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This paper derives a spatial domain wave propagation solution of a cylindrical shell that contains periodically
spaced ring stiffeners. Previous work in this area has modeled the stiffeners as having a very short or very long
length. This paper models the stiffeners as finite length inclusions with forces that have spatial extent in three-
dimensions. Furthermore, there is a well-defined separation distance between each stiffener. The new model uses
Donnell shell equations with the stiffener forces applied in three-dimensions using Heaviside step functions. These
equations of motion are orthogonalized in both the angular and longitudinal directions, resulting in a double fixed
index matrix equation. These indices can be varied, which yields a set of double indexed matrix equations that
are written together as a single global matrix. This global matrix can be solved, which results in a solution to the
system displacements. Two specific external loading cases are investigated and convergence criteria are discussed.
One of the models is verified with a comparison to finite element analysis.

1. INTRODUCTION

Reinforced shells were used in a variety of applications.
They can be found in undersea vehicles, industrial pipes, hy-
draulic lines, and marine piers. Reinforcement was typically
added to these structures as a method to increase stiffness with-
out adding significant mass. Adding reinforcement changes
the structural response of almost any system, and the forces
that are introduced by the reinforcement need to be included
in an analytical or numerical model that predicts the corre-
sponding response. Unreinforced isotropic thin cylindrical
shell models have existed in the literature for a long time and
can be found in textbooks on acoustics and applied mechan-
ics.1, 2 Isotropic thick shell cylindrical shells models were also
derived for shells without reinforcement.3 Shell models were
extended to include transversely isotropic behavior4 and gen-
eral orthotropic behavior.5

The inclusion of ring stiffeners in the cylinder increased
the stiffness in all three cylindrical directions and changed the
character of the infinite cylinder response from a (purely prop-
agating) single longitudinal term expression to a (partially re-
flective) multi-longitudinal term expression due to the forces of
the stiffeners interacting with the wave motion. Historically,
research in this area has been divided into two separate ap-
proaches: (1) where the length of the stiffener was very short
compared to the periodicity of the stiffeners or (2) where the
length of the stiffener was relatively long compared its period-
icity. Work in the first area (i.e. short stiffeners) was abundant,
and various systems were analyzed. Free wave propagation

of periodically ring stiffened shells has been studied using fi-
nite element analysis6 applied to various different ring geome-
tries that all had relatively small spatial extent and to determine
natural frequencies and modes shapes of ring-stiffened shells.7

The free vibration analysis of cylindrical shells with ring stiff-
eners that had non-uniform eccentricity and unequal spacing
were investigated using a Ritz analytical method, experimental
testing, and finite element analysis,8 where the stiffeners had a
relatively small spatial extent.

A Laplace transfer numerical method to analyze ring stiff-
ened circular thin shells was developed,9 where the spatial di-
mensions of the rings were small and the structure was loaded
with a transient pressure load. The problem of acoustic radia-
tion from fluid-loaded, ring-supported thin shells subjected to
a point forces has been solved10 in the wavenumber domain. In
this paper, both single and double periodic ring supports were
considered. The theory of vibrations of a cylinder reinforced
by periodically spaced circular T-section ribs along its length
has been derived.11 A method for obtaining the propagation
constants of a thin uniform periodically stiffened cylindrical
shells with an emphasis on the stop and pass bands of free
wave motion has been developed.12

Work in the second area (i.e. long stiffeners) generally
used wave propagation approaches to model finite length ring-
stiffened cylindrical shells by assuming that the structure be-
haves as an orthotropic shell, a method that is sometimes re-
ferred to as ”smearing”. This was studied for initial hydro-
static pressure using Flugge equations of motion13 and for fi-

International Journal of Acoustics and Vibration, Vol. 21, No. 3, 2016 (pp. 317–326) http://dx.doi.org/10.20855/ijav.2016.21.3426 317



A. J. Hull, et al.: RESPONSE OF A CYLINDRICAL SHELL WITH FINITE LENGTH RING STIFFENERS

nite length structures with arbitrary boundary conditions with
an axial factor term analysis.14 The effects of energy reflec-
tions off of the stiffener edges were absent in these two papers,
although these models captured the majority of the wave prop-
agation features of such a system.

