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Many acoustic and electromagnetic wave scattering problems can be formulated as the Helmholtz equation. Stan-
dard finite and boundary element method solution of these problems becomes expensive, as the frequency of
incident wave increases. On going research has been devoted to finding methods that do not loose robustness when
the wave number increases. Recently, Chandler-Wilde et al. have proposed a novel Galerkin boundary element
method to solve the problem of acoustic scattering by a convex polygon with impedance boundary conditions.
They applied approximation spaces consisting of piecewise polynomials supported on a graded mesh with smaller
elements adjacent to the corners of the polygon and multiplied by plane wave basis functions. They demonstrated
via rigorous error analysis that was supported by numerical experiments that the number of degrees of freedom
required to achieve a prescribed level of accuracy need only grow logarithmically as frequency increases. In this
paper, we discuss issues related to detail implementation of their numerical method.

1. INTRODUCTION

We consider the two-dimensional problem of scattering of a
time-harmonic acoustic incident plane wave:

ui(x) = eikx·d, in D := R2\Ω̄; (1)

by a convex polygon Ω, with impedance boundary Γ. Here
x = (x1, x2) ∈ R2, d = (sin θ,− cos θ) ∈ R2 is a unit
vector representing the direction of the incident field, θ is the
incidence angle, and the frequency of the incident wave is
proportional to the wavenumber k > 0. The scattered field
us := ut − ui ∈ C2(D̄) (where ut and ui denote the total and
incident field respectively) satisfies the Helmholtz equation:

∆us + k2us = 0, in D. (2)

We shall consider the impedance boundary condition here:

∂ut

∂n
+ ikβut = 0, on Γ; (3)

(where n = (n1, n2) denotes the outward unit normal vector
to Γ, as depicted in Fig. 1 and β ∈ L∞(Γ) and Reβ > 0

is relative surface admittance), and is supplemented with the
Sommerfeld radiation condition:

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0; (4)

where r := |x| and the limit holds uniformly in x/|x|. The
Sommerfeld radiation condition is essential to scattering prob-
lems because it ensures that the scattered field is not reflected
back from infinity.

As k increases, the incident field oscillates more rapidly, and
so the complexity of the solution of Eq.(2) increases. As a re-
sult, the computational cost of standard schemes, such as the

finite element or boundary element methods will grow in di-
rect proportion to k, leading to large computing times for large
k. It has been shown that in order to accurately model a wave,
a fixed number of degrees of freedom M are needed per wave-
length, with a rule of thumb in the engineering literature of 6 to
10 degrees of freedom per wavelength needed to maintain ac-
curacy.1, 2 The price to pay for fixing M is that the number of
degrees of freedom will be proportional to (kL)d−1 in case of
boundary element methods, where L is the linear dimension of
the scattering obstacle and d = 2 or 3 is the dimension of the
problem. Thus, as either k or the size of the scatterer grows,
so does the number of degrees of freedom (at least O(k)) in
two-dimensional, hence the computational cost of numerical
schemes increases. The previous and the current development
on this active field of scattering problems is outlined explicitly
at length in.3

For this paper we begin in Section 2 by discussing the
boundary integral method we are going to apply. We de-
scribe the approximation space for the problem in Section 3.
We proceed in Section 4 by presenting the implementation of
our Galerkin scheme. We present formulas for the Galerkin
scheme and describe how to evaluate oscillatory and non os-
cillatory integrals. In Section 5, we discuss how to solve non-
overlapping integrals, a detail explanation of Gaussian quadra-
ture rule is also explained in this section. In Section 6 we
choose an example for our numerical experiment and present
some results, whereas most of them can be found in.4, 5 We dis-
cuss our conclusion and some recommendations in Section 7.

