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In this study, nonlinear vibrations of a slightly curved beam of arbitrary rise functions is handled in case it rests
on multiple springs. The beam is simply supported on both ends and is restricted in longitudinal directions using
the supports. Thus, the equations of motion have nonlinearities due to elongations during vibrations. The method
of multiple scales (MMS), a perturbation technique, is used to solve the integro-differential equation analytically.
Primary and 3 to 1 internal resonance cases are taken into account during steady-state vibrations. Assuming the rise
functions are sinusoidal in numerical analysis, the natural frequencies are calculated exactly for different spring
numbers, spring coefficients, and spring locations. Frequency-amplitude graphs and frequency-response graphs
are plotted by using amplitude-phase modulation equations.

1. INTRODUCTION

Some beam elements of bridges, rails, and automotive in-
dustries are designed for the purpose of preventing impact by
modern engineers. One of these elements is a curved beam
model resting on an elastic foundation. Matter considered in
these models, which have nonlinear behavior, is the resonance
case of the system. If the system comes into a resonance state,
the amplitudes increase dangerously, which is an unwanted
case. Nonlinear problems of the model must be examined in
order to prevent these cases that may occur at any time during
vibration. For this reason, the linear part of the system must
first be solved analytically and then the effects of nonlinearity
should be added to the solutions. Thus, nonlinear vibrations of
the system can be investigated. Before introducing the back-
ground of curved or pre-buckled beams, some studies related
to our investigation must be mentined. Nayfeh and Mook re-
viewed and presented relevant works to the field up to 1979 in
their book.1 Cha derived governing equations for a linear elas-
tica carrying a number of lumped masses, springs, and viscous
dampers.2 Albarracn et al. studied free vibrations of a uni-
form beam with intermediate constraints and ends that were
elastically restrained against rotation and translation.3 Wang
and Qiao derived a general solution of the modal displacement
of a beam with arbitrary discontinuities.4 Wiedemann studied
an arbitrary system of Euler-Bernoulli beams that were inter-
connected by arbitrary joints and subject to arbitrary bound-
ary conditions.5 Huang and Chen studied structures with mul-
tiple attachments that were subjected to axial forces and os-
cillations.6 Regarding some assumptions in their model, they
examined the remaining model with the pure buckling prob-
lem, the free vibration problem, and the general eigenvalue
problem. Kelly and Srinivas investigated elastically connected
axially-loaded beams, which may be attached to a Winkler
foundation.7 Wang et al. studied the nonlinear interaction of

an inextensional beam on an elastic foundation with a three-to-
one internal resonance.8

In some studies, the beam was assumed to have a rising
function so the curvature effect on vibrations of the beam could
be investigated. Some of these studies were such that Rehfield
derived the equations of motion of a shallow arch with an ar-
bitrary rise function and studied the free vibrations approxi-
mately.9 Singh and Ali studied a moderately thick clamped
beam with a sinusoidal rise function by adding the effects of
transverse shears and rotary inertia.10 Hajianmaleki and Qatu
focused on the last two decades of research (1989-2012) done
on vibration analysis.11 They reviewed various beam theo-
ries such as thin (or classical), thick (or shear deformation),
layerwise beam theories, and different methods for solving
equations of motion, such as the transfer matrix method and
the finite element method. Tien et al. studied the dynamics
of a shallow arch subjected to harmonic excitation.12 In the
presence of both external and 1:1 internal resonance, he ex-
amined the bifurcation behavior of the shallow arch system.
Using two beam elements, one has three degree-of-freedom
and other four. Krishnan and Suresh studied the static and
free vibrations of curved beams.13 Oz et al. examined a sim-
ply supported and slightly curved beam resting on an elas-
tic foundation with cubic non-linearities.14 Considering free-
undamped and forced-damped vibrations, they analyzed the ef-
fects of the elastic foundation, axial stretching, and curvature
on the vibrations of the beams. Using a systematic theoret-
ical procedure, Lin presented a static analysis of extensional
circular-curved Timoshenko beams with general nonhomoge-
neous elastic boundary conditions and found the generalized
Green function of differential equations.15 For a general state
of non-uniform initial stress, Chen and Shen derived the virtual
work expressions of initially stressed curved beams.16 They
investigated the influence of arc segment angles, elastic foun-
dations, and initial stresses on natural frequencies. Nayfeh et
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al. studied how to construct the nonlinear normal modes of a
fixed-fixed buckled beam about its first post-buckling mode.17

Considering the cases of three-to-one and one-to-one inter-
nal resonances to solve the problem, they used the method
of multiple scales. Tarnopolskaya et al. examined the vibra-
tional behavior of beams with arbitrarily varying curvature and
cross-section in the lower region of the spectrum.18 They ex-
amined whether or not the mode transition took place for a
particular type of beam curvature and cross-section. Lestari
and Hanagud found closed-form exact solutions to the prob-
lem of nonlinear vibrations of buckled beams.19 They as-
sumed that their model consisted of axial springs in spite of
it having general support conditions. Lacarbonara et al. de-
veloped the open-loop nonlinear control strategy and applied
it to a hinged hinged shallow arch.20 They assumed the beam
had been subjected to a longitudinal end-displacement with a
frequency that was twice the frequency of the second mode
(principal parametric resonance). Lacarbonara and Rega stud-
ied general conditions for orthogonality of the non-linear nor-
mal modes of one-dimensional systems with arbitrary linear,
quadratic, and cubic non-linearities.21 Considering the cases of
two-to-one, three-to-one, and one-to-one internal resonances
in a class of shallow symmetric structural systems, they ex-
amined undamped and unforced vibrations. Wu and Chiang
presented a simple, straightforward, and systematic technique
to derive the displacement functions for the radial, or normal,
tangential and rotational displacements of an arch element.22

