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Many acoustic and electromagnetic wave scattering problems can be formulated as the Helmholtz equation. Stan-
dard finite and boundary element method solution of these problems becomes expensive, as the frequency of
incident wave increases. On going research has been devoted to finding methods that do not loose robustness when
the wave number increases. Recently, Chandler-Wilde et al. have proposed a novel Galerkin boundary element
method to solve the problem of acoustic scattering by a convex polygon with impedance boundary conditions.
They applied approximation spaces consisting of piecewise polynomials supported on a graded mesh with smaller
elements adjacent to the corners of the polygon and multiplied by plane wave basis functions. They demonstrated
via rigorous error analysis that was supported by numerical experiments that the number of degrees of freedom
required to achieve a prescribed level of accuracy need only grow logarithmically as frequency increases. In this
paper, we discuss issues related to detail implementation of their numerical method.

1. INTRODUCTION

We consider the two-dimensional problem of scattering of a
time-harmonic acoustic incident plane wave:

ui(x) = eikx·d, in D := R2\Ω̄; (1)

by a convex polygon Ω, with impedance boundary Γ. Here
x = (x1, x2) ∈ R2, d = (sin θ,− cos θ) ∈ R2 is a unit
vector representing the direction of the incident field, θ is the
incidence angle, and the frequency of the incident wave is
proportional to the wavenumber k > 0. The scattered field
us := ut − ui ∈ C2(D̄) (where ut and ui denote the total and
incident field respectively) satisfies the Helmholtz equation:

∆us + k2us = 0, in D. (2)

We shall consider the impedance boundary condition here:

∂ut

∂n
+ ikβut = 0, on Γ; (3)

(where n = (n1, n2) denotes the outward unit normal vector
to Γ, as depicted in Fig. 1 and β ∈ L∞(Γ) and Reβ > 0

is relative surface admittance), and is supplemented with the
Sommerfeld radiation condition:

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0; (4)

where r := |x| and the limit holds uniformly in x/|x|. The
Sommerfeld radiation condition is essential to scattering prob-
lems because it ensures that the scattered field is not reflected
back from infinity.

As k increases, the incident field oscillates more rapidly, and
so the complexity of the solution of Eq.(2) increases. As a re-
sult, the computational cost of standard schemes, such as the

finite element or boundary element methods will grow in di-
rect proportion to k, leading to large computing times for large
k. It has been shown that in order to accurately model a wave,
a fixed number of degrees of freedom M are needed per wave-
length, with a rule of thumb in the engineering literature of 6 to
10 degrees of freedom per wavelength needed to maintain ac-
curacy.1, 2 The price to pay for fixing M is that the number of
degrees of freedom will be proportional to (kL)d−1 in case of
boundary element methods, where L is the linear dimension of
the scattering obstacle and d = 2 or 3 is the dimension of the
problem. Thus, as either k or the size of the scatterer grows,
so does the number of degrees of freedom (at least O(k)) in
two-dimensional, hence the computational cost of numerical
schemes increases. The previous and the current development
on this active field of scattering problems is outlined explicitly
at length in.3

For this paper we begin in Section 2 by discussing the
boundary integral method we are going to apply. We de-
scribe the approximation space for the problem in Section 3.
We proceed in Section 4 by presenting the implementation of
our Galerkin scheme. We present formulas for the Galerkin
scheme and describe how to evaluate oscillatory and non os-
cillatory integrals. In Section 5, we discuss how to solve non-
overlapping integrals, a detail explanation of Gaussian quadra-
ture rule is also explained in this section. In Section 6 we
choose an example for our numerical experiment and present
some results, whereas most of them can be found in.4, 5 We dis-
cuss our conclusion and some recommendations in Section 7.

2. BOUNDARY INTEGRAL EQUATION
METHOD

The boundary value problem Eqs. (2) - (4) can be reformu-
lated into boundary integral equation by applying Green’s rep-
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