2. BOUNDARY INTEGRAL EQUATION
METHOD

The boundary value problem Eqs. (2) - (4) can be reformu-
lated into boundary integral equation by applying Green’s rep-
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Figure 1. Scattering by an impedance convex polygon.

resentation theorems [7.12 and 9.6]6 and Green’s second theo-
rem [theorem 4.4],6 (see also4 for details), which leads to stan-
dard boundary integral equation for unknown ut:

ut(x)−2

∫
Γ

(
∂Φ
′
(x,y)

∂n(y)
+ikβ(y)Φ

′
(x,y)

)
ut(y)ds(y) =

2f(x), x ∈ Γ; (5)

where Φ
′
(x,y) := i

4H
(1)
0 (k|x−y|), (H(1)

0 is the Hankel func-
tion of first kind of order zero) and f(x) = ui(x). The integral
Eq. (5) suffers from so-called spurious eigenfrequencies; that
is, it is not uniquely solvable for all wavenumbers.7, 8 However,
this problem is often ignored in the literature.7 Various options
exist to overcome this difficulty.4

We begin by defining some notations, see Fig. 1. We write
the boundary of the polygon as Γ = ∪nsj=1Γj , where Γj , j =

1, . . . , ns are the nths sides of the polygon, ordered so that Γj ,
j = 1, . . . , nsh, are in shadow, and Γj , j = nsh + 1, . . . , ns
are illuminated, with j increasing anticlockwise, as shown in
Fig. 1.

We denote the corners of the polygon by Vj , j = 1, . . . , ns,
and set Vns+1 = V1, so that for j = 1, . . . , ns, Γj is the
line joining Vj with Vj+1. We denote the length of Γj by
Lj = |Vj+1 − Vj |, the external angle at each vertex Vj by
Ωj ∈ (π, 2π), the unit normal vector to Γj by nj , and the
angle of the incident plane wave, as measured anticlockwise
from the downward vertical, by θ ∈ [0, 2π). We represent
x ∈ Γ parametrically by:

x(s) = Vj +

(
s−

j−1∑
n=1

Lns

)(
Vj+1 − Vj

Lj

)
;

for s ∈

(
j−1∑
n=1

Lns ,

j∑
n=1

Ln

)
, j = 1, . . . , ns. (6)

Define

x(s) = (x1(s), x2(s)) = {(els+ gl), (fls+ hl)};
x(t) = (x1(t), x2(t)) = {(ejt+ gj), (fjt+ hj)}; (7)

where

ej :=
uj+1 − uj

Lj
,

fj :=
vj+1 − vj

Lj
,

gj := uj − ej
j−1∑
n=1

Ln,

hj := vj − fj
j−1∑
n=1

Lns ; (8)

here point s is in element l and point t is in element j. We can
write Eq. (5) in parametric form as:

φ(s)− 2

∫ L

0

K(s, t)φ(t)dt = 2f(s); (9)

where φ(s) = ut(x(s)), L =
∑j
n=1 Lns ,

K(s, t) :=

(
∂Φ
′
(x(s),x(t))

∂n(x(t))
+ ikβ(x(t))Φ

′
(x(s),x(t))

)
;

(10)

and Φ
′
(x(s),x(t)) := i

4H
(1)
0 (k|x(s)− x(t)|) = i

4H
(1)
0 (kR),

here

R =√
[(els+ gl)− (ejt+ gj)]2 + [(fls+ hl)− (gjt+ hj)]2;

(11)

and finally

f(s) = ui(s) = eik(x1(s) sin θ−x2(s) cos θ) =

eik((els+gl) sin θ−(fls+hl) cos θ). (12)

We know that (n1j , n2j).(el, fl) = 0, which implies n1jel +

n2jfl = 0, which implies n1j = fl, n2j = −el or n1j =

−fl, n2j = el (depending on whether the unit normal is in-

ward or outward). Using the fact that ∂H
(1)
0 (z)
∂z = −H(1)

1 (z),
and also that ∂

∂n = n · ∇, we can now evaluate the explicit
formula for:

∂Φ
′
(x(s),x(t))

∂n(x(t))
=

n1l
∂Φ
′
(x(s),x(t))

∂x1(t)
+ n2l

∂Φ
′
(x(s),x(t))

∂x2(t)
=

− ik

4

H
(1)
1 (kR)

R
[fj(x1(t)− x1(s))− ej(x2(t)− x2(s))] =

− ik

4

H
(1)
1 (kR)