In their study, static equilibrium equations were investigated
further. Adessi et al. studied the regime of high pre-stressed
beams.23 They examined post-buckling configurations of the
beam considering a lumped mass that is rigidly clamped to
the beam at an arbitrary point along its span and assuming
different boundary conditions (simply supported and hinged-
hinged). Lacarbonara et al. investigated the non-linear one-
to-one interactions excited by an external primary-resonance
base acceleration of a hinged-hinged imperfect beam with a
torsional spring at one end and possessing veering between
the frequencies of the lowest two modes.24 Ecsedi and Dluhi
studied a non-homogeneous curved beam formulated in cylin-
drical coordinates and examined the static and dynamic anal-
ysis of the curved beam.25 Lee et al. studied how to de-
rive the equations of motion for a clampedclamped curved
beam subjected to transverse sinusoidal loads. By using the
assumed mode, the Galerkin method, and assuming a single
mode approach, they determined the effect of parametric ex-
citation near the symmetric mode resonance frequency.26 Oz
and Das investigated natural frequencies of a circular curved
beam with a Mode 1 open transverse crack by using FEM.27 Oz
and Pakdemirli studied vibrations of simply supported shallow
curved beams.28 Assuming the curvature of the beam had si-
nusoidal and parabolic functions, they searched whether or not
there were 2:1 internal resonances. By assuming the sinusoidal
rising function for the initial curvature of the beam, Erdogan et
al. studied nonlinear vibrations of curved beams carrying a
concentrated mass and multiple concentrated masses.29, 30 Xi-
uchang et al. proposed a wave approach to investigate the wave

Figure 1. A curved beam resting on multiple springs.

propagation in the structural waveguides with curved beam
components.31

In the recent years, some researchers focused on the con-
tinua resting on partially supported elastic foundation/multiple
springs. These studies were such that Stncioiu et al. studied
the dynamics of a two-axle system travelling along a continu-
ous elastic beam resting on elastic supports modeled as linear
springs.32 During its travel along the vibrating beam, effects
resulting from the presence of intermediate elastic supports
were examined. Motaghian et al. proposed an exact solution
to the free vibration problem of beams having mixed boundary
conditions.33 By using the Fourier series, they solved govern-
ing differential equations of beams that had underlying elas-
tic springs, which occupied a particular length of the beam.
Motaghian et al. proposed an exact solution to the free vibra-
tion problem of plates having mixed boundary conditions.34

By using the Fourier series, they solved governing differential
equations of plates that have underlying elastic springs which
occupy an arbitrary area of the plate. Ghayesh investigated
the free and forced vibrations of a Kelving-Voigt viscoelastic
beam supported by a nonlinear spring.35 Linear and nonlinear
frequencies of the system were analyzed by considering the
nonlinear spring effect. Sari and Pakdemirli studied the dy-
namic behavior of a slightly curved microbeam that had non-
ideal boundary conditions.36 They also presented references
for the choice of resonable resonant conditions, design appli-
cations, and industrial applications of such systems.

In this work, nonlinear vibrations of a curved beam resting
on multiple springs were investigated. The beam was assumed
to have an arbitrarily curvature function and simply supported
at both ends. To seek an analytical solution to the problem,
the method of multiple scales (MMS), a perturbation method,
was used. Primary and 3:1 internal resonance cases were stud-
ied in detail. Assuming the curvature of the beam was a si-
nusoidal function, the numerical solutions were obtained for
steady-state phase of vibrations.

2. FORMULATION OF THE PROBLEM

In Fig. 1, the curved beam-spring system is restricted on
both ends with immovable supports. In such a system, ŵm
and ûm denote transversal and longitudinal displacements re-
spectively. Assuming that the ratio of the beam’s maximum
amplitude to its projected lenght L is equal to 1/10, let us keep
in mind that the beam’s curvature function is in the Ŷ0 arising
function. Let us assume that n number of springs is attached
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under the beam, km is the spring coefficient, and x̂m is the dis-
tance of these springs from the immovable end at the left-hand
side. In order to analyize the equations of motion within this
system, we used its potential (U ) and kinetic (T ) energies as
defined below:

U =

1

2

n∑
m=0

E ·A ·
x̂m+1∫
x̂m

(
û′m+1 + Ŷ ′0 · ŵ′m+1 +

1

2
· ŵ′2m+1

)2

dx̂

+
1

2
·

n∑
m=0

E · I ·
x̂m+1∫
x̂m

ŵ′′2m+1dx̂

+
1

2
·

n∑
m=0

km+1 · ŵ2
m+1

∣∣
xm+1=x̂m+1,t=t̂

; (1)

T =
1

2

n∑
m=0

ρ · A ·
x̂m+1∫
x̂m

˙̂w2
m+1 dx̂,

x̂0 = 0, x̂n+1 = L, m = 0, 1...n. (2)

In Eqs. (1) and (2), E is the young modulus, ρ is the density,
A is the cross sectional area of the beam, and I is the moment
of inertia of the beam cross-section with respect to the neutral
axis. (·) and (’) denote differentiations with respect to the time
t and the spatial variable x respectively.

Inserting these energy terms defined Eqs. (1) and (2) into
the Hamilton Principle formulation as shown below:

δ

t̂2∫
t̂1

(T − U) dt̂ = 0; (3)

and by invoking the necessary calculations, longitudinal dis-
placement term (um) could be eliminated from the equations
of motion in the tranverse direction. Thus, the equations of
motion can be written as follows:

ρ ·A ·¨̂wm+1 + E · I · ŵıvm+1 =

E ·A
L
·

 n∑
r=0

x̂r+1∫
x̂r

{
Ŷ ′0 · ŵ′r+1 +

1

2
· ŵ′2r+1

}
dx̂


·
(
Ŷ ′′0 + ŵ′′m+1

)
. (4)

In Eq. (4), the equation of motion for the system consists
of n + 1 equations in number. The equations of the motion
and boundary conditions were dependent on the size of the
system and the materials used. In order to make them inde-
pendent from the dimensional parameters, the following defi-

nitions must be made:

wp = ŵp/L, Y0 = Ŷ0

/
L, x = x̂/L,

t =

√
E · I

ρ ·A · L2
. t̂, I = r2 ·A,

ηp = x̂p/L, τp =
kp · L3

E · I
; (5)

where r is the radius of gyration of the beam’s cross section,
τm is the stiffness ratio between the spring and the beam, and
ηm is the dimensionless distance of the spring from left hand-
side support. Adding dimensionless damping (−→µ ) and external
forcing (

−→
F ) terms after non-dimensionalization, equations of

motion via boundary and continuity conditions can be rewrit-
ten as follows:

ẅm+1 + wıvm+1 + 2 · −→µ · ẇm+1 = n∑
r=0

ηr+1∫
ηr

{
Y ′0 · w′r+1 +

1

2
· w′2r+1

}
dx


· (Y ′′0 + w′′m+1) +

−→
F m+1 · cos (Ω · t) ; (6)

wp|x=ηp = wp+1|x=ηp ,

w′p|x=ηp = w′p+1|x=ηp ,

w′′p|x=ηp = w′′p+1|x=ηp ,

(w′′′p − w′′′p+1)|x=ηp = τp · wp|x=ηp
w1|x=η0 = w′′1|x=η0 = wn+1|x=ηn+1

= w′′n+1|x=ηn+1
= 0

η0 = 0,

ηn+1 = 1

p = 1, 2...n; (7)

where Ω is the frequency of the external forcing.

