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One of an engineer’s concern when designing bridges and structures under a moving load is the uniformity of stress
distribution. The dynamic behavior of a vehicle on a flexible support is also of great importance. In this paper, an
analysis of a variable cross-section beam subjected to a moving load (such as a concentrated mass), a simple quarter
car (SQC) planar model, and a two-axle dynamic system with four degrees of freedom (4DOF) is carried out. The
finite element method with cubic interpolation functions is used to model the structure based on the Euler-Bernoulli
beam and a direct integration method is implemented to solve time dependent equations implicitly. The effects of
variation of a cross-section and moving load parameters on the deflection, natural frequencies, and longitudinal
stresses of the beam are investigated. The interaction between vehicle body vibration and the support structure is
also considered. The obtained results indicate that using a beam of parabolically varying thickness with a constant
weight can decrease the maximum deflection and stresses along the beam while increasing the natural frequencies
of the beam. The effect of moving mass inertia at a high velocity of a moving vehicle is also investigated and the
findings indicate that the effect of inertia is significant at high velocities.

1. INTRODUCTION

The analysis of structures carrying moving loads is of con-
siderable practical importance. Bridges on which vehicles or
trains travel, trolleys of cranes that move on their girders, and
many modern machining operations, such as high-speed preci-
sion drilling, can be modeled as a moving load problem.

Since the middle of the last century, when railway construc-
tion began, the problem of oscillation of bridges under trav-
eling loads has interested engineers. Contributions towards
a solution of this problem were initially made by Stoke1 and
Robert Willis.2 Timoshenko3 found an analytical solution for
the case of a concentrated force moving with a constant veloc-
ity along a beam, neglecting the damping effect.

A comprehensive treatment of the subject of vibrations of
structures due to moving loads that contain a large number of
related cases is that of Fryba.4 In a dynamic analysis of struc-
tures subjected to moving loads involving a large moving mass,
neglecting inertia may cause a considerable error. When the
mass of either the moving load or the structure cannot be ig-
nored, the dynamic analysis of moving load problems becomes
more involved. The first attempt to include the mass of both
the beam and the moving load was given by Jefcott.5 Calculat-
ing the response of beams affected by moving mass involves
solving sufficiently complex partial differential equations that
the analytical methods are not almost applicable. Therefore,
the numerical methods have been used frequently to solve var-
ious boundary conditions and complicated cases such as vari-
able speed moving load, multiple span beam, damping within
the beam, sprung mass, et cetera. Akin and Mofid6 developed
an analytical-numerical method to determine the behavior of
beams carrying a moving mass. Esmailzadeh and Ghorashi7

analyzed the Timoshenko beam traversed by a uniform par-
tially distributed moving mass. Esmailzadeh and Jalili8, 9 in-
vestigated the dynamic interaction of moving vehicles on uni-

form suspension bridges. They modeled the vehicle as a half-
car planar model with six degrees of freedom.

The finite element method was applied to overcome some
of the limitations in analytical analysis. The finite element
method was first used by Cook and Fleming.10, 11 Filho12 sur-
veyed the application of the finite element method as a simply
supported beam subjected to a constant-velocity two degrees of
freedom system with various mass ratios. Lin and Trethewey13

analyzed the dynamics of an elastic beam that was subjected to
dynamic loads induced by the arbitrary movement of a spring-
mass-damper system, which was based on a finite element for-
mulation and solved it with a Runge-Kutta integration scheme.
The analysis of a beam with a non-uniform cross-section was
completed by Gutierrez and Laura.14, 15 It dealt with the ap-
proximate determination of the vibration of a beam traversed
by a time varying concentrated force. Zheng et al.16 studied
the vibration behavior of a multi-span continuous bridge mod-
elled as a multi-span non-uniform continuous Euler-Bernoulli
beam under a set of moving loads using different assumed
mode shapes. Wu and Dai17 and Henchi and Fafard18 used
the same Euler-Bernoulli beam and the finite element transfer-
matrix approach.