R

· [(ejfl − fjel)s+ fj(gj − gl) + ej(hl − hj)] . (13)
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Therefore,

K(s, t) =

− k

4

{
i
H

(1)
1 (kR)

R

[(ejfl − fjel)s+ fj(gj − gl) + ej(hl − hj)]

+ βH
(1)
0 (kR)

}
. (14)

We know that on each side of the polygon ut = ui + ur + ud,

where ur is the field that would be reflected by a side Γj , if
that side was infinitely long, and ud represents in some sense
the waves diffracted by the corners of the polygon .9 For
a straight line polygon, we know ur explicitly, and particu-
larly for a straight line polygon with an impedance bound-
ary condition, ur(x) = Rβ(θ

′
)eikx·d

′

,10 where Rβ(θ
′
) is

the reflection coefficient that is given by a reflective angle,

Rβ(θ
′
) = ( cos θ

′
−β

cos θ′+β
), θ

′
which depends on θ and Γj and

d
′

= (sin θ, cos θ). Since ur is a function of the incident an-
gle, it is only featured on the illuminated side and it is zero on
the shadow side of the polygon. We define our leading order
behavior:

Ψ(s) :=

{
ui(s) + ur(s), in illuminated region,

0, in shadow region,

=

{
2 cos θ

′

cos θ′+β
ui(s), in illuminated region,

0, in shadow region,
(15)

and Φ(s) := ud(s) is viewed as the diffracted wave due to the
corner of the polygon. Therefore, subtracting the leading order
behavior gives:

Φ(s) := φ(s)−Ψ(s). (16)

Substituting Eq. (16) into Eq. (9), we obtain a new second kind
boundary integral equation with unknown Φ(s):

(I −K)Φ(s) = F (s); (17)

whereKv(s) := 2
∫ L

0
K(s, t)v(t) dt, F (s) := 2f(s)−Ψ(s)+

2
∫ L

0
K(s, t)Ψ(t) dt, and I is the identity operator.

3. APPROXIMATION SPACE

We begin by defining a general mesh grading on [0, Lj ],

which is composed of a polynomial grading on [0, λ] and a
geometric grading on [λ, Lj ], where Lj is the length of the jth

side, j = 1 . . . , ns (recalling that ns is the number of sides of
a polygon) λ = 2π/k is the wavelength. We now define our
mesh as follows: for Lj > λ > 0, qj > 0, N = 2, 3, . . .,
where qj = 2ν+3

2π/Ωj+1 and ν is degree of a polynomial. The
mesh
ΛN,Lj ,λ,qj := {y0, . . . , yN+NLj,λ,qj

} consists of the points:

yi = λ

(
i

N

)qj
, i = 0, . . . , N ; (18)

yN+j := λ

(
Lj
λ

)j/NLj,λ,qj
, j = 1, . . . , NLj ,λ,qj . (19)

Where NLj ,λ,qj = dN̂Lj ,λ,qje,

N̂Lj ,λ,qj =
− log(Lj/λ)

qj log(1− 1/N)
. (20)

Here, dze denotes the smallest integer greater than or equal to
z, for z ∈ R. Specifically, NLj ,λ,qj is the smallest positive
integer greater or equal to Eq. (20).

The mesh we propose is that away from the corner (between
[λ, Lj ]) the mesh is chosen such that it is independent of qj ,
while near a corner (between [0, λ]) the mesh is chosen such
that it is independent of Lj . It is reasonable to choose the mesh
such that for a fixed N1:

N = O(N1qj), between [0, λ]). (21)

We now take N , greater or equal to ĉN1qj , and use Eq. (20)
to compute NLj ,λ,qj , where here ĉ is an arbitrary constant. We
now define the two meshes:

Xj := L̃j−1 + ΛN,Lj ,λ,qj , Yj := L̃j − ΛN,Lj ,λ,qj+1
.