3. ANALYTICAL SOLUTIONS

3.1. Multiple Scales Method - A Perturbation
Method

In this section, the method of multiple scales
(MMS)(Nayfeh37, 38) will be applied to the partial differ-
ential equations and corresponding boundary conditions
directly in order to search approximate solutions to the
problem. Eq. (6) is assumed to have an expansion solution as
follows:

wp+1 (x , t ; ε) =

3∑
j=1

εj · w(p+1)j (x , T0 , T1 , T2); (8)

where ε is a small bookkeeping parameter artificially inserted
into the equations, T0 = t is the fast time scale, and T1 = ε · t
and T2 = ε2 · t were the slow time scales in MMS. In order
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to counter the effects of the nonlinear terms via the same order
of damping and forcing, the forcing and damping terms were
ordered as follows:

−→µ = ε2 · µ, ~Fp+1 = ε3 · Fp+1. (9)

Let us assume the curvature function of the beam as Y0 ≈
O(1), which means that its order corresponds to first order of
the general system. Under this assumption, inserting Eqs. (8)
and (9) into Eq. (6) and separating the terms of each order, one
finds the following equations: Order ε(j = 1):

D2
0 ·w(m+1)1+wıv(m+1)1 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1dx

 ·Y ′′0 .
(10)

Order ε2(j = 2):

D2
0 · w(m+1)2 + wıv(m+1)2 =

− 2 ·D0 · D1 · w(m+1)1

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)2 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

w′2(r+1)1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1 dx

 · w′′(m+1)1. (11)

Order ε3(j = 3):

D2
0 · w(m+1)3 + wıv(m+1)3 =

− 2 · µ ·D0 · w(m+1)1 − 2 · D0 ·D1 · w(m+1)2

−
(
D2

1 + 2 · D0 ·D2

)
· w(m+1)1 + Fm+1 · cos (Ω . t)

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)3 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

w′(r+1)1 · w′(r+1)2 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)2 dx

 · w′′(r+1)1

+
1

2
·


n∑
r=0

ηr+1∫
ηr

w′2(r+1)1 dx

 · w′′(p+1)1

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1dx

 · w′′(p+1)2; (12)

where Dn ≡ ∂/∂Tn is the derivative with respect to time and
given in Appendix (A.1). The conditions that were necessary

for solving Eqs. (10) to (12), are given as below:

wpj |x=ηp = w(p+1)j

∣∣
x=ηp

,

w′pj |x=ηp = w′(p+1)j

∣∣
x=ηp

,

w′′pj |x=ηp = w′′(p+1)j

∣∣
x=ηp

,(
w′′′pj − w′′′(p+1)j

)∣∣
x=ηp

= τp · wpj |x=ηp
w1j |x=η0 = w′′1j |x=η0 = w(n+1)j

∣∣
x=ηn+1

=

w′′(n+1)j

∣∣
x=ηn+1

= 0

j = 1, 2, 3. (13)

Eq. (10) from order ε1 corresponds to the linear problem of the
system and other orders in Eqs. (11) and (12) to the nonlinear
problem. These cases were investigated seperately when these
equations were being solved. Firstly, solutions of the primary
resonance case were searched. Secondly, 3:1 resonance case
has been investigated by assuming there is three-to-one ratio
between any two natural frequencies.

3.2. Primary Resonance
Let us assume that order ε in Eq. (10) accepts the following

solution:

w(m+1)1 (x , T0 , T1 , T2) =[
A (T1 , T2) · ei . ω . T0 + cc

]
· Ym+1 (x) . (14)

In Eq. (14), cc is the complex conjugate of the preceding
terms, ω is the natural frequency, and Ym+1 is the function
describing the mode shape. By inserting Eq. (14) into Eqs. (10)
and (13) and by assuming that j = 1, one obtains the following
differential equations and corresponding conditions:

Y ıvm+1 − ω2 . Ym+1 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 · dx

 · Y ′′0
Y1|x=η0 = Y ′′1|x=η0 = Yn+1|x=ηn+1

= Y ′′n+1|x=ηn+1
= 0

Yp|x=ηp = Yp+1|x=ηp ,

Y ′p|x=ηp = Y ′p+1|x=ηp ,

Y ′′p|x=ηp = Y ′′p+1|x=ηp ,

(Y ′′′p − Y ′′′p+1 − τp · Yp)|x=ηp = 0. (15)

To be able to find the solution at the order ε2 of the perturbation
series, equality of D1 · A(T1, T2) = 0 must be provided. This
results in assumption of A = A(T2) and means that there is
no dependence on T1 at this order. By inserting Eq. (14) into
Eq. (11), the following solution is suitable at this order:

w(m+1)2 (x, T2) =[
A2 · e2 . i . ω . T0 + cc

]
·ϕ(m+1)1 (x)+2 ·A·Ā·ϕ(m+1)2 (x) .

