63 58.61 0.000
PSO-SVM3 48 20 32529.36 3.23 134.84 0.000
GA-SVM3 48 20 27770.96 11.83 102.26 0.000

CMAES-SVM3 48 20 26416.18 12.41 84.72 0.000
BSOA-SVM4 36 15 34617.43 2.74 57.41 3.050
PSO-SVM4 36 15 34939.12 5.61 131.56 3.065
GA-SVM4 36 15 20462.37 26.62 98.67 6.492

CMAES-SVM4 36 15 31631.04 9.56 80.21 6.321
BSOA-SVM5 27 11 26017.53 1.47 55.62 0.110
PSO-SVM5 27 11 21049.01 6.19 128.82 0.110
GA-SVM5 27 11 28350.18 19.44 86.19 14.247

CMAES-SVM5 27 11 26899.62 27.46 77.24 1.981

Table 8. The average test error and cost time of the proposed BSOA-SVM compared with the GA-SVM, the PSO-SVM, and the CMAES-SVM (%).

Data Average of error and cost time Method
BSOA-SVM PSO-SVM GA-SVM CMAES-SVM

Iris Error (%) 1.556 2.167 2.222 3.111
Time (s) 8.31 19.17 15.27 14.43

Thyroid Error (%) 1.172 1.224 1.354 1.588
Time (s) 16.76 38.43 30.68 28.94

Seed Error (%) 1.455 1.508 3.068 1.640
Time (s) 20.75 46.90 37.23 37.70

Wine Error (%) 0.722 0.817 2.369 1.287
Time (s) 29.53 66.91 53.02 50.63

E. coli Error (%) 7.150 7.181 7.693 9.029
Time (s) 23.13 52.06 41.33 39.63

Glass Error (%) 1.172 1.177 4.792 2.180
Time (s) 59.64 134.53 106.46 83.83

4. BSOA-SVM AND LMD-SVD FOR ROLLER
FAULT DIAGNOSIS PROBLEM

4.1. The Local Mean Decomposition (LMD)
Method

The LMD method was developed from the simple assump-
tion that any complicated signal consists of several product
functions (PF s).15 In this way, each signal could be decom-
posed into a number of PF s and a residue rn(t):

x(t) =

n∑
p=1

PF p(t) + rn(t); (15)

where p is the number of the product function, rn is a mono-
tonic function.15

4.2. The Singular Value Decomposition
(SVD) Technique

The SVD technique is aimed to decompose a matrix into
three matrices: singular values and singular vectors of initial
matrix. Assuming that there was a matrix Σ, which hadM×N
dimension, and was expressed in the form of

Σ = E∆V T ; (16)

where E = [e1, e2, e3, . . . , en] ∈ RN×N , ETE = I , V =
[v1, v2, v3, . . . , vn] ∈ RM×M , V TV = I , ∆ ∈ RN×M , ∆ =
[diag{σ1, . . . , σp} : 0], p = min(N,M), and σ1 ≥ σ2 . . . ≥
σp ≥ 0. The i-th left and right singular vectors of matrix Σ

were vectors ei and vi, respectively. The values of σi were the
singular values of the matrix Σ.

After the roller bearing signals were decomposed into PF s
by the LMD method, all of the PF s were divided into two
initial feature vector matrices X and Y

X =


PF 1

PF 2

...
PF J

 , Y =


PF J+1

PF J+2

...
PFn

 ; (17)

where J = n/2 (when n is an even number) and J = (n+1)/2
(when n is an odd number). The characteristic of the roller
bearing vibration signal x(t) could be extracted from the ini-
tial feature vector matrices X and Y . In addition, the singular
values that reflect the nature characteristics of the vector matri-
ces X and Y as well as the roller bearing vibration signal can
be used as fault feature vectors. After extracting fault feature
vectors, the BSOA-SVM classifier could be employed to iden-
tify the working condition and fault pattern of roller bearing.

The flow chart of the roller bearing fault diagnosis method
based on LMD-SVD and BSOA-SVM is shown in Fig. 3. It
can be seen from the flowchart that the roller bearing fault di-
agnosis process included six main parts:

(1) Select sampling frequency fs under three conditions of
the roller bearing (i.e., normal, outer-race fault, and inner-
race fault).

(2) Sample M times at this frequency. And the 3M signals
were taken as samples that were divided into two subsets:
the training samples and testing samples.
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Figure 3. The flow chart of the roller bearing fault diagnosis based on BSOA-
SVM and LMD-SVD.