Ahmadian et al.19 also considered the analysis of a variable
cross-section beam subjected to a moving concentrated force
and mass by using the finite element method. Dyniewicz20

dealt with the vibrations of structures subjected to a moving
inertial load using the velocity approach to the space-time fi-
nite element method. Zhai and Song21 were concerned with the
transient vibration analysis of the railway-ground system under
fast moving loads formulating a 3D finite element method in
a connected coordinate system moving with the load together
with viscous-elastic transmitting boundary conditions in order
to limit the finite element mesh. Azizi et al.22 employed the
spectral element method in a frequency domain to analyze con-
tinuous beams and bridges subjected to a moving load. Samani

International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016 (pp. 429–439) https://doi.org/10.20855/ijav.2016.21.4437 429



M. Asgari, et al.: VIBRATION INTERACTION ANALYSIS OF NON-UNIFORM CROSS-SECTION BEAM STRUCTURE UNDER A MOVING. . .

Figure 1. A simply supported non-uniform cross-section beam subjected to a
moving point mass.

and Pellicano23 focused on the analysis of the effectiveness of
dynamic vibration absorbers applied to beams excited by mov-
ing loads. They also assessed the performances of dynamic
vibration absorbers in suppressing the vibrations of a simply
supported beam subjected to an infinite sequence of regularly
spaced concentrated moving loads.24

Most of these studies for the moving load problem were lim-
ited to the beam of a uniform cross-section and the beam of a
non-uniform cross-section that neglected the inertia effect of
the moving load. The solution of a general moving load prob-
lem remains of considerable interest and engineering applica-
bility. In order to perform a detailed design and optimization
analysis, a general solution technique must be developed for
many complicated cases. As an extension to these works, the
present paper deals with the problem of a non-uniform cross-
section beam with different boundary conditions subjected to
moving loads, such as a moving concentrated mass, a simple
quarter-car (SQC) planar model, and a two-axle dynamic sys-
tem with four DOF by developing the derivation of character-
istic equations and including effect of structural damping and
moving load inertia on the beam. Additionally, the dynamic
deflection of the beam, the critical speed of the moving vehi-
cle, and the distribution of maximum longitudinal stress along
the beam was considered. The contact between load and sup-
port beam during movement was checked by considering the
value of the interaction force between them. For the initial
condition, the beam was considered to be at rest.

2. PROBLEM FORMULATION

For the purpose of this investigation, we began from a sim-
ple system and progressed to more complex ones. Three dif-
ferent cases will be presented: the concentrated moving mass
problem will first be reviewed, the simple quarter-car model
will then be investigated by the proposed method, and lastly
the dynamics of vehicle-structure interaction of beam traversed
by a two-axle moving vehicle will be formulated.

2.1. Non-Uniform Beam Traversed by a
Concentrated Moving Mass

A non-uniform cross-section beam subjected to a moving
concentrated mass is shown in Fig. 1.

When the finite element method was used to solve this class
of problems, the structures were modeled as an assemblage
of beam elements and the governing equations, neglecting the
rotary inertia and shearing force effects, were written as:

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)} = {N t}f0. (1)

In the above equation, [M ], [C], [K], {d}, and {F (t)} are
the structural mass, damping and stiffness matrices, vector of
structural nodal displacements, and load vector respectively.

Cubic Hermitian polynomials25 were used as the interpolation
functions for the finite element formulation. In Eq. (1), {N t}
was a vector with zero entries, except those corresponding to
the nodal displacement of the element in which the load was
positioned. These non-zero entries were the shape functions
evaluated at the point where the load was acting.

The force f0, including the gravitational and inertial forces
of mass acting on the loaded element, were given as:

f0 = Mpg −Mpÿ(x, t). (2)

If there was no loss of contact between the mass and the upper
surface of the beam, the respective expressions for the vertical
displacement of the mass moving along a vibrating curvilinear
path, can be written as:

y(x, t) = w(x, t) + r(x); (3)

where w(x, t) was the upward transversal dynamic deflection
of the beam structure and r(x) was the surface roughness of the
beam, which referred to the road waviness and was represented
as the vertically upward departure from the mean horizontal
profile.

The function w(x, t) was interpolated from the nodal dis-
placements as w = [N ]{d}, where [N ] was the matrix of in-
terpolation functions. Assuming the upper surface of the beam
was flat, then:

y(x, t) = w(x, t);

ẏ(x, t) = ẇ(x, t);

ÿ(x, t) = ẅ(x, t); (4)

and the time derivatives of w(x, t) were given by:

ẇ(x, t) =
∂w

∂x
ẋ+

∂w

∂t
; (5)

ẅ(x, t) =
∂2w

∂t2
+ 2

∂2w

∂x∂t
ẋ+

∂2w

∂x2
ẋ2 +

∂w

∂x
ẍ. (6)

The first term on the right-hand of Eq. (6) was the support
beam acceleration at the point of contact with the moving load
and the second term denoted the well-known Coriolis acceler-
ation since the load was moving along a vibrating curvilinear
path (i.e., the support beam). The third term on Eq. (6) was the
centripetal acceleration of the moving load and the fourth term
indicated the acceleration component in the vertical direction
when the moving load speed was not assumed as constant.