This paper derived a spatial domain wave propagation so-
lution for the problem of a cylindrical shell with periodically
spaced ring stiffeners that had a significant spatial extent and
significant separation. This model was designed to bridge the
gap between previous models, where the stiffeners were mod-
eled as extremely short or extremely long. The problem be-
gan with the Donnell shell equations of motion written with
the stiffener forces applied in three-dimensions using Heavi-
side step functions. The shell displacements were written as
double summations of an unknown wave propagation coeffi-
cient multiplied by an indexed circumferential term multiplied
by an indexed longitudinal term. The displacement terms were
inserted into the differential equations of motion and the Heav-
iside functions were approximated by a Fourier series. These
algebraic equations were then orthogonalized in two spatial di-
mensions, which resulted in a matrix equation that was depen-
dent on two fixed indices: one an angular index and the other
a longitudinal index. By using a finite number of these in-
dices, the fixed index matrix equations were assembled into
a global matrix equation, which resulted in a solution to the
wave propagation coefficients. By using these coefficients, the
displacement field of the shell could be calculated. This prob-
lem was investigated for two external forcing conditions: one
a ring load and the other a plane wave load. The ring load was
verified by comparing the results to a solution generated us-
ing finite element theory. Convergence criteria were discussed
and the energy distribution of the different mode numbers was
investigated.

2. SYSTEM MODEL AND DECOUPLED
SOLUTION

The system model was that of a cylinder containing a radial
stiffener of finite length, as shown in Figs. 1 and 2. This prob-
lem was analytically modeled by assuming the cylinder was
governed with a dynamic formulation of Donnell shell equa-
tions and the stiffener was modeled as a spatially distributed
translational spring in the longitudinal, circumferential, and ra-
dial directions. The model used the following assumptions: (1)
the cylinder had infinite spatial extent in the axial direction,
(2) the displacements in the cylinder were three-dimensional
and linear, (3) the displacement field was constant across the
thickness of the shell, (4) the stiffeners were periodic, and (5)
the stiffener exerted forces in the longitudinal, circumferential,
and radial directions on the cylinder that were proportional to
the longitudinal, circumferential, and radial displacements of
the cylinder, respectively.

The motion of the cylinder with ring stiffeners was governed
by the equation of motion in the longitudinal direction written

Figure 1. Isometric view of the cylinder with ring stiffeners.

Figure 2. Side view of the cylinder with ring stiffeners.

as:

ρh
∂2u(z, θ, t)

∂t2
− ρhc2p

∂2u(z, θ, t)

∂z2
−

(1− ν)ρhc2p
2a2

∂2u(z, θ, t)

∂θ2
−

(1 + ν)ρhc2p
2a

∂2v(z, θ, t)

∂z∂θ
−
νρhc2p
a

∂w(z, θ, t)

∂z

=
Kz

ab
u(z, θ, t)

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] ; (1)

in the tangential direction written as:

−
(1 + ν)ρhc2p

2a

∂2u(z, θ, t)

∂z∂θ
−

(1− ν)ρhc2p
2

∂2v(z, θ, t)

∂z2
−

ρhc2p
a2

∂2v(z, θ, t)

∂θ2
+ ρh

∂2v(z, θ, t)

∂t2
−
ρhc2p
a2

∂w(z, θ, t)

∂θ

=
Kt

ab
v(z, θ, t)

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] ; (2)
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and in the radial direction written as:

νρhc2p
a

∂u(z, θ, t)

∂z
+
ρhc2p
a2

∂v(z, θ, t)

∂θ
+

ρhc2p
a2

w(z, θ, t) +
ρh3c2p
12

∂4w(z, θ, t)

∂z4
+

ρh3c2p
6a2

∂4w(z, θ, t)

∂z2∂θ2
+

ρh3c2p
12a4

∂4w(z, θ, t)

∂θ4
+ ρh

∂2w(z, θ, t)

∂t2

= pa(z, θ, t)+

Kr

ab
w(z, θ, t)