Figure 4. The test rig.

(3) Decompose each sample signal by the LMD method.

(4) Denote different amount of PF s in various signals by
n1, n2, . . . , n3M , and let n = max(n1, n2, . . . , n3M ).
If for some signals the amount of PF components,
nk, was less than n: nk < n (k = 1, 2, . . . , 3M),
then it could be padded with zero to n components:
PF 1(t),PF 2(t), . . . ,PFn(t). That is PF i(t) = 0 for
i = nk + 1, nk + 2, . . . , n.

(5) Create initial feature vector matrices X and Y to each
roller bearing vibration signal corresponding to different
working conditions according to Eq. (17). The singular
values of initial feature vector matrices X and Y can be
obtained as follows:

σX,j = [σ1
X,j , σ

2
X,j , . . . , σ

J
X,j ]; (18)

σY,j = [σJ+1
Y,j , σ

J+2
Y,j , . . . , σ

n
Y,j ]; (19)

where σ1
X,j ≥ σ2

X,j ≥ . . . ≥ σJ
X,j , σJ+1

Y,j ≥ σJ+2
Y,j ≥

. . . ≥ σn
Y,j , j = 1, 2, 3 denoted the normal condition,

outer-race fault and inner-race fault, respectively.

(6) Construct and train the BSOA-SVM classifiers with the
training samples, which were obtained from singular val-
ues of the initial feature vector matrices. The fitness func-
tion was given by Eq. (13). The obtained values of C and
σ were inputted into the BSOA-SVM classifier. Next, the

fault feature vectors of testing samples were inputted into
the trained the BSOA-SVM classifier and then the work-
ing condition was given by the output of the BSOA-SVM
classifiers.

5. ROLLER BEARING FAULT DIAGNOSIS
APPLICATION

5.1. Data Acquisition
First, data acquisition was carried out on the small test rig, as

shown in Fig. 4. This is a popular procedure for testing imbal-
ances, misalignment, and various types of bearing faults. This
test rig included a motor, a coupling, a rotor, and a shaft with
two roller bearings. The roller bearings are the 6311 type. The
shaft rotational frequency was 25 Hz, and the rotor’s polar mo-
ment of inertia was 0.03 kgm2. By experimentation, the first
three resonance frequencies of the roller bearing were deter-
mined to be 420 Hz, 732 Hz, and 1016 Hz, respectively. So the
sampling frequency could be taken as 4096 Hz. The vibration
signals were collected from the acceleration sensor, which had
been mounted on a bearing seat at a steady frequency of shaft.
Because the roller bearing was usually turned at a constant
speed, the starting and stopping processes could be ignored.
The fault was created by laser cutting slots that had a width
and depth of 0.15 mm and 0.13 mm, respectively. Three con-
ditions of roller bearings (normal, inner-race fault (IR fault),
and outer-race fault (OR fault)) were tested. There were 45 vi-
bration signals from the bearings in each condition that were
obtained, from which 30 groups were selected at random as the
training data.

Second, the data of the Case Western Reserve Univer-
sity Bearing Data Center Website (CWRUBDCW)16 was used
with the permission of Professor K. A. Loparo. The test
stand included a 2 hp Reliance Electric motor, a torque trans-
ducer/encoder, a dynamometer, and control electronics. The
sample frequency was 485063 Hz and the motor speed was
1772 rpm. The deep groove ball bearing manufactured by SKF
was used in this test stand. The drive end bearings are of the
6205-2RS JEM type. The test bearings of electro-discharge
machining with fault diameters of 0.007 inches were selected.
The roller bearings with the four conditions (normal, inner-
race fault, outer-race fault, and ball fault) were tested, and 80
vibration signals from the bearings in each condition were ob-
tained, from which 56 groups were selected at random as the
training data.

5.2. Application
First, the roller bearing vibration signals are decomposed

into a number of PF s by the LMD method. It’s noticed by the
analysis that the fault information of roller bearing was mainly
included in the first five PF components. Therefore, the initial
feature vector matrix X only was established by the first five
PF components.

Second, the corresponding singular value σX of initial fea-
ture vector matrix X was extracted by applying the SVD.
Then, these values were put into the BSOA-SVM classifier.