(16)

Substituting Eq. (16) into both Eq. (11) and (13) while keeping
in mind that j = 2, yields the following equations and condi-
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tions:

ϕıv(m+1)1 − 4 · ω2 · ϕ(m+1)1 =
n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx

 · Y ′′m+1; (17)

ϕıv(m+1)2 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx

 · Y ′′m+1; (18)

ϕph|x=ηp = ϕ(p+1)h

∣∣
x=ηp

,

ϕ′ph
∣∣
x=ηp

= ϕ′(p+1)h

∣∣∣
x=ηp

,

ϕ′′ph
∣∣
x=ηp

= ϕ′′(p+1)h

∣∣∣
x=ηp

,(
ϕ′′′ph − ϕ′′′(p+1)h − τp · ϕph

)∣∣∣
x=ηp

= 0

ϕ1h|x=η0 = ϕ′′1h|x=η0
= ϕ(n+1)h

∣∣
x=ηn+1

= ϕ′′(n+1)h

∣∣∣
x=ηn+1

= 0

h = 1, 2. (19)

At the last order (ε3) of the perturbation series, having substi-
tuted Eqs. (14) to (16) into Eq. (12), the resulting equation will
accept the solution of the following separated form as secular
and nonsecular terms:

w(m+1)3 (x , T0 , T2) =

φm+1 (x , T2) · ei . ω . T0 +Wm+1 (x , T2) + cc; (20)

where Wm+1(x, T2) corresponds to the solution for the non-
secular terms, and cc corresponds to the complex conjugate of
the preceding terms. Let us take the excitation frequency as
below:

Ω = ω + ε2 · σ; (21)

where σ is the detuning parameter denoting closeness of the
forcing frequency to the natural frequency. By inserting
Eqs. (20) and (21) into Eqs. (12) and (13), taking in mind
j = 3, and eliminating the secular terms, one obtains the dif-
ferential equations and conditions in Eqs. (22) and (23) (see
top of the next page).

In order to have a solution for Eqs. (22) and (23), a solvabil-
ity condition must be satisfied for this nonhomogenous equa-
tion (see details in Refs. Nayfeh37, 38). Applying the solvability
condition for Eqs. (22) and (23), one obtains following equa-
tions:

2 · i · ω .
(
Ȧ+ µ · A

)
+A2 · Ā · Γ =

1

2
· f · ei·σ·T2 . (24)

In Appendix (A.2), one can see normalization and simplifi-
cation done for Eq (24).

By substituting the polar forms, we get:

A (T2) =
1

2
· a · ei·θ, Ā (T2) =

1

2
·a · e−i·θ, θ = θ (T2) ;

(25)
into Eq. (24), and separating real and imaginary parts, one ob-
tains following equations:

µ · a+ ȧ =
1

2 · . ω
·f ·sinγ, −a · θ̇+λ ·a3 =

1

2 · ω
·f ·cos γ.

(26)
These equations can be defined as amplitude-phase modulation
equations and consist of the real amplitude a and phase θ. The
simplifications that were done can be seen in Appendix (A.3).
Here, we have defined λ as nonlinearity effect of the system.

In undamped free vibrations, the terms f , µ, and σ were
taken as zero. a = a0 is assumed because ȧ = 0 is taken for
the steady-state solutions. This indicates that the amplitude of
vibration is constant. Therefore, the nonlinear frequency was
defined as:

ωnl = ω + θ̇ = ω + λ · a20. (27)

In damped-forced vibrations for the steady-state region, ȧ
and γ̇ can be taken as zero and denote no change in amplitude
and phase with time. Thus, eliminating γ from Eq. (26), one
can obtain the detuning parameter (σ) as below:

σ = λ · a20 ±

√(
f

2 · a0 · ω

)2

− µ2. (28)

3.3. Three to One Internal Resonance
In this section, the 3:1 internal resonance case between the

kth and sth mode of the system will be discussed. For the so-
lution, a two-mode expansion is considered because of the in-
teraction between the two modes. In Eq. (9), the first order of
the perturbation series is assumed to have a solution as below:

w(m+1)1 (x , T0 , T1 , T2) =[
Ak (T1 , T2) · ei ·ωk ·T0 + cc

]
· Y(m+1)k (x)

+
[
As (T1 , T2) · ei·ωs·T0 + cc

]
· Y(m+1)s (x) . (29)

Inserting this solution into Eqs. (10) and (13), one obtains
the following equations and conditions belonging to the kth
and sth modes as simplified in letter g:

Y ıv(m+1)g − ω
2
g · Y(m+1)g =

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)g · dx

 · Y ′′0; (30)
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φıvm+1 − ω2 · φm+1 −


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′r+1 dx

 · Y ′′0 = −2 · i · ω ·
(
Ȧ+ µ · A

)
· Ym+1 +

1

2
· Fm+1 · ei.σ.T2

+A2 Ā ·

[
n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx ·
[
ϕ′′(m+1)1 + 2 · ϕ′′(m+1)2

]

+


n∑
r=0

ηr+1∫
ηr

Y ′r+1 · ϕ′(r+1)1 dx+ 2 ·
n∑
r=0

ηr+1∫
ηr

Y ′r+1 · ϕ′(r+1)2dx

 · Y ′′0
+

3

2
·
n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx+

n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx+ 2 ·
n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′m+1

]
; (22)

φp|x=ηp = φp+1|x=ηp , φ′p
∣∣
x=ηp

= φ′p+1

∣∣
x=ηp

, φ′′p
∣∣
x=ηp

= φ′′p+1

∣∣
x=ηp

,
(
φ′′′p − φ′′′p+1 − τp · φp

)∣∣
x=ηp

= 0,

φ1|x=η0 = φ1
′′∣∣
x=η0

= φn+1|x=ηn+1
= φn+1

′′∣∣
x=ηn+1

= 0. (23)

Ypg|x=ηp = Y(p+1)g

∣∣
x=ηp

,

Y ′pg|x=ηp = Y ′(p+1)g

∣∣
x=ηp

,

Y ′′pg|x=ηp = Y ′′(p+1)g

∣∣
x=ηp

,(
Y ′′′pg − Y ′′′(p+1)g − τp · Ypg

)∣∣∣
x=ηp

= 0,

Y1g|x=η0 = Y ′′1g|x=η0 = Y(n+1)g

∣∣
x=ηn+1

= Y ′′(n+1)g

∣∣
x=ηn+1

= 0,

g = k, s. (31)

In order to obtain the solutions at the order ε2 of perturba-
tion series, it should be assumed that Ak = Ak(T2), As =

Am(T2). This necessity requires no dependence on T1 in this
order. Inserting Eqs. (30) and (31) into Eq. (11), the equation
at order ε2 has the following solution:

w(m+1)2 (x , T2) =[
A2
k · e2· i·ωk·T0 + cc

]
· ϕ(m+1)1 (x)

+
[
A2
s · e2·i·ωs·T0 + cc

]
· ϕ(m+1)2 (x)

+
[
Ak ·As · ei·(ωk+ωs) ·T0 + cc

]
· ϕ(m+1)3 (x)

+
[
As ·Ak · ei·(ωs−ωk)·T0 + cc

]
· ϕ(m+1)4 (x)