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] ; (3)

where z was the axial direction, θ was the circumferential di-
rection, t was time, u(z, θ, t) was the longitudinal displace-
ment, v(z, θ, t) was the tangential displacement, w(z, θ, t) was
the radial displacement, a was the radius of the shell, ν was
Poisson’s ratio of the shell, ρ was the density of the shell, h
was the thickness of the shell, pa(z, θ, t) was the external ra-
dial load on the shell, Kz as the longitudinal stiffness of the
ring stiffener, Kt was the circumferential stiffness of the ring
stiffener, Kr as the radial stiffness of the ring stiffener, b was
the length of the ring stiffener, H(·) was the Heaviside step
function, and cp was the plate wave speed, which was given
by:

cp =

√
E

ρ(1− ν2)
. (4)

The shell displacements were then written as double sum-
mations in the form:

u(z, θ, t)

=

m=+∞∑
m=−∞

q=+∞∑
q=0

Umq cos(qθ) exp(ikmz) exp(−iωt); (5)

v(z, θ, t)

=

m=+∞∑
m=−∞

q=+∞∑
q=0

Vmq sin(qθ) exp(ikmz) exp(−iωt); (6)

and

w(z, θ, t)

=

m=+∞∑
m=−∞

q=+∞∑
q=0

Wmq cos(qθ) exp(ikmz) exp(−iωt); (7)

where i was the square root of -1, ω was the frequency, Umq ,
Vmq , and Wmq were unknown longitudinal, tangential, and
radial wave propagation coefficients respectively, whose so-
lutions were sought, and km was the indexed longitudinal
wavenumber, which was expressed as:

km = k +
2πm

L
; (8)

where k was the wavenumber of excitation and L was the peri-
odic spacing of the ring stiffeners. For the problems solved in
this paper, the excitation was a ring load at definite wavenum-
ber and frequency written as:

pa(z, θ, t) = Pa exp(ikz) exp(−iωt); (9)

or a broad side plane wave at definite speed and frequency writ-
ten as:

pa(z, θ, t) = Pa

[
n=+∞∑
n=0

inεnJn

(ωa
c

)
cos(nθ)

]
exp(−iωt);

(10)
where Pa was the magnitude of the applied pressure excitation,
εn was the Newmann factor ( εn = 1 for n = 0; εn = 2 for
n > 0), J was an ordinary nth order Bessel function of the first
kind, and c was the propagation speed of the plane wave. At
this point, the exponential with respect to time was suppressed
in all of the equations. The insertion of Eqs. (5) to (9) into
Eqs. (1) to (3) yielded:

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2pk

2
m +

ρhc2p(1− ν)q2

2a2
− ρhω2

]
×

Umq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
−ρhc2p(1 + ν) i kmq

2a

]
×

Vmq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
−ρhc2pν i km

a

]
Wmq cos(qθ) exp(ikmz)

=
Kz

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Umq cos(qθ) exp(ikmz)×

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] ; (11)

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p(1 + ν) i kmq

2a

]
×

Umq sin(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p(1− ν)k2m

2
+
ρhc2pq

2

a2
− ρhω2

]
×

Vmq sin(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p q

a2

]
Wmq sin(qθ) exp(ikmz)

=
Kt

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Vmq sin(qθ) exp(ikmz)×

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] ; (12)
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and

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2pν i km

a

]
Umq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p q

a2

]
Vmq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p
a2

+
ρh3c2pk

4
m

12
+
ρh3c2pk

2
mq

2

6a2
+

ρh3c2pq
4

12a4
− ρhω2

]
Wmq cos(qθ) exp(ikmz)

= Pa exp(ikz)+
Kr

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Wmq cos(qθ) exp(ikmz)×

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)] . (13)

The Heaviside step function summation was then written us-
ing a Fourier series as:

n=+∞∑
n=−∞

[H(z − nL)−H(z − b− nL)]

= −
n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)
; (14)

where

dn =

{
1−exp(−i2πnb/L)

i2πn n 6= 0
b
L n = 0.