(22)

This choice of qj ensures that the approximation error is evenly
spread on each mesh interval. Letting e±(s) := e±iks, s ∈
[0, Lj ], we then define the approximation spaces associated
with each mesh as:

AXj ,ν := {σe+ : σ ∈ ΠXj ,ν},
AYj ,ν := {σe− : σ ∈ ΠYj ,ν}; (23)

for j = 1, . . . , ns, where

ΠXj ,ν := {σ ∈ L2(0, Lns) : σ|(L̃j−1+xm−1,L̃j−1+xm)

is a polynomial of degree ≤ ν,
for m = 1, . . . , N +NLj ,λ,qj ,

and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

ΠYj ,ν := {σ ∈ L2(0, Lns) : σ|(L̃j−ym,L̃j−ym−1)

is a polynomial of degree ≤ ν,
for m = 1, . . . , N +NLj ,λ,qj+1

,

and σ|(0,L̃j−1)∪(L̃j ,L) = 0}; (24)

where {x0, . . . , xN+NLj,λ,qj
} and {y0, . . . , yN+NLj,λ,qj+1

}
denote the points of the meshes ΛN,Lj ,λ,qj and ΛN,Lj ,λ,qj+1

respectively. Our approximation space AN,ν is then the linear
span of ⋃

j=1,...,ns

{AXj ,ν ∪AYj ,ν}. (25)

The number of the degrees of freedom for this problem will be:

DN = 2(ν + 1)

ns∑
j=1

(N +NLj ,λ,qj ); (26)

where the number 2 on the left hand side is due to the fact
that we have two meshes Eq. (22), N is the number of points
between [0, λ] and NLj ,λ,qj is the number of points between
[λ, Lj ]. For our Galerkin Scheme in this paper, we take ν = 0.
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Equation (17) is the one we are going to solve for the un-
known Φ(s) by the Galerkin boundary element method. As
our starting point we seek:

Φ(s) ≈ ΦN (s) :=

DN∑
m=1

vmηm(s); (27)

where vm is the unknown coefficient, ηm are the basis func-
tions, and DN is the total number of basis functions. For
j = 1, . . . , ns, we define n+

j and n−j to be the number of points
of the two meshes Xj and Yj respectively, so

n+
j := N +NLj ,λ,qj , n−j := N +NLj ,λ,qj+1 . (28)

We denote the number of points of Xj and Yj by s+
j,l and s−j,l

respectively, for j = 1, . . . , ns, l = 1, . . . , n±j . We denote the
total number of elements supported on ∪ji=1Γi by

DN,j :=

j∑
i=1

(n+
i + n−i ); (29)

so that the total number of degrees of freedom is DN = DN,j ,
that is,

DN :=

n∑
j=1

(n+
j + n−j ). (30)

Then, for j = 1, . . . , n, the basis functions are given by

ηDN,j−1+j(s) :=
eiks√

s+
j,l − s

+
j,l−1

χ[s+j,l−1,s
+
j,l)

(s),

j = 1, . . . , n+
j ,

ηDN,j−1+n+
j +l(s) :=

e−iks√
s−j,l − s

−
j,l−1

χ[s−j,l−1,s
−
j,l)

(s),

j = 1, . . . , n−j ; (31)

where χ[zm,zm+1) denotes the characteristic function of the in-
terval [zm, zm+1) (zi, i = 0, ..., DN , are the points of each
mesh).

4. GALERKIN SCHEME

Substituting Eq. (27) into Eq. (17) and multiplying by a test
function η̄l(s) and then integrating over [0, L], gives the fol-
lowing Garlekin scheme (which is a system of linear equa-
tions):

DN∑
m=1

[(ηm, ηl)− (Kηm, ηl)] vm = (F, ηl). (32)

Now we have to figure out how to compute (ηm, ηl), (Kηm, ηl)
and (F, ηl). To evaluate these matrices, we follow a simi-
lar procedure to that in Langdon and Chandler-Wilde,11 where
most of the formulas are similar. When evaluating the above
integrals, we encountered difficulties of dealing with singular-
ities and oscillatory integrals at high frequencies. For the spe-
cific problem we are going to discuss here, we encounter the
singularities when the basis functions are supported on differ-
ent side of polygon. When they are supported on the same side

of the polygon, there is hardly any singularity. As such, most
of integrals can be evaluated analytically. Ideas dealing with
oscillatory integrals is on going research.12, 13 For our problem
here, we address the oscillatory integrals by applying standard
Gaussian quadrature rule, see Section 5 for detail.