Using the nodal displacements interpolations and noting that
[N ] contains only a spatial variable and {d} is time dependent
yielded:19

∂2w

∂x2
= [N ]xx{d};

∂2w

∂x∂t
= [N ]x{ḋ};

∂w

∂x
= [N ]x{d};

∂2w

∂t2
= [N ]{d̈}; (7)

where the subscript x denoted the differentiation with respect
to x. Assuming that the mass moving with a velocity of ẋ
and an acceleration of ẍ, and substituting Eqs. (2) to (7) into
Eq. (1), yielded:

[M+M∗]{d̈}+[C+C∗]{ḋ}+[K+K∗]{d} = mg{N t}; (8)
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Figure 2. Time history of force in the nodes 3, 4, and 5.

where

[M∗] = m{N t}[N ];

[C∗] = 2mẋ{N t}[N ]x;

[K∗] = mẋ2{N t}[N ]xx +mẍ{N t}[N ]. (9)

The external force vector mg{N t} took the following form:

mg{N t} = {0 0 0 0 f
(s)
1 (t) f

(s)
2 (t) f

(s)
3 (t) f

(s)
4 (t) 0 0 0 0}.

(10)
For a beam element with four degrees of freedom, the number
of non-zero entries within the n× 1 vector was four. Based on
the load position along the beam, this 4×1 sub-vector was time
dependent. On the other hand, as the load moved to another
element, this sub-vector shifted to a position corresponding to
the degrees of freedom of that element.

To illustrate the principles involved, consider a constant
force travel with a constant velocity of 1 m/s2 from one end
to the other of a simply supported beam of 1 m length that was
modeled by 10 beam elements. Figure 2 shows the force-time
graph for three nodes of the beam in the time period when their
values are non-zero.

The matrices [M∗], [C∗], and [K∗] have zero entries, except
those corresponding to the element on which mass was acting
upon. Thus, a non-zero 4 × 4 sub-matrix that was time de-
pendent translated to the position corresponding to the degrees
of freedom of the element, where the mass was acting that in-
dicated the inertia effects of the moving load. The governing
equations of problem were a system of second-order time de-
pendent coefficients ordinary differential equations that were
generally solved by using direct step-by-step integration meth-
ods.

2.2. Non-Uniform Beam Traversed by a
Simple Quarter-Car Model

A wide span bridge that was modeled as a simply supported
non-uniform beam was traversed by a moving vehicle in the
form of a simple quarter-car (SQC) planar model, as shown
in Fig. 3. The dynamic analysis of this problem was consid-
erably more involved than for the one with a moving concen-
trated mass. The moving SQC model was considered as a dy-
namic system with two degrees of freedom (2-DOF) in which
M1 and M2 were the unsprung mass and sprung mass of the
moving vehicle respectively. The vertical displacements of the

Figure 3. Moving simple quarter-car (SQC) model.

unsprung and sprung masses with reference to their respec-
tive vertical equilibrium positions were y1(t) and y2(t) respec-
tively. The horizontal position of the center of the mass of the
moving vehicle was measured from the left end of the beam.

The governing equations of the moving system and the beam
can be obtained by using the finite element formulation as:

M2ÿ2 + C2(ẏ2 − ẏ1) +K2(y2 − y1) = 0; (11)
M1ÿ2 + (C1 + C2)ẏ1 − C1ẇ − C2ẏ2 +

(K1 +K2)y1 −K1w −K2y2 = 0; (12)

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)} = {N t}FT ; (13)

where Eqs. (12) and (13) govern the vertical motion of M1

and M2 and FT was the vertical interaction force acting be-
tween the moving vehicle and beam. This interaction force
could therefore be written from the free-body diagrams of the
moving vehicle as:8

FT = C1(ẇ − ẏ1) +K1(w − y1)

= M1g +M1ÿ1 + C2(ẏ1 − ẏ2) +K2(y1 − y2); (14)

where g was the acceleration due to gravity. It should be noted
that the first expression in Eq. (14) was obtained by using force
balance at the tire contact point with the road, while the second
expression was rendered by using force balance at M1. The
interaction force FT could also be described as:

FT = (M1 +M2)g −M1ÿ1 −M2ÿ2. (15)

The present derivation was based on the fact that the transmit-
ted force could be described by using the external excitation
force and the inertia of the dynamic system rather than spring
and forces.