(15)

Equation. (14) was inserted into Eqs. (11), (12), and (13),
which yielded:

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2pk

2
m +

ρhc2p(1− ν)q2

2a2
− ρhω2

]
×

Umq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
−ρhc2p(1 + ν) i kmq

2a

]
×

Vmq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
−ρhc2pν i km

a

]
Wmq cos(qθ) exp(ikmz)

=
−Kz

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Umq cos(qθ) exp(ikmz) ×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)
; (16)

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p(1 + ν) i kmq

2a

]
×

Umq sin(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p(1− ν)k2m

2
+
ρhc2pq

2

a2
− ρhω2

]
×

Vmq sin(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p q

a2

]
Wmq sin(qθ) exp(ikmz)

=
−Kt

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Vmq sin(qθ) exp(ikmz)×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)
; (17)

and

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2pν i km

a

]
Umq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p q

a2

]
Vmq cos(qθ) exp(ikmz)+

m=+∞∑
m=−∞

q=+∞∑
q=0

[
ρhc2p
a2

+
ρh3c2pk

4
m

12
+
ρh3c2pk

2
mq

2

6a2
+

ρh3c2pq
4

12a4
− ρhω2

]
Wmq cos(qθ) exp(ikmz)

= Pa exp(ikz)−
Kr

ab

m=+∞∑
m=−∞

q=+∞∑
q=0

Wmq cos(qθ) exp(ikmz)×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)
. (18)

The last term in Eqs. (16), (17), and (18) were rewritten us-
ing the relationships:

m=+∞∑
m=−∞

q=+∞∑
q=0

Umq cos(qθ) exp(ikmz)×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)

=

q=+∞∑
q=0

{
n=+∞∑
n=−∞

m=+∞∑
m=−∞

Unqdm−n exp(ikmz)

}
cos(qθ) ;

(19)
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m=+∞∑
m=−∞

q=+∞∑
q=0

Vmq sin(qθ) exp(ikmz)×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)

=

q=+∞∑
q=0

{
n=+∞∑
n=−∞

m=+∞∑
m=−∞

Vnqdm−n exp(ikmz)

}
sin(qθ) ;

(20)

and

m=+∞∑
m=−∞

q=+∞∑
q=0

Wmq cos(qθ) exp(ikmz)×

n=+∞∑
n=−∞

dn exp

(
i2πnz

L

)

=

q=+∞∑
q=0

{
n=+∞∑
n=−∞

m=+∞∑
m=−∞

Wnqdm−n exp(ikmz)

}
cos(qθ) .

(21)

Equations (16) and (18) were then multiplied
by exp(−iksz) cos(tθ), Eq. (17) was multiplied by
exp(−iksz) sin(tθ), and these resulting expressions were
integrated on the intervals [0, 2π] on θ and [0, L] on z.
Because these functions were orthogonal on their respective
domains, the equations decouple into sets of st-indexed
equations. Each one was individually written as:[

ρhc2pk
2
s +

ρhc2p(1− ν)t2

2a2
− ρhω2

]
Ust+[

−ρhc2p(1 + ν) i kst

2a

]
Vst +

[
−ρhc2pν i ks

a

]
Wst

=
−Kz

ab

n=+∞∑
n=−∞

ds−nUnt ; (22)

[
ρhc2p(1 + ν)i kst

2a

]
Ust+[

ρhc2p(1− ν)k2s
2

+
ρhc2pt

2

a2
− ρhω2

]
Vst +

[
ρhc2pt

a2

]
Wst

=
−Kt

ab

n=+∞∑
n=−∞

ds−nVnt ; (23)

and[
ρhc2pν iks

a

]
Ust +

[
ρhc2pt

a2

]
Vst+[

ρhc2p
a2

+
ρh3c2pk

4
s

12
+
ρh3c2pk

2
st

2

6a2
+
ρh3c2pt

4

12a4
− ρhω2

]
Wst

=
−Kr

ab

n=+∞∑
n=−∞

ds−nWnt +

{
Pa s = t = 0

0 otherwise.
(24)

This equation were written in matrix form as:

A(s, t)xst =
−Kz

ab

n=+∞∑
n=−∞

Zs−nxnt+

−Kr

ab

n=+∞∑
n=−∞

Ts−nxnt+

−Kr

ab

n=+∞∑
n=−∞

Rs−nxnt +

{
f s = t = 0

0 otherwise.
(25)