4.1. Evaluation of (ηm, ηl)
The mass matrix will appear in the following form:

(ηm, ηl) =

∫
supp(ηm)∩supp(ηl)

e(δm−δl)iks√
(zm+1 − zm)(zl+1 − zl)

ds.

(33)
This can be evaluated analytically. Here, δm = ±1. Notice
that, if ηm and ηl are supported on different sides of the poly-
gon, there is no overlap. Hence (ηm, ηl) = 0. If ηm and ηl are
supported on the same side of the polygon and δm = δl, then
there will be total overlap, this forms the diagonal of the whole
matrix (ηm, ηl) and in this case (ηm, ηl) = 1. If ηm and ηl are
supported on the same side of the polygon and δm 6= δl, then
there will be some overlaps and non-overlaps. In this case, we
integrate between the overlapping intervals. If we define the
lower and the upper integrating limits respectively as

Lw = min(zl+1, zm+1) and Up = max(zl, zm); (34)

then

(ηm, ηl) =

∫ Up

Lw

ηm(s)η̄l(s)ds =

e−2ikUp − e−2ikLw

−2ik
√

(zm+1 − zm)(zl+1 − zl)
,

if δm = −1 and δl = 1; (35)

similarly,

(ηm, ηl) =

∫ Up

Lw

ηm(s)η̄l(s)ds =

e−2ikUp − e−2ikLw

2ik
√

(zm+1 − zm)(zl+1 − zl)
,

if δm = 1 and δl = −1. (36)

4.2. Evaluation of (Kηm, ηl)
Evaluating this integral is a challenge because it envolves

double integrals. It will appear in the following form:

(Kηm, ηl) = 2

∫
supp(ηl)

∫
supp(ηm)

K(s, t)ηm(t)η̄l(s)dt ds.

(37)
If we first consider the case where ηm and ηl are supported on
the same side of the polygon, then we see immediately from
Eq. (14) that el = ej , fl = fj , gl = gj , and hl = hj , hence the
term H

(1)
1 vanishes and Eq. (14) becomes:

K(s, t) = −k
4
βH

(1)
0 (k|s− t|). (38)

We know from [(12.31)]14 that

H
(1)
0 (s) =

−2i

π

∫ ∞
0

e(i−t)s

t
1
2 (t− 2i)

1
2

dt, s > 0; (39)
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so

(Kηm, ηl) = −kβ
2

∫ zl+1

zl

∫ zm+1

zm

H1
0 (k|s− t|)

· eik(δmt−δls)√
(zl+1 − zl)(zm+1 − zm)

dt ds =

ikβ

π
√

(zl+1 − zl)(zm+1 − zm)

∫ ∞
0

J(r)

r
1
2 (r − 2i)

1
2

dr; (40)

where

J(r) =

∫ zl+1

zl

∫ zm+1

zm

e−rk|s−t|+ik(|s−t|+δmt−δls)dt ds.

(41)

We explore further on how to evaluate Eq. (41), depending
on how [zl, zl+1] and [zm, zm+1] overlap. In the case where
[zl, zl+1] and [zm, zm+1] do not overlap, then:

J(r) =

[
ek(i(−δl−1)+r)zl+1 − ek(i(−δl−1)+r)zl

k(i(−δl − 1) + r)

]
·
[

ek(i(δm+1)−r)zm+1 − ek(i(δm+1)−r)zm

k(i(δm + 1)− r)

]
; (42)

or

J(r) =

[
ek(i(δl+1)−r)zl+1 − ek(i(δl+1)−r)zl

k(i(δl + 1)− r)

]
·
[

ek(i(δm−1)+r)zm+1 − ek(i(δm−1)+r)zm+1

k(i(δm − 1) + r)

]
. (43)

In the case where [zl, zl+1] and [zm, zm+1] overlap, then
Eq. (41) is split further into three integrals:

J(r) =

∫ zm

zl

∫ zl+1

zm

e−rk(t−s)+ik((t−s)+δmt−δls)dt ds

+

∫ zl+1

zm

∫ zl+1

zm

e−rk|s−t|+ik((|s−t|)+δmt−δls)dt ds

+

∫ zl+1

zl

∫ zm+1

zl+1

e−rk(t−s)+ik((t−s)+δmt−δls) dt ds.