+ 2 ·As ·As · ϕ(m+1)5 (x)

+ 2 ·Ak ·Ak · ϕ(m+1)6 (x) . (32)

Inserting Eq. (32) into Eqs. (11) and (13), and separating the
kth and sth modes, one can obtain the following differential
equations:

ϕıv(m+1)1 − κ1
4 · ϕ(m+1)1

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)k dx

 ,

· Y0′′


s∑
r=0

ηr+1∫
ηr

Y0
′ · Y(r+1)k

′ dx

 · Y(m+1)k

′′
;

ϕıv(m+1)2 − κ2
4 · ϕ(m+1)2

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)s,

ϕıv(m+1)3 − κ3
4 · ϕ(m+1)3

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)3 dx

 · Y ′′0
=


s∑
r=0

ηr+1∫
ηr

Y ′(r+1)k · Y ′(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)s
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+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)k,

ϕıv(m+1)4 − κ4
4 · ϕ(m+1)4

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)4 dx

 · Y ′′0
=


s∑
r=0

ηr+1∫
ηr

Y ′(r+1)k · Y ′(r+1)s · dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)s

+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)k,

ϕıv(m+1)5 −


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)5 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)k dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)k,

ϕıv(m+1)6 −


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)6 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s · dx

 · Y ′′(m+1)s. (33)

The following conditions were also obtained:

ϕpv|x=ηp = ϕ(p+1)v

∣∣
x=ηp

,

ϕ′pv
∣∣
x=ηp

= ϕ′(p+1)v

∣∣∣
x=ηp

,

ϕ′′pv
∣∣
x=ηp

= ϕ′′(p+1)v

∣∣∣
x=ηp

,(
ϕ′′′p1 − ϕ′′′(p+1)1 − τp · ϕp1

)∣∣∣
x=ηp

= 0

ϕ1v|x=η0
= ϕ′′1v|x=η0 = ϕ(s+1)v

∣∣
x=ηs+1

= ϕ′′(s+1)v

∣∣∣
x=ηs+1

= 0

v = 1..6. (34)

The solutions at order ε3 were similar to those of the first
order and can be written as:

w(m+1)3 (x, T0, T2)

= φ(m+1)k (x, T2) · ei·ωk ·T0

+ φ(m+1)s (x, T2) · ei ·ωs ·T0

+Wm+1 (x, T0, T2) + cc. (35)

Thus, let us assume that the forcing frequency is close to the
natural frequency of the kth mode, and there is an approximate
ratio as three-to-one between the kth and sth modes as:

Ω = ωk + ε2 · σ, ωs = 3 · ωk + ε2 · q. (36)

In this case, by substituting Eqs. (35) and (36) into Eqs. (12)
and (13) and eliminating non-secular terms, one obtains the
following equations and conditions:

φıv(m+1)k − ω
2
k · φ(m+1)k

−


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′(r+1)k dx

 · Y ′′0
= −2 · i · ωk ·

(
Ȧk + µ ·Ak

)
· Y(m+1)k +

1

2
· ei·σ·T2 ·Fm+1

+A2
k ·Ak · Γ(m+1)1

(k) +As ·As ·Ak · Γ(m+1)2
(k)

+Ak
2 ·As · ei·q·T2 · Γ(m+1)3

(k); (37)

φıv(m+1)s − ω
2
s · φ(m+1)s

−


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′(r+1)s dx

 · Y ′′0
= −2 · i · ωs ·

(
Ȧs + µ ·As

)
· Y(m+1)s

+As
2 ·As · Γ(m+1)1

(s) +Ak ·Ak ·As · Γ(m+1)2
(s)

+Ak
3 · e−i·q·T2 · Γ(m+1)3

(s); (38)

φpg|x=ηp = φ(p+1)g

∣∣
x=ηp

,

φ′pg
∣∣
x=ηp

= φ′(p+1)g

∣∣∣
x=ηp

,

φ′′pg
∣∣
x=ηp

= φ′′(p+1)g

∣∣∣
x=ηp

,(
φ′′′pg − φ′′′(p+1)g − τp · φpg

)∣∣∣
x=ηp

= 0,

φ1g|x=η0 = φ′′1g
∣∣
x=η0

= φ(n+1)g

∣∣
x=ηn+1

= φ′′(n+1)g

∣∣∣
x=ηn+1

= 0;

g = k, s. (39)

Γ’s in the above equations are defined in Appendix (??).
If the solvability condition (see Nayfeh for further de-

tails37, 38) is applied in order to solve Eqs. (37), (38) and (39)
the following equations were obtained:
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2 · i·ωk ·
(
Ȧk + µ ·Ak

)
−λ1(k)·Ak2 ·Ak−λ2(k)·As ·As·Ak

− λ3(k) ·Ak
2 ·As · ei·q·T2 =

1

2
· f.ei·σ·T2 ,

2 ·i ·ωs ·
(
Ȧs + µ ·As

)
−λ1(s) ·As2 ·As−λ2(s) ·Ak ·Ak ·As

− λ3(s) · Ak3 · e−i ·q·T2 = 0. (40)

In Appendix (A.5), one can see normalizations and simpli-
fications done for Eq. (40). In order to rewrite the equations
in real amplitude form, the following complex transformations
were used:

Ak =
1

2
· ak · ei ·θk , As =

1

2
· as · ei ·θs . (41)

Using Eq. (41), the following equations were obtained:

i · ωk · (ȧk + µ · ak)− ωk · ak · θ̇k −
λ1

(k)

8
· ak3

− λ2
(k)

8
· as2 · ak −

λ3
(k)

8
· ak2 · as · ei·β =

1

2
· f.ei · γ ;

i · ωs · (ȧs + µ · as)− ωs · as · θ̇s −
λ1

(s)

8
· as3

− λ2
(s)

8
· ak2 · as −

λ3
(s)

8
· ak3 · e−i · β = 0. (42)

Simplifications for γ and β done here can be seen in Ap-
pendix (A.6). By separating the real and imaginary parts of
Eq. (42), one obtains the following four equations:

ωk · (ȧk + µ · ak)− λ3
(k)

8
· ak2 · as · sinβ =

1

2
· f · sin γ,

ωs · (ȧs + µ · as) +
λ3

(s)

8
· ak3 · sinβ = 0,

− ωk · ak · (σ − γ̇)− λ1
(k)