The entries of the matrices and vectors in Eq. (25) are listed in
the Appendix. The left-hand side of this equation represents
the dynamics of the shell and the right-hand side represents
the dynamics of the ring stiffeners acting on the shell and the
external load applied to the shell. At this point, all of the ax-
ial (s) and radial (t) modes could be combined into a single
global matrix and a solution to the wave propagation coeffi-
cients could be calculated. However, because the radial modes
individually decoupled, it was numerically more efficient to
solve each radial mode equation separately and then combine
their individual solutions using Eqs. (5), (6), and (7). Eqa-
tion (25) was written for all values of s and any single value of
t and combined into the matrix equation:

Â x̂ =
−Kz

ab
Ẑ x̂− Kt

ab
T̂ x̂− Kr

ab
R̂ x̂+ f̂ . (26)

In Eq. (26), using five s terms (−2 ≤ s ≤ 2) and any sin-
gle t term, Â was a block diagonal matrix that contained the
dynamics of the tth radial mode of the shell and was written
as:

Â =


A(−2, t) 0 0 0 0

0 A(−1, t) 0 0 0

0 0 A(0, t) 0 0

0 0 0 A(1, t) 0

0 0 0 0 A(2, t)

 ;

(27)
Ẑ was a rank deficient block partitioned matrix that repre-
sented the stiffener forces acting in the longitudinal direction
on the shell and was written as:

Ẑ =


Z0 Z−1 Z−2 Z−3 Z−4
Z1 Z0 Z−1 Z−2 Z−3
Z2 Z1 Z0 Z−1 Z−2
Z3 Z2 Z1 Z0 Z−1
Z4 Z3 Z2 Z1 Z0

 ; (28)

T̂ was a rank deficient block partitioned matrix that repre-
sented the stiffener forces acting in the tangential direction on
the shell and was written as:

T̂ =


T0 T−1 T−2 T−3 T−4
T1 T0 T−1 T−2 T−3
T2 T1 T0 T−1 T−2
T3 T2 T1 T0 T−1
T4 T3 T2 T1 T0

 ; (29)
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R̂ was a rank deficient block partitioned matrix that repre-
sented the stiffener forces acting in the radial direction on the
shell and was written as:

R̂ =


R0 R−1 R−2 R−3 R−4
R1 R0 R−1 R−2 R−3
R2 R1 R0 R−1 R−2
R3 R2 R1 R0 R−1
R4 R3 R2 R1 R0

 ; (30)

f̂ was the vector for the ring load that contained the system
excitation and was equal to:

f̂ = { 0T 0T fT 0T 0T }T; (31)

x̂ was the vector of unknown wave propagation coefficients
and was written as:

x̂ = { xT
−2,t xT

−1,t xT
0,t xT

1,t xT
2,t }T; (32)

where,
xst = { Ust Vst Wst }T. (33)

The three stiffness matrices from the ring stiffener could be
combined into a single matrix, however, they were kept sepa-
rate to facilitate an understanding of the dynamics of the sys-
tem. Note from Eq. (26) that the ring stiffener’s forces coupled
the axial modes of the shell together and did not respond inde-
pendently, like they would have if the shell had been unstiff-
ened. The solution to the t indexed wave propagation coeffi-
cients in Eq. (26) were found by:

x̂ =

[
Â+

Kz

ab
Ẑ +

Kt

ab
T̂ +

Kr

ab
R̂

]−1
f̂ . (34)

These were then inserted back into Eqs. (5), (6), and (7) to
yield the displacement field of the shell at any location. The
dispersion curves of the system were calculated using:

det

[
Â+

Kz

ab
Ẑ +

Kt

ab
T̂ +

Kr

ab
R̂

]
= 0; (35)

Although the curves generated in the wavenumber-frequency
space were typically too modally dense to fully understand the
behavior of the free waves.