(44)

Computing the first and third integral in Eq. (44) is a straight-
forward procedure and we can obtain similar formula as those
of Eq. (42) or Eq. (43). The second integral of Eq. (44), is a
total overlap of δm and δl (call it Ja(r)). Applying exponen-
tial power series to this integral leads to Eq. (45) (see top of
the next page).

Now we are going to show how to evaluate the integral term:∫ ∞
0

J(r)

r
1
2 (r − 2i)

1
2

dr. (46)

This appears in Eq. (40). The term in the integral is singu-
lar when r = 0. In order to remove this singularity, we first
change the variables. Let r = s2

1−s2 then dr
ds = 2s

(1−s2)2 , when
r = 0 implies s = 0 and r =∞ implies s = 1.∫ ∞

0

J(r)

r
1
2 (r − 2i)

1
2

dr =

∫ 1

0

J( s2

1−s2 )

( s2

1−s2 )1/2( s2

1−s2 − 2i)1/2

2s

(1− s2)2
ds. (47)

Equation (47) appears to be singular at s = 1 or s = 0, but
in fact it is not, since the function J(r) in the numerator com-
posed of exponential functions. Thus, it tends to zero faster
then the denominator, as s → 1 or s → 0. We use a standard
Gaussian quadrature rule to integrate Eq. (47).

Finally, when ηm and ηl are supported on different sides
of the polygon (Kηm, ηl), they can only be evaluated numeri-
cally, since now K(s, t) cannot be simplified further, which is
why we have to use a standard Gaussian quadrature rule.

4.3. Evaluation of (F, ηl)

We shall now evaluate integrals of the form:

(F, ηl) =

1√
zl+1 − zl


∫ zl+1

zl

[2f(s)−Ψ(s)]e−ikδlsds︸ ︷︷ ︸
I1

− 2

∫ zl+1

zl

∫ L

0

K(s, t)Ψ(t)dt e−ikδls ds︸ ︷︷ ︸
I2

 . (48)

Integral I1 and some of I2 can be evaluated analytically while
some of I2 must be computed numerically. When δl is sup-
ported on Γl, we need to consider two cases:
Case1 : If l ≤ nsh then Γl lies in the shadow region and
Ψ(s) = 0, hence I2 = 0. Thus,

I1 =

∫ zl+1

zl

2f(s)e−ikδls ds =

2eik(gl sin θ−hl cos θ)

·
(

eik(el sin θ−fl cos θ−δl)zl+1 − eik(el sin θ−fl cos θ−δl)zl

ik(el sin θ − fl cos θ − δl)

)
.

(49)

Case2 : If l > nsh, then Γl lies in the illuminated region, thus
recalling Eqs. (12) and (15), we have:

I1 =

∫ zl+1

zl

[2f(s)−Ψ(s)]e−ikδls ds =∫ zl+1

zl

2β

cos θ′ + β
ui(s)e−ikδls ds =

2βeik(gl sin θ−hl cos θ)

cos θ′ + β

·
(

eik(el sin θ−fl cos θ−δl)zl+1 − eik(el sin θ−fl cos θ−δl)zl

ik(el sin θ − fl cos θ − δl)

)
.

(50)
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Ja(r) =



e−kr(zl+1−zm)+kr(zl+1−zm)−1
k2r2 + e−k(r−2i)(zl+1−zm)+k(r−2i)(zl+1−zm)−1

k2(r−2i)2 , if δl = δm,

e2ikzl+1

k(r−2i)

[
2

(
e−kr(zl+1−zm)−1

kr

)
− i

(
1−e−2ik(zl+1−zm)

k

)]
, if δm = 1, δl = −1,

e2ikzm

k(r−2i)

[
2

(
e−kr(zl+1−zm)−1

kr

)
− i

(
1−e−2ik(zl+1−zm)

k

)]
, if δm = −1, δl = 1.