From Eqs. (5), (6), and (14), it could be seen that the in-
teraction force FT between the moving vehicle and the beam
depended on the velocity and acceleration of the vehicle and
the flexibility of the beam structure. The interaction force did
indeed vary with time, which could be taken as an indicator of
separation. When this force became zero, it denoted the on-
set of separation, and it should remain zero until the moving
vehicle made contact with the beam surface.

Using Eqs. (4) and (5) and substituting them into Eqs. (11)
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Figure 4. Moving planar 4 DOF half-car model.

to (14), the governing equations of this case were obtained as:[M ] {N t}M1 {N t}M2

[0] M1 0
[0] 0 M2

{d̈}ÿ1

ÿ2

+

 [C] 0 0
−C1[N ] C1+C2 −C2

[0] −C2 C2

{ḋ}ẏ1

ẏ2

+

 [K] 0 0
−C1ẋ[N ]x+K1[N ] K1+K2 −K2

[0] −K2 K2

{d}y1

y2

 =

{N t}(M1+M2)g
0
0

 . (16)

2.3. Non-Uniform Beam Traversed by a
Two-Axle Moving Dynamic System

The moving vehicle, assumed as a two-axle dynamic sys-
tem with four DOF, is illustrated in Fig. 4. The vehicle model
consists of a sprung mass (body) and two unsprung masses
(axles). The body was considered to have the vertical mo-
tion (bounce) and the angular motion (pitch), with every axle
having its own vertical motion. It was assumed that the vehi-
cle advanced along the beam with the specified velocity ẋ(t)
where x(t) was the position of the center of gravity (c.g.) of
the vehicle, as shown in Fig. 4. Moreover, at t = 0, the front
axle of the vehicle initially entered the beam from the left-end
support. In this case, such as for previous moving loads, the
contact between vehicle tire and beam were checked via inter-
action force.

In order to generate the governing equations of motion for
the moving dynamic system and the beam interaction model,
the energy method could be applied.9 The equation of vertical
motion for the sprung mass was:

msÿs + c1(ẏs + b1θ̇ − ẏt1) + c2(ẏs − b2θ̇ − ẏt2) +

k1(ys + b1θ − yt1) + k2(ys − b2θ − yt2) = 0. (17)

The equation of the angular motion (pitch) of the sprung mass
had the following form:

Jθ̈ + c1b1(ẏs + b1θ̇ − ẏt1)− c2b2(ẏs − b2θ̇ − ẏt2) +

k1b1(ys + b1θ − yt1)− k2b2(ys − b2θ − yt2) = 0. (18)

The equation of the vertical motion (bounce) for the front axle
was:

mt1ÿt1 + c1(ẏt1 − ẏs − b1θ̇) + ct1(ẏt1 − ẇ1) +

k1(yt1 − ys − b1θ) + kt1(yt1 − w1) = 0. (19)

The vertical motion (bounce) of the rear axle was governed by:

mt2ÿt2 + c2(ẏt2 − ẏs + b2θ̇) + ct2(ẏt2 − ẇ2) +

k2(yt2 − ys + b2θ) + kt2(yt2 − w2) = 0. (20)

For the finite element formulation in this case, since there were
two contact points acting on the beam element, the dynamic in-
teraction forces between the beam and the moving system were
calculated with the shape functions evaluated at the locations
corresponding to the respective axle positions. Considering the
approach used for the previous case for each moving axle, the
governing finite element equations of the beam were subjected
to a moving two-axle vehicle obtained as:

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)}
= {N t}1FT1 + {N t}2FT2;

(21)

where

FT1 =

[
b2

b1+b2

(
msg −msÿs −

J

b2
θ̈

)
+mt1g −mt1ÿt1

]
;

(22)

FT2 =

[
b1

b1+b2

(
msg −msÿs −

J

b1
θ̈

)
+mt2g −mt2ÿt2

]
;