Third, in order to define the condition of roller bearing,
SVM1 was first used to separate the normal condition from
another condition by setting the normal condition as y = +1
and the other conditions as y = −1. Next, SVM2 was used
to separate the outer-race fault from other condition by setting
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Table 9. The identification results of the author’s data obtained by LMD-SVD-BSOA-SVM, LMD-SVD-GA-SVM, LMD-SVD-PSO-SVM, and LMD-SVD-
CMAES-SVM methods.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 45 15 1173.746 0.434 4.347 1.667
PSO-SVM1 45 15 2365.376 0.098 9.733 1.905
GA-SVM1 45 15 26190.945 0.602 7.885 1.905

CMAES-SVM1 45 15 1422.560 32.000 7.330 2.381
BSOA-SVM2 20 10 30226.276 2.761 4.084 3.000
PSO-SVM2 20 10 16244.680 22.746 9.630 6.000
GA-SVM2 20 10 27911.125 6.460 7.689 7.667

CMAES-SVM2 20 10 31117.544 32.000 7.264 11.333

Table 10. The identification results of the author’s data based on the LMD-SVD and BSOA-SVM methods.

Test samples Singular value of fault feature σ X , x BSOA-SVM1 classifier BSOA-SVM2 classifier Identification results
(1) Normal 74.51 31.85 18.25 13.09 7.78 (+1) Normal
(2) Normal 55.80 8.98 4.10 2.40 1.76 (+1) Normal
(3) Normal 74.16 39.58 28.44 26.14 22.51 (+1) Normal
(4) Normal 67.47 15.54 6.03 4.24 3.08 (+1) Normal
(5) Normal 65.56 15.99 11.34 9.09 7.53 (+1) Normal
(6) OR fault 139.94 91.39 50.12 27.04 25.94 (-1) (+1) OR fault
(7) OR fault 149.93 123.32 86.34 74.89 56.82 (-1) (+1) OR fault
(8) OR fault 203.29 68.58 45.97 39.68 33.83 (-1) (+1) OR fault
(9) OR fault 75.58 59.36 42.15 36.11 29.43 (-1) (+1) OR fault
(10) OR fault 77.70 42.70 19.70 17.10 7.00 (-1) (+1) OR fault
(11) IR fault 283.48 184.78 98.54 82.4 77.59 (-1) (-1) IR fault
(12) IR fault 199.92 140.14 70.77 54.52 29.69 (-1) (-1) IR fault
(13) IR fault 205.00 108.00 81.00 54.00 31.00 (-1) (-1) IR fault
(14) IR fault 196.49 158.08 73.12 52.14 24.01 (-1) (-1) IR fault
(15) IR fault 173.73 127.74 76.84 53.05 38.86 (-1) (-1) IR fault

Table 11. The identification results of CWRUBDCW data obtained by the LMD-SVD-BSOA-SVM, LMD-SVD-GA-SVM, LMD-SVD-PSO-SVM, and LMD-
SVD-CMAES-SVM methods.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 56 24 1093.473 18.344 4.0155 1.250
PSO-SVM1 56 24 3434.477 12.445 9.3462 1.389
GA-SVM1 56 24 579.592 14.623 7.5844 1.389

CMAES-SVM1 56 24 25825.370 32.000 6.9994 1.528
BSOA-SVM2 42 18 24476.678 4.646 3.8741 0
PSO-SVM2 42 18 30047.771 1.602 9.1629 0
GA-SVM2 42 18 19252.667 8.882 7.3246 0

CMAES-SVM2 42 18 23781.571 32.000 6.8474 0
BSOA-SVM3 28 12 17539.863 7.110 3.7015 0.278
PSO-SVM3 28 12 4435.299 19.081 8.6774 0.278
GA-SVM3 28 12 0.010 0.663 7.5844 0.278

CMAES-SVM3 28 12 18325.339 32.000 6.4860 0.556

Table 12. The identification results of CWRUBDCW data based on the LMD-SVD and BSOA-SVM methods.