8
· ak3 −

λ2
(k)

8
· as2 · ak

− λ3
(k)

8
· ak2 · as · cosβ =

1

2
· f · cos γ,

− ωs · as ·
(
β̇ + 3 · (σ − γ̇)− q

)
− λ1

(s)

8
· as3

− λ2
(s)

8
· ak2 · as −

λ3
(s)

8
· ak3 · cosβ = 0. (43)

Let us put the derivatives with respect to time to one side for
determining the dynamic behavior of the system:

G1 ⇒ ȧk =

{
1

2
· f · sin γ +

λ3
(k)

8
· ak2 · as · sinβ

− ωk · µ · ak

}
· 1

ωk
,

G2 ⇒ ȧs =

{
−λ3

(s)

8
· ak3 · sinβ − ωs · µ · as

}
· 1

ωs
,

G3 ⇒ γ̇ =

{
1

2
· f · cos γ +

λ1
(k)

8
· ak3 +

λ2
(k)

8
· as2 · ak

+
λ3

(k)

8
· ak2 · as · cosβ + ωk · ak · σ

}
· 1

ωk.ak
,

G4 ⇒ β̇ =

{
−λ1

(s)

8
·as3−

λ2
(s)

8
·ak2 ·as−

λ3
(s)

8
·ak3 ·cosβ

− ωs · as · (3 · (σ − γ̇)− q)

}
· 1

ωs.as
. (44)

In the steady state case of the system, it is assumed that there
is no dependence on time. Therefore, taking ȧk = ȧs = γ̇ =

β̇ = 0 in Eq. (36), the steady-state solutions can be found.
The Jacobian matrix is constructed to determine the stability
of fixed points:

∂G1

∂ak
∂G1

∂as
∂G1

∂γ
∂G1

∂β
∂G2

∂ak
∂G2

∂as
∂G2

∂γ
∂G2

∂β
∂G3

∂ak
∂G3

∂as
∂G3

∂γ
∂G3

∂β
∂G4

∂ak
∂G4

∂as
∂G4

∂γ
∂G4

∂β

 ak = ak0
as = as0
γ = γ0
β = β0

; (45)

where terms with 0 indices define fixed points of the steady
state. By evaluating the eigenvalues of the Jacobian matrix,
stability is determined. If all eigenvalues of the Jacobian ma-
trix have negative real parts, these fixed points were stable oth-
erwise unstable.

4. NUMERICAL RESULTS

Let us assume the rise function of the curved beam has si-
nusoidal variation in the numeric analysis. Taking the dimen-
sionless form of the curvature as Y0 = sin(π · x), primary and
three-to-one internal resonances were investigated in seperated
sections as given below.

4.1. Case of Primary Resonance

Natural frequencies can be found by solving the linear prob-
lem and conditions in Eq. (15). The first five natural frequen-
cies of the curved beam-spring system were given for two and
three springs in Tabs. 1 and 2 respectively. The springs (τp),
whose dimensionless sizes were selected as 10 and 100, were
assumed to be placed at arbitrary points (ηp) of the beam, mak-
ing symmetric and asymmetric cases according to spring loca-
tions in these tables.

In order to find the approximate solutions to the mathemat-
ical model, the nonlinear problems were taken into consider-
ation. For this purpose, Eq. (15), which corresponds to the
linear part of the problem, is solved first. Then, nonlinear-
ity coefficients (λ) were obtained by using Eqs. (17) and (18).
Nonlinearities (λ) of the first mode were given in the cases of
two and three springs in Tabs. 1 and 2 respectively. As seen
on these tables, nonlinearities have positive and negative signs
according to locations and magnitudes of the springs. If so, we
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Table 1. The first five natural frequencies and nonlinearity coefficients (/lambda) of the first mode for the beam resting on two springs.

η1 η2 t1 t2 ω1 ω2 ω3 ω4 ω5 λ(ω1)

10 10 12.682 39.796 88.911 157.993 246.821 - 0.7409
0.1 0.3 10 100 16.162 41.961 89.013 158.190 247.188 0.0819

100 10 13.266 40.560 89.570 158.208 247.187 - 0.5316
10 10 12.960 39.566 89.013 157.971 246.821 - 0.6339

0.1 0.5 10 100 18.498 39.566 90.039 157.971 247.188 0.2872
100 10 13.563 40.326 89.668 158.467 247.188 - 0.4377
10 10 12.688 39.795 88.911 157.993 246.821 - 0.7382

0.1 0.7 10 100 16.204 41.946 89.011 158.191 247.187 0.0868
100 10 13.318 40.545 89.567 158.509 247.187 - 0.5123
10 10 13.379 39.709 88.950 155.936 246.821 - 0.4925

0.3 0.5 10 100 18.796 39.709 89.797 157.936 247.188 0.3045
100 10 16.734 41.874 89.049 158.134 247.188 0.1503
10 10 13.125 39.934 88.848 157.957 246.821 - 0.5757

0.3 0.7 10 100 16.614 42.051 88.948 158.156 247.187 0.1354
100 100 20.116 43.788 89.047 158.356 247.553 0.3629

Figure 2. Nonlinear frequency-amplitude curves for beam resting on two
springs.

were able to do hardening or softening behaviors of the sys-
tem thanks to selecting suitable locations and magnitudes of
the springs.

Undumped-free vibration behavior of the system is best seen
in nonlinear frequency-amplitude curves. Nonlinear frequen-
cies have a parabolic relationship with the maximum ampli-
tude of the vibration as given in Eq. (27). These relations were

drawn using curves for the first mode of vibrations in Figs. 2
to 3. The effects of magnitudes and locations of the springs to
vibrations were determined through these curves.

In Fig. 2, the nonlinear frequency-amplitude curves were
drawn for the beam resting on two springs. It was assumed
that each spring had the same magnitude in Fig. 2a. By plac-
ing each of the springs in different locations, the effects of
spring locations on nonlinear frequency-amplitude curves were
drawn. In Fig. 2b, the springs were assumed to have different
magnitudes. The effects of springs that had a higher stiffness
than the others on nonlinear frequency were searched.