(23)

and {N t}1 and {N t}2 denoted the shape functions evaluated
at points x1 and x2, which corresponded to the positions of the
front and rear axles of the moving vehicle respectively. There-
fore, the governing equations of the moving system and beam
could be derived as Eq. (24) (see next page), where

fy1 =
b2

b1+b2
ms; fθ1 =

J

b1+b2
;

fy2 =
b1

b1+b2
ms; fθ2 =

−J
b1+b2

. (25)

The governing equations developed here were applicable to
a wide range of general moving load problems. It could be
used for beams with various boundary conditions. Damping in
both the moving vehicle and the support beam could be treated
using the present technique. The compliances of the suspen-
sion system and the tires were modeled by a combination of
linear springs and viscous dampers connected in parallel ar-
rangements. Furthermore, the Rayleigh damping of the form
[C] = α[M ] + β[K], was used for the beam to examine its
effect on the structural response. Knowing the modal damping
ratios for the first two modes, the coefficients α and β could be
determined as:26

α =
2ω1ω2(ζ1ω2 − ζ2ω1)

(ω2
2 − ω2

1)
; β =

2(ζ2ω2 − ζ1ω1)

(ω2
2 − ω2

1)
. (26)

2.4. Longitudinal Stress
The nodal deflections and slopes may be used to obtain the

elements resultant. In this case, the internal moments Mb and
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
[M ]

2∑
i=1

{N t}ifyi
2∑
i=1

{N t}ifθi {N t}1mt1 {N t}2mt2

[0] ms 0 0 0
0 0 J 0 0
[0] 0 0 mt1 0
[0] 0 0 0 mt2




{d̈}
ÿs
θ̈
ÿt1
ÿt2

+



[C] 0 0 0 0

[0]

2∑
i=1

ci

2∑
i=1

(−1)i+1cibi −c1 −c2

[0]

2∑
i=1

(−1)i+1cibi

2∑
i=1

cib
2
i −c1b1 c2b2

{N}1ct1 −c1 −c1b1 c1 + ct1 0
{N}2ct2 −c2 c2b2 0 c2 + ct2




{ḋ}
ẏs
θ̇
ẏt1
ẏt2

+



[K] 0 0 0 0

[0]

2∑
i=1

ki

2∑
i=1

(−1)i+1kibi −k1 −k2

[0]

2∑
i=1

(−1)i+1kibi

2∑
i=1

kib
2
i −k1b1 k2b2

ct1[N ]x1ẋ1 − kt1[N ]1 −k1 −k1b1 k1 + kt1 0
ct2[N ]x2ẋ2 − kt2[N ]2 −k2 −k2b2 0 k2 + kt2




{d}
ys
θ
yt1
yt2

 =



2∑
i=1

{N t}i(fyi +mti)g

0
0
0
0


;

(24)

maximum longitudinal stresses σmax along the beam may be
evaluated as:27

Mb =
EI

L2

d2[N ]

dζ2
{d}e; (27)

σmax =
Mbh

I
. (28)

c was the distance from the natural plane to the outermost fiber
of the beam and I was the second moment of area. In the
case of a non-uniform cross-section beam, we used an average
value of I and c for each element. Therefore, the results did
not have the absolutely exact value, but these were appropri-
ate for comparison of stress distribution along the beams with
different thickness profile.

2.5. Modeling the Non-Uniformity of a
Cross-Section

For modeling the non-uniformity of a cross-section of the
beam, we must refer to the derivation of structural mass and
stiffness matrices. Using the interpolation function explained
before, the structural mass and stiffness matrices of element j
could be written as:26

kj =
1

l3

∫ 1

0

EIj(ζ)
d2[N ]

dζ2

d2[N ]T

dζ2
dζ; (29)

mj = l

∫ 1

0

µj(ζ)[N ][N ]T dζ; (30)

where ζ represented the local coordinate, E, Ij(ζ), µj(ζ), and
l are the Young modulus, second moment of area along the
element, mass per unit length of the element, and length of
element respectively.

Figure 5. Variation of thickness along the beam length.

Figure 6. Variation of thickness along the beam length.

For the case of a uniform cross-section beam, EIj and µj
were constant over the element, but for the case of a non-
uniform cross-section, EIj(ζ) and µj(ζ) were variable over
the element, and the integration was carried out on them. For
instance, the beam of constant width and parabolically varying
thickness illustrated in Fig. 5. Its thickness was given by the
following equation:14

h(x) = hbf(x) = hb

[
4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
; (31)

where
γ =

hm
hb

; (32)

and hb and hm were the minimum and maximum thickness of
the beam.