(45)

I2 = 2

∫ zl+1

zl

[ ∫ L

∑nsh
m=1 Lm

K(s, t)Ψ(t) dt

]
e−ikδls ds =

2

ns∑
m=nsh+1

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

[ ∫ zl+1

zl

K(s, t)e−ikδls ds

]
Ψ(t) dt =

4 cos θ
′

cos θ′ + β

·
ns∑

m=nsh+1

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

[ ∫ zl+1

zl

K(s, t)e−ikδls ds

]
ui(t) dt =[

4 cos θ
′

cos θ′ + β

ns∑
m=nsh+1

eik(gm sin θ−hm cos θ)

]

·

[∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

K(s, t)

·eik((em sin θ−fm cos θ)t−δls) dt ds
]

=

4 cos θ
′

cos θ′ + β

n∑
m=nshad+1

eik(gm sin θ−hm cos θ)I2l,m. (51)

We now evaluate I2l,m when s and t are supported on the same
side of the polygon. Recalling Eq. (38),

I2l,m =∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

K(s, t)eik((em sin θ−fm cos θ)t−δls) dt ds =

−kβ
4

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

H
(1)
0 (k|s− t|)

· eik((em sin θ−fm cos θ)t−δls) dt ds =

ikβ

2π

∫ ∞
0

I∗(r)

r1/2(r − 2i)1/2
dr; (52)

where

I∗(r) =

∫ zm+1

zm

∫ zl+1

zl

e(i−r)k|s−t|+ik(δmt−δls) dt ds; (53)

where zm =
∑m−1
p=1 Lp, zm+1 =

∑m
p=1 Lp, δm = em sin θ −

fm cos θ. Evaluating Eq. (53) (with a little more effort) leads
to Eq. (54) (see top of the next page).

Finally, when s and t are on different side of polygon, we
again use the standard Gaussian quadrature rule.

Figure 2. The integrating rectangle.

5. NUMERICAL EVALUATION OF
NON-OVERLAPPING INTEGRALS

To evaluate non-overlapping integrals, we first divide the big
rectangle [tm, tm+1]×[tj , tj+1] into equally spaced small rect-
angles with each of sides Hs ×Ht, as shown in Fig.2.

In Fig.2, Ms are nodes length between [tm, tm+1] in the di-
rection s and Mt are nodes length between [tj , tj+1] in the
direction t. Now define

Hs :=
tm+1 − tm

Ms
, Ht :=

tj+1 − tj
Mt

. (55)

To deal with the oscillatory nature of integrand, we chose
Ms ∝ k and Mt ∝ k. More specifically, we chose Ht ∼ 1/k

and Hs ∼ 1/k, then used the two-dimensional Gaussian
quadrature rule to approximate each integral on each small
rectangle as follows:

∫ tm+1

tm

∫ tj+1

tj

K(s, t)eik(σjt−σms) dt ds =

Ms∑
m=1

Mt∑
j=1

∫ tm+mHs

tm+(m−1)Hs

∫ tj+jHt

tj+(j−1)Ht

K(s, t)eik(σjt−σms)dtds =

Ms∑
m=1

Mt∑
j=1

ms∑
l=1

mt∑
n=1

wlwnK(sl, tn)eik(σjtn−σmsl); (56)
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I∗(r) = eik(δm−1)zm

[
eik(1−δl)zl+1+kr(zm−zl+1) − eik(1−δl)zl+kr(zm−zl)

k(r − i(1− δm)k(r − i(1− δl))

]

+ eik(δm+1)zm+1

[
e−ik(1+δl)zl+1+kr(zl−zm+1) − e−ik(1+δl)zl+1+kr(zl+1−zm+1)

k(r − i(1 + δm)k(r − i(1 + δl))

]

+ 2
(eik(δm−δl)zl+1 − eik(δm−δl)zl)

ik2(δm − δl)

[
r − i

δ2
m + (r − i)2

]
. (54)