In Fig. 3, the nonlinear frequency-amplitude curves were
drawn for the beam resting on three springs. Using spring
stiffness at the same magnitude, different spring locations were
used for each curve in Fig. 3a. Thus, the symmetric and asym-
metric cases’ effects on nonlinear frequency were also studied.
Springs with different magnitudes were considered in Fig. 3b.
The effects of springs on nonlinear frequencies were compared
using high spring stiffness in magnitude. As seen from these
figures, increases in number and in magnitude of the springs re-
sult in higher linear and nonlinear frequencies for the system.
Selecting equal springs in magnitude in Fig. 4a and changes
via locations of springs were searched in forcing frequency-
response curves. Selecting different springs in magnitude, be-
haviors of the big one were searched in Fig. 4b.

Considering the case where there is damping and external
excitation, nonlinear vibration behavior of the system could
be understood via forcing frequency-response curves. When
f = 1 and µ = 0.1, some curves in Figs. 4 and 5 were drawn
by means of Eq. (28). In these figures, only first modes of the
tranverse vibrations were dealed. The case of two springs is
taken into account in Fig. 4.

Considering the case of the three springs, curves in Fig. 5
were plotted. By placing the springs in different locations,
symmetrical and asymmetrical cases were obtained. The ef-
fects of these cases on the curves were put forward. The max-
imum amplitudes of the vibrations decreased with increasing
magnitudes and the number of springs.
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Table 2. First five natural frequencies and nonlinearity coefficients (λ) of the first mode for the beam resting on three springs.

η1 η2 η3 t1 t2 t3 ω1 ω2 ω3 ω4 ω5 λ(ω1)

10 10 10 13.448 39.797 89.023 157.993 246.862 - 0.4713
10 10 100 18.849 39.797 90.049 157.993 247.228 0.3074

0.1 0.3 0.5 10 100 10 16.771 41.964 89.124 158.190 247.228 0.1547
100 100 10 17.073 42.750 89.797 158.695 247.592 0.1914
10 100 100 21.351 41.999 90.134 158.190 247.592 0.5216
100 10 10 14.005 40.561 89.681 158.508 247.228 - 0.3169
10 10 10 13.866 39.934 88.960 157.957 246.862 - 0.3511
10 100 10 19.155 39.934 89.986 157.957 247.228 0.3234

0.3 0.5 0.7 10 10 100 17.209 42.054 89.059 158.156 247.228 0.1965
100 100 10 21.715 42.080 90.070 158.156 247.593 0.4718
100 10 100 20.623 43.788 89.156 158.356 247.593 0.3796
100 100 100 24.612 43.788 90.152 158.356 247.956 0.4450
10 10 10 13.152 39.880 89.041 158.050 246.781 -0.5663
10 100 10 18.027 40.731 89.396 158.571 246.781 0.2871

0.1 0.4 0.8 10 10 100 15.085 41.870 89.981 158.250 246.781 - 0.0862
100 10 10 13.742 40.643 89.693 158.566 247.147 - 0.3860
100 100 10 18.379 41.564 90.023 159.086 247.147 0.2871
100 10 100 15.708 42.590 90.618 158.762 247.147 0.0154

4.2. Case of 3:1 internal resonances

When browsing the table values for natural frequency of the
system, one finds three-to-one ratio between natural frequen-
cies of two different modes. Three-to-one internal resonance
occurs between first and second modes of the curved beam for
the case with two springs (τ1 = 10, τ2 = 10, η1 = 0.1, η2 =

0.5) and three springs (τ1 = 10, τ2 = 10, τ3 = 10, η1 =

0.1, η2 = 0.3, η3 = 0.5). The frequencies of the first and sec-
ond modes were found to be ω1 = 12.9603, ω1 = 39.5656

for two springs, and ω1 = 13.4475 and ω2 = 39.7965 for
three springs. Thus, resonance will happen and some en-
ergy of the first mode (externally forcing mode) will be tras-
ferred to the second mode (internally forcing mode) during
vibrations at these frequencies. Considering that the curved
beam was resting on two springs or three springs, the forc-
ing frequency-response curves were plotted for the externally
forcing (first) mode in Fig. 6a and internally forcing (second)
mode in Fig. 6b. Assuming µ = 0.05 and f = 1 in Eq. (43),
the frequencies and differences between them were consid-
ered, ω1 = 12.9603, ω2 = 39.5656, and q = 0.6847 for the
case of two springs and omega1 = 13.4475, ω2 = 39.7965,
and q = −0.5460 for the case of three springs. For these
values, one could evaluate fixed points by seperating stable
and unstable solutions using Eqs. (44) and (45) and draw
frequency-response curves. Seeing the curves in Fig. 6a, it
can be concluded that that these systems have softening be-
havior. By means of detailed investigations in case of three
springs, a more softening behavior and smaller maximum am-
plitude could be obtained when comparing case of two springs.
Fig. 6b was plotted for internally forcing mode. As seen in de-
tailed shot, maximum amplitude of the beam with two springs
was pretty little according to case of three springs.

Considering curved beam resting on two springs or three
springs, the forcing-response curves were plotted for the ex-
ternally forcing mode in Fig. 7a and internally forcing mode
in Fig. 7b. Taking into account the detuning parameter, σ =

−0.3788 for the case of two springs and σ = −0.2625 for the
case of three springs, changes to f were investigated in these

figures. Other control parameters were the same in Fig. 6. As
seen from the multi-variable region in Fig. 7, the case of two
springs has more forcing (f ) gaps when comparing with case
of three springs. These f gaps is found as [0.9990/, 2.9785]

for the case of two springs and [0.9995, /2.1105] for the case
of three springs. Thus, internally forcing mode (second mode)
was activated at f ≥ 0.9990 for two springs and at f ≥ 0.9995

for three springs.

5. CONCLUSIONS

In this study, nonlinear vibrations of a curved beam resting
on multiple springs are investigated. The curved beam is based
on the Euler-Bernoulli beam theory and is assumed to have
an arbitrary rise function. Primary and 3:1 internal resonance
cases are studied in nonlinear vibrations of the beam. Approx-
imate analytical solutions to the problem are sought by using
the method of multiple scales (MMS), which is a perturbation
method. In these solution procedures, the linear problem of the
system, which is first order, is solved. After that, the nonlinear
problem is solved by adding the effects of nonlinearity, which
comes from other orders, to the linear solution. Assuming a
steady-state phase, a detailed analysis on free-undamped and
forced-damped vibrations is carried out. Effects of magnitude,
location, and the number of the springs on nonlinear vibrations
is presented.