Consequently, the cross-section area, second moment of
area, and mass per unit length of the beam was:

A(x) = Abf(x); I(x) = Ibf(x); µ(x) = ρA(x);
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Figure 7. Variation of thickness of beam with constant weight based on
Eq. (36).

Figure 8. Variation of thickness of beam with constant weight based on
Eq. (37).

where Ab and Ib were the cross-section area and second mo-
ment of area of uniform beam. And ρ was the density of beam.

Since the characteristics of the beam were variable over the
length of the beam and also over the beam element, the vari-
ation of thickness of beam was implemented in the structural
mass and stiffness matrices. The thickness profile of the beam
could be any analytical function of length. As a different ex-
ample, the thickness could be as follows:

h(x) = hbf(x) = hb

[
γ + 1− 4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
;

(33)
it is illustrated in Fig. 6.

In order to have same weight in beams with a different max-
imum to minimum thickness ratio (γ parameter), we used dif-
ferent minimum thicknesses which were obtained from follow-
ing equations for Eqs. (31) and (33) respectively:

hbγ =
3hb

2 + γ
; (34)

hbγ =
3hb

1 + 2γ
. (35)

The new form of these equations was:

h(x) = hbγf(x) = hbγ

[
4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
;

(36)

h(x) = hbγf(x) = hbγ

[
γ + 1− 4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
.

(37)

Figures 7 and 8 illustrate the variation of thickness for beam of
constant weight.

3. THE SOLUTION METHOD

Now we can solve the governing equations in each case by
knowing the [M ], [K], [C], [M∗], [C∗], [K∗], and {N t} by ap-
plying the Wilson-θ method implicitly. The Wilson-θ method
is basically a linear acceleration method that a linear change
of acceleration is assumed from time t to t + ∆t. Assuming
that τ indicates the time and 0 ≤ τ ≤ θ∆t, then for this time
interval, we may write:25

t+τ Ü = Ü +
τ

θ∆t

(
t+θ∆tÜ − tÜ

)
. (38)

Table 1. Impact factor for the central displacement of a simply supported
beam under moving force.

Tf/T Exact28 Present study Lin13

0.1 1.050 1.048 1.053
0.5 1.250 1.251 1.252
1.0 1.707 1.705 1.705

1.234 1.743 1.732 1.730
1.5 1.710 1.708 1.704
2.0 1.550 1.549 1.550

The parameter θ is a constant that must be θ ≥ 1.37 in order
to have unconditional stability. The value θ = 1.4 was used in
this case. For calculating acceleration, velocity, and displace-
ment in time t+ ∆t, the equilibrium equation, was considered
in time t + θ∆t. A load vector could be extrapolated linearly
using assumed linear acceleration change. So, the following
equation was used:

M t+θ∆tÜ + C t+θ∆tU̇ +K t+θ∆tU = t+θ∆tR; (39)

where
t+θ∆tR = tR+ θ

(
t+∆tR− tR

)
. (40)

To solve the related equation, a computer program was devel-
oped based on the mentioned numerical technique. Further-
more, in order to ensure the stability and convergence of the
solution, sufficiently small time steps were used. Based on
our results, the present method converged to the solution effi-
ciently.

4. IMPLEMENTATION AND VALIDATION

To check the present technique, some classical and well-
known problems of moving concentrated force and mass prob-
lem are presented and compared with the exact analytical so-
lution and published papers.

4.1. Simply Supported Beam Subjected to a
Moving Concentrated Force

A uniform un-damped simply supported beam of length
L = 47 in and the cross-section area of A = 7.90625 in2

was modeled with 20 beam elements. The beam had a den-
sity of ρ = 2.770 × 10−4 lbs2/in4, a modulus of elasticity
E = 15.2×106 psi, and a second moment of area I = 22.7 in4.
A concentrated force started at the left end and traveled to the
right end with a constant velocity. Figure 9 illustrates the ratio
of dynamic to static deflection (impact factor) of the center of
the beam for a different moving force velocity. Tf/T repre-
sents the ratio of the period of the first natural vibration of the
beam to a traveling time of a moving force on the beam.

Results of a similar numerical and analytical analysis by
Lin13 and Warburton28 respectively along with the present
study are summarized in Table 1. It was observed that there
was a good agreement between them.