Figure 3. Removing the singularity.

where ms and mt are the number of Gaussian points between
[tm + (m− 1)Hs, tm +mHs] and [tj + (j− 1)Ht, tj + jHt]

respectively, and wl and wn are weights. We will, however,
still have a singularity when the supports of ηj and ηl touch
or are close to each other. This situation can occur at the cor-
ners of the shaded region shown in Fig.2, that is, when either
tm+1−tj ≤ ε or tj+1−tm ≤ ε, where ε > 0 is a small number
close or equal to zero. To deal with this situation, we take the
shaded rectangle [tm+1−Hs, tm+1]× [tj , tj +Ht] (the lower
bottom) in Fig.2 and subdivide it into small rectangles, with
the nodes highly concentrated near the peaked area as shown
in Fig.3. We place the nodes at tm+1 − plHs, l = 0, . . . , n (n
is the number of Gaussian quadrature points and p = 0.15)
on [tm+1 − Hs, tm+1] and at tj + plHt, l = 0, . . . , n on
[tj , tj + Ht]. We again use the two-dimensional Gaussian
quadrature rule to approximate each integral on each small
rectangle, thus arriving at an equation similar to Eq. (56).

6. NUMERICAL RESULTS

As our numerical example, we take the scattering object
Ω, to be a square, with vertices (0, 0), (2π, 0), (2π, 2π), and
(0, 2π). We take β = 1 on each side Γj and the incident an-
gle θ = π/4 so that the plane wave is directed towards the
corner at (0, 2π). The reflective angle in Eq. (15) is given by

Figure 4. Behaviour of the solution for increasing k, when N1 = 128.

θ
′

= π/4 and −π/4 in the illuminated regions Γ3 and Γ4 re-
spectively. We code the system Eq. (32) to get the unknown
vm and use Eq. (27) to get ΦN . For this particular example,
we chose the mesh such that for a fixed N1, we use Eq. (21)
to compute N , and we use Eq. (20) to compute NLj ,λ,qj . In
Fig. 4 we plot a comparison of the solutions for N1 = 128

for k = 80, 160, 320, and 640. As k increases, the diffracted
wave decays away faster from the corners. Table 1 shows the
errors for fixed N1 = 32 and increasing k. The results in Ta-
ble 1 shows that errors are inversely proportional to k that is
for increasing k the error decreases. This effect is reflected
in column ‖Φ128 − ΦN1

‖2 in Table 1. The relative L2 errors
‖Φ128 − ΦN1

‖2 / ‖Φ128‖2 remain relatively constant as k in-
creases, which is a good sign for the robustness of our scheme.
The degrees of freedom DN1

is proportional to log(k), that is,
DN1

increase logarithmically as the wavenumber increases.

7. CONCLUSIONS

In this paper, we have described how to implement the
boundary element method developed in4 for high frequency
scattering by convex polygons with impedance boundary con-
ditions. We explaine in detail how to solve the resulting system
of linear equation. We encounter an integration scheme that is
frequency independent when we are integrating over elements
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Table 1. Relative errors, scattering by square, N1 = 32.

k DN1

∥∥Φ128 − Φ32

∥∥
2

∥∥Φ128 − Φ32

∥∥
2
/
∥∥Φ128

∥∥
2

5 376 2.1229×10−2 4.9412×10−2

10 464 1.4873×10−2 4.9022×10−2

20 552 1.0520×10−2 4.9006×10−2

40 640 7.3863×10−3 4.8627×10−2

80 728 5.3551×10−3 4.9871×10−2

160 816 3.6531×10−3 4.8177×10−2

320 904 2.4775×10−3 4.6072×10−2

supported on the same side of the polygon, but our scheme
for elements supported on different sides of the polygon has a
complicated cost that grows with frequency. For this particu-
lar problem, we apply the standard Gaussian quadrature rule in
our code to solve such integrals. For our future work, it will be
interesting to apply frequency independent schemes for these
integrals, such as the ones that have been developed recently by
Melenk and Langdon15 for the problem of scattering by sound
soft convex polygons.
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