In case of primary resonance, nonlinearity effects of the
curved beam-spring system has both positive and negative
signs. Adjusting the number, location, and magnitudes of the
springs attached under the beam enables us to make the system
have softening behavior. Increasing the magnitude and number
of the springs decreases the maximum amplitudes.

In case of three-to-one internal resonance, beams resting on
two and three springs are considered. Three-to-one internal
resonance between the first and second modes occur for both
cases of spring replacements. From the carried investigations,
energy transfer from the externally forcing mode (first mode)
to the internally forcing mode (second mode) is much more in
curved beams resting on three springs instead of two springs.
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Figure 3. Nonlinear frequency-amplitude curves for beam resting on three
springs.
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APPENDIX

d

dt
= D0 + ε · D1 + ε2 ·D2 + ...,

d2

dt2
= D2

0 + 2 · ε ·D0 ·D1 + ε2 · (D2
1 + 2 ·D0 · D2) + ..., (A.1)

Γp+1 =

n∑
r=0

ηr+1∫
ηr

〈
Y ′r+1 · ϕ′(r+1)1 + 2·Y ′r+1 · ϕ′(r+1)2

〉
dx · Y ′′0

+

n∑
r=0

ηr+1∫
ηr

〈
3

2
·Y ′2r+1 + Y ′0 · ϕ′(r+1)1 + 2·Y ′0 · ϕ′(r+1)2

〉
dx ·Y ′′p+1 +

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx ·
[
ϕ′′(p+1)1 +2· ϕ′′(p+1)2

]
.

n∑
r=0

ηr+1∫
ηr

Yr+1
2 · dx = 1, f =

n∑
r=0

ηr+1∫
ηr

Fr+1 · Yr+1 dx (A.2)

γ = σ · T2− θ, λ = − 1

8 · ω
·


n∑
r=0

ηr+1∫
ηr

Yr+1 · Γr+1 dx

 (A.3)

Γ(p+1)1
(k) =

n∑
r=0

ηr+1∫
ηr

〈
Y ′(r+1)k · ϕ′(r+1)1 + 2 · Y ′(r+1)k · ϕ′(r+1)5

〉
dx · Y ′′0

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx ·
[
ϕ′′(p+1)1 + 2 · ϕ′′(p+1)5

]

+

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)1 + 2 · Y ′0 · ϕ′(r+1)5 +

3

2
· Y ′2(r+1)k

〉
dx · Y ′′(p+1)k

Γ(p+1)2
(k) =

n∑
r=0

·
ηr+1∫
ηr

〈
2 · Y ′(r+1)k · ϕ′(r+1)6 + Y ′(r+1)s · ϕ′(r+1)3 + Y ′(r+1)s · ϕ′(r+1)4

〉
dx · Y ′′0

+ 2 ·
n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx · ϕ′′(p+1)6 +

n∑
r=0

ηr+1∫
ηr

〈
Y ′2(r+1)s + 2 · Y ′0 · ϕ′(r+1)6

〉
dx · Y ′′(p+1)k

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx ·
[
ϕ′′(p+1)3 + ϕ′′(p+1)4

]

+

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)3 + Y ′0 · ϕ′(r+1)4 + 2 · Y ′(r+1)k · Y ′(r+1)s

〉
dx · Y ′′(p+1)s

Γ(p+1)3
(k) =

n∑
r=0

ηr+1∫
ηr

〈
Y ′(r+1)k · ϕ′(r+1)4 + Y ′(r+1)s · ϕ′(r+1)1

〉
dx · Y ′′0

+

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)4 + Y ′(r+1)k · Y ′(r+1)s

〉
dx · Y ′′(p+1)k +

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)1 +

1

2
· Y ′2(r+1)k

〉
dx · Y ′′(p+1)s

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx · ϕ′′(p+1)4 +

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx · ϕ′′(p+1)1
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Γ(p+1)1
(s) =

n∑
r=0

ηr+1∫
ηr

〈
Y ′(r+1)s · ϕ′(r+1)2 + 2 · Y ′(r+1)s · ϕ′(r+1)6

〉
dx · Y ′′0

+

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)2 + 2 · Y ′0 · ϕ′(r+1)6 +

3

2
· Y ′2(r+1)s

〉
dx · Y ′′(p+1)s

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx ·
[
ϕ′′(p+1)2 + 2 · ϕ′′(p+1)6

]

Γ(p+1)2
(s) =

n∑
r=0

ηr+1∫
ηr

〈
Y ′(r+1)k · ϕ′(r+1)3 + Y ′(r+1)k · ϕ′(r+1)4 + 2 · Y ′(r+1)s · ϕ′(r+1)5

〉
dx · Y ′′0

+2 ·
n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx ·ϕ′′(p+1)5 +

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)3 + Y ′0 · ϕ′(r+1)4 + 2 · Y ′(r+1)k · Y ′(r+1)s

〉
dx ·Y ′′(p+1)k

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx ·
[
ϕ′′(p+1)3 + ϕ′′(p+1)4

]
+

n∑
r=0

ηr+1∫
ηr

〈
2 · Y ′0 · ϕ′(r+1)5 + Y ′2(r+1)k

〉
dx · Y ′′(p+1)s

Γ(p+1)3
(s) =

n∑
r=0

ηr+1∫
ηr

Y ′(r+1)k · ϕ′(r+1)1 dx · Y ′′0 +

n∑
r=0

ηr+1∫
ηr

〈
Y ′0 · ϕ′(r+1)1 +

1

2
· Y ′2(r+1)k

〉
dx · Y ′′(p+1)k

+

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx · ϕ′′(p+1)1 (A.4)

n∑
r=0

ηr+1∫
ηr

Y(r+1)k
2 dx = 1,

n∑
r=0

ηr+1∫
ηr

Y(r+1)s
2 dx = 1, f =

n∑
r=0

ηr+1∫
ηr

Fr+1 · Y(r+1)k dx,

λc
(k) =

n∑
r=0

ηr+1∫
ηr

Y(r+1)k · Γ(r+1)c
(k) dx, λc

(s) =

n∑
r=0

ηr+1∫
ηr

Y(r+1)s · Γ(r+1)c
(s) dx, c = 1, 2, 3. (A.5)

γ = σ · T2 − θk, β = θs − 3 · θk + q · T2 (A.6)
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