4.2. Simply Supported Beam Subjected to a
Moving Mass

Consider a simply supported beam under a point mass in-
cluding a moving mass inertia while shear deformation and
rotary inertia of the beam were neglected. The parameters
of the problem are: L = 4.352 m, E = 2.02e11 N/m2,
I = 5.17e−7 m4, ρ = 15267 kg/m3, A = 1.31e−3 m2,
moving mass Mp = 21.8 kg, gravitational acceleration g =
9.806 m/s2, and speed of moving mass V = 27.49 m/s. In
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Figure 9. Central displacement of a simply supported beam under moving
force.

Figure 10. Time history diagram of the deflection of the mid-span, —, present
method, ◦, finite difference method.7

the present case, the beam was modeled by 40 elements and
the time history diagram of the deflection of the mid-span are
demonstrated in Fig. 10 by a solid line. Comparing the results
with those in the literature14 indicates very good agreement be-
tween the findings.

4.3. Response Of A Cantilever Beam
Subjected to a Moving Mass

The cantilever beam with a moving mass and parameters of
M = 3 lbs2/in, V = 2000 in/s, Mp/M = 1.5, L = 300 in,
and EI = 6.81 × 109 lbin2 was analyzed by an analytical-
numerical method13 and determined the dynamic behavior of
the beam. This beam was modeled by 40 beam elements and a
0.001 time step was used to solve the problem by the Wilson-θ
method. Figure 11 illustrates a deflection of the beam’s end
point and was obtained by two methods.

5. NUMERICAL RESULTS AND DISCUSSION

The behavior of a non-uniform cross-section beam carrying
a moving load under different boundary conditions and vehi-
cle body vibration, was analyzed. Using the parameter values:
(1) Beam: E = 2.02e11 N/m2, ρ = 7800 kg/m3, L = 10 m,
I = 0.15 m4, c = 1700 Ns/m; (2) Vehicle: ms = 1700 kg,
mt1 = 80 kg, mt2 = 130 kg, J = 3442.3 kgm2, b1 = 1.2 m,

Figure 11. Time history diagram of the deflection of the end point of the beam,
—, present method, ◦, analytical–numerical method.6

Figure 12. Central displacement of a simply supported non-uniform cross-
section beam under moving mass without inertia effect.

b2 = 1.6 m, d1 = 0.42 m, d2 = 1.15 m, k1 = 66800 N/m,
k2 = 18600 N/m, kt1 = kt2 = 110000 N/m, c1 = 1100 Ns/m,
c2 = 1000 Ns/m, ct1 = ct2 = 14 Ns/m; and with a variable
cross-section, the deflection, natural frequency, and longitudi-
nal stress along the beam have been calculated.

Dynamic responses of the beam under moving mass with
and without mass inertia effect for simply supported boundary
conditions are illustrated in Figs. 12 and 13. It can be observed
in these figures that increasing the ratio of maximum to min-
imum thickness of beam (γ) for thickness profile of Eq. (37)
keeping the total mass of the beam constant, the mid-span de-
flection of beam would decrease considerably.

By increasing γ from 1 (uniform cross–section) to 1.9, the
mid-span deflection decreased about 30% for the simply sup-
ported beam. The variation of maximum deflection of beam
with respect to γ for some constant velocities is illustrated in
Fig. 14. Also as a result of increasing γ, the natural frequencies
of beam increased. The variation of the first natural frequency
for the simply supported boundary condition is illustrated in
Fig. 15. It should be noted that in this analysis, the total mass
of the beam was kept constant.

Changing the simply supported boundary conditions of the
beam to clamped, the results are obtained as Fig. 16. In this
case, the thickness profile was assumed to be that of Eq. (36).
This profile was shown to be less effective for the clamped
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Figure 13. Central displacement of a simply supported non-uniform cross-
section beam under moving mass including inertia effect.

Figure 14. Maximum central deflection of simply supported beam under mov-
ing mass versus variation of thickness.

beam deflection than that of the simply supported beam. Im-
provement in this case was about 7%.

The effect of γ parameter on deflection of mid-span of the
beam at various speeds of the load is illustrated in Fig. 17. It
was clear that there existed a point, approximately γ = 1.8,
at which the deflection of the beam would be minimized. The
variation of first natural frequency for clamped boundary con-
ditions can also be seen in Fig. 18.