Test Singular value of fault feature BSOA-SVM1 BSOA-SVMr BSOA-SVM3 Identification
samples σ X , x classifier classifier classifier results

(1) IR fault 8.5153 2.9152 1.6010 0.6691 (+1) IR fault
(2) IR fault 8.5559 3.2202 1.8215 0.6273 (+1) IR fault
(3) IR fault 8.4412 3.1352 1.9311 0.5246 (+1) IR fault
(4) IR fault 8.5901 2.8227 1.8962 0.7208 (+1) IR fault
(5) IR fault 8.9155 3.0961 1.5089 0.9228 (+1) IR fault
(6) IR fault 8.8645 3.3804 2.4951 1.9901 (+1) IR fault
(7) OR fault 7.9041 2.6419 2.0240 0.7417 (-1) (+1) OR fault
(8) OR fault 6.6604 2.5858 1.7798 0.8708 (-1) (+1) OR fault
(9) OR fault 6.9439 2.4304 1.3590 0.8068 (-1) (+1) OR fault

(10) OR fault 7.8690 2.2100 1.8414 0.6937 (-1) (+1) OR fault
(11) OR fault 6.7675 2.4369 1.419 0.9283 (-1) (+1) OR fault
(12) OR fault 7.4424 3.4101 2.4794 1.4612 (-1) (+1) OR fault
(13) Ball fault 4.5775 1.2130 0.8730 0.3686 (-1) (-1) (+1) Ball fault
(14 Ball fault 4.4927 0.8078 0.7951 0.4279 (-1) (-1) (+1) Ball fault
(15) Ball fault 4.6239 0.9917 0.7678 0.6424 (-1) (-1) (+1) Ball fault
(16) Ball fault 4.5416 1.1273 0.7654 0.3606 (-1) (-1) (+1) Ball fault
(17) Ball fault 4.4950 0.8587 0.6016 0.5237 (-1) (-1) (+1) Ball fault
(18) Ball fault 4.2611 0.8124 0.6932 0.4347 (-1) (-1) (+1) Ball fault
(19) Normal 2.8399 1.7668 1.6482 1.3742 (-1) (-1) (-1) Normal
(20) Normal 1.9474 1.3361 1.1629 1.0016 (-1) (-1) (-1) Normal
(21) Normal 1.6105 1.1714 0.9231 0.8979 (-1) (-1) (-1) Normal
(22) Normal 1.3062 0.8826 0.7353 0.6410 (-1) (-1) (-1) Normal
(23) Normal 2.2264 1.1755 1.1589 1.0573 (-1) (-1) (-1) Normal
(24) Normal 2.0903 1.3878 1.191 0.8797 (-1) (-1) (-1) Normal
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outer-race fault as y = +1 and the other condition as y = −1.
Because the first data set had only got three conditions that
needed to be identified, the rest was inner-race fault. The iden-
tification results of the same testing samples are shown in Ta-
bles 9 and 10.

Table 9 shows that accuracy of LMD-SVD-BSOA-SVM
is higher than LMD-SVD-PSO-SVM, LMD-SVD-GA-SVM,
and LMD-SVD-CMAES-SVM while the computational time
was lower. Table 10 shows detail identification result of the
author’s data based on LMD-SVD-BSOA-SVM.

The CWRUBDCW data set included four conditions of
roller bearing so three SVM classifiers were used. The iden-
tification results of the same testing samples are shown in Ta-
bles 11 and 12.

It can be seen from Table 11 that the BSOA-SVM classi-
fier gave more accurate results with less computational time
than that by other methods. With IR fault, the BSOA-SVM
method obtained the best identification result compared with
other methods. With the OR fault, the classification success
rate of the four methods was 100%. With ball fault, the identi-
fication result of BSOA-SVM, PSO-SVM, and GA-SVM was
higher than that of CMAES-SVM. Table 12 shows the identi-
fication results of the CWRUBDCW data based on the LMD-
SVD and BSOA-SVM methods.

6. CONCLUSIONS

In this paper, an optimal algorithm for SVM parameter
based on BSOA is proposed. The experimental problems are
solved to demonstrate the effectiveness of BSOA-SVM. The
testing results of some real-world benchmark data sets show
that the BSOA-SVM classifier has a high accuracy with low
computational cost time. These results thus prove that the
BSOA-SVM classifier gave more accurate results in a shorter
time compared to the GA-SVM, PSO-SVM, and CMAES-
SVM methods. Furthermore, the BSOA-SVM method is ap-
plied to diagnose the roller bearing fault by combining it with
the LMD-SVD method. SVD is applied to extract the singu-
lar values of matrices from the initial feature vector matrices
of PF s. The results indicate that a combination of the BSOA-
SVM classifier and the LMD-SVD method can effectively re-
duce the test error and cost time.
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