In order to observe the effect of mass velocity and inertia ef-
fect, the maximum deflection of the beam with and without the
mass inertia effect versus the ratio of the period of the first nat-
ural vibration of the beam to the traveling time of the moving
force on the beam (indicating velocity), was plotted in Figs. 19
and 20 for simply supported and clamped boundary conditions.
It was clear that the difference between the maximum deflec-
tion of the beam for cases of moving force and moving mass
was considerable at high speeds. The maximum deflection of
the beam was achieved when the ratio of traveling time of load
to the first natural period of the beam was about 1.23. The ve-
locity of the force in this case was called critical velocity. A
similar effect could be observed for the mass velocity. In this
case, the critical speed depended on the ratio of the moving
mass to the beam mass.

The transient response of the bounce motion of the vehi-
cle body versus the vehicle position on the beam for different

Figure 15. Minimum frequency of simply supported beam under moving mass
versus variation of thickness.

Figure 16. Central displacement of clamped non-uniform cross-section beam
under moving mass.

values of the vehicle speed using half-car model is shown in
Fig. 21.

It was clear that as the speed of vehicle varied, the vibration
generated at the beam and vehicle body were considerably af-
fected. The same analysis could be done for the SQC model. In
this case, the beam parameters were kept the same and equiv-
alent values for both SQC and half-car models were used as
follows: M2 = ms, M1 = mt1 + mt2, K1 = kt1 + kt2,
K2 = k1 + k2, C1 = ct1 + ct2, C2 = c1 + c2. Results of
SQC simulation are depicted in Fig. 22. It could be concluded
that the use of the half-car model provides more useful data
for both vehicle dynamics and beam characteristics compared
with SQC model.

As load proceeds along the beam, a maximum longitudinal
stress occurs depending on the position of the load and con-
figuration of the beam cross-section (γ parameter). Figure 23
presents the maximum stress along the simply supported beam
versus variation of a cross-section based on Eq. (37) for each
pass of the force at different speed of the load. It was clear that
as the γ parameter increased, the maximum stress decreased,
while for a specified γ, as velocity increased, the maximum
stress also increased.

For some, specified γ maximum longitudinal stress at each
cross-section is shown along the simply supported beam in
Fig. 24. It was clear that in a uniform beam, maximum stress
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Figure 17. Maximum central deflection of simply supported beam under mov-
ing mass versus variation of thickness.

Figure 18. Minimum frequency of clamped beam versus variation of
thickness.

occured around the mid-span of the beam. As γ increased, the
stress distribution from a quadratic form tended to be in a more
uniform shape. This was true when the γ parameter varied be-
tween 1 and 2.5; as γ increased, a reverse situation could be
seen.

The same investigation was conducted for a clamped beam
using the thickness profile of Eq. (36). These results are illus-
trated in Figs. 25 and 26.

In order to present the time history of the bending longi-
tudinal stress of each point along the beam, the waterfall de-
piction for a uniform and non-uniform cross-section beam are
presented in Figs. 27 and 28 respectively. It was clear that the
maximum stress was reduced considerably and higher unifor-
mity was achieved in the non-uniform cross-section beam.

6. CONCLUSIONS

The problem of a non-uniform cross-section beam with dif-
ferent boundary conditions subjected to moving loads, such as
a moving concentrated mass, a simple quarter-car (SQC) pla-
nar model, and a two-axle dynamic system with four DOF by
developing the derivation of characteristic equations and in-
cluding the effect of structural damping and moving load iner-
tia on the beam, have been considered. Also, the dynamic de-
flection of the beam, critical speed of the moving vehicle, and
distribution of maximum longitudinal stress along the beam is

Figure 19. Impact factor for the central displacement of a simply supported
beam. Tf/T is ratio of first natural period of beam vibration to traveling time.

Figure 20. Impact factor for the central displacement of a clamped beam.
Tf/T is ratio of first natural period of beam vibration to traveling time.

investigated. The effects of variation of a cross-section and
moving load parameters on the deflection, natural frequencies,
and longitudinal stresses of the beam are also investigated. Ad-
ditionally, the interaction of vehicle body vibration and support
structure is considered. The achieved model can be applied for
a general variety of such problems by using the efficient solu-
tion method implemented for solving governing equations.

The obtained results indicate that using a beam of parabol-
ically varying thickness with a constant weight can decrease
the maximum deflection and stresses along the beam while in-
creasing the natural frequencies of the beam, which can be use-
ful in optimizing the design of support structure. The effect of
moving mass inertia at high velocity of moving vehicle is also
investigated and the findings indicate that the effect of inertia
is significant at high speeds.
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