3. MODEL VERIFICATION AND
CONVERGENCE CRITERIA

The model that was developed in Sections 2 was validated
by comparing it to finite element analysis. In this exam-
ple problem, the following cylinder parameters were used:
Young’s modulusE = 1×107 Nm-2, Poisson’s ratio ν = 0.48,
density ρ = 1200 kgm-3, radius a = 0.1 m, and thickness
h = 0.001 m. Additionally, the following stiffener properties
were used: periodicity L = 5 m, length b = 0.5 m, axial spring
constant Kz = 1.59 × 105 Nm-1, and radial spring constant
Kr = 1.59 × 105 Nm-1. The following loading parameters
were used: axial wavenumber k = 0 and the magnitude of the

applied pressure Pa = 1 Nm-2. Figures 3 and 4 were the radial
displacement and the longitudinal displacement of the shell at
(top) 30 Hz, (middle) 60 Hz, and (bottom) 90 Hz versus spatial
position. In these plots, the solid line was the analytical model
created using 201 axial terms (max |n| = 100) and one radial
term (q = 0) and the circular markers were the finite element
models that used discrete springs to model the stiffener forces.
The finite element results were produced using the COMSOL
Multiphysics finite element program. This model consisted of
an axisymmetric shell with a set of linear translational springs
attached to the area between z = 0 and z = b = 0.5 m to
mimic the behavior of the stiffener. This approach reduced the
number of necessary degrees of freedom and allowed for an
examination of the effect of mismatch between the spring and
shell stiffness without the inclusion of inertial effects of the
stiffener. The finite element model consisted of 20001 nodes,
20000 elastic axisymmetric continuum elements, 2000 trans-
lational springs in the radial direction, and 2000 translational
springs in the longitudinal direction. By enforcing user de-
fined pointwise constraints, the model was nodally constrained
so that the behavior would be periodic on the interval [0, L].
The constraint expression between the terminal [0, L] nodes
was one of Floquet type periodicity, wherein the wavenumber
relating their translational degrees of freedom was that of the
applied excitation. There was no rotational spring constant, as
the model was axisymmetric and the displacements in the an-
gular direction were zero. A single radial term was sufficient to
model the dynamics for this case because the excitation was a
ring load. The displacement differences between the two mod-
els were almost zero at all longitudinal locations.

Convergence of the summations listed in Eqs. (5) to (7) was
an open issue, as the rate of convergence was dependent on
many of the model parameters. However, for the modeled
system presented in this paper, several generalized statements
could be made. The number of terms needed for convergence
was directly related to the mismatch between the stiffness of
the shell and the stiffness of the stiffeners. If the stiffeners
were not present, then only a single term (the n = 0 and q = 0

term) was needed for the series to converge to the proper solu-
tion (for a ring load). The influence of the mismatch between
the cylinder stiffness and the stiffener stiffness could be studied
with respect to the convergence of the solution. Figure 5 was a
plot of the radial displacement convergence of the system ver-
sus number of terms and frequency for stiffener constants of
(a) Kz = Kr = 1× 104 Nm-1, (b) Kz = Kr = 1× 105 Nm-1,
and (c) Kz = Kr = 1 × 106 Nm-1. This convergence metric
was calculated using the equation:

C(N, f) = 20 log10

 1

J

J∑
j=1

∣∣∣∣WC(xj)−WN (xj)

WC(xj)

∣∣∣∣
 ;

(36)
where WC(xj) was the radial displacement calculated using
401 axial terms for each series (max |n| = 200) and a sin-
gle radial term (q = 0), WN (xj) was the radial displacement
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Figure 3. Radial displacement of the shell at (a) 30 Hz, (b) 60 Hz and (c) 90 Hz
versus longitudinal location. The solid line is the analytical model and the
circular markers are the finite element model with discrete springs modeling
the stiffener. The dashed line x = b = 0.5 m denotes the location of the end
of the stiffener.

calculated using 2N + 1 terms for each series, xj was the lo-
cation of the jth calculation, J was equal to 15, and the spatial
locations were equally spaced from 0 to L. The region in white
was -40 dB (or lower), which corresponded to a one percent (or
less) normalized difference between the two solutions. As the
ring stiffeners became stiffer, more terms were needed for the
series to converge. It was useful to generate a plot similar to
Fig. 5 in order to understand the decay of energy in the higher
order terms and ensure convergence for any set of parameters
that were to be modeled.

4. EXAMPLE PROBLEM USING
AN INCIDENT PLANE WAVE LOAD

An example problem of system response to an incident plane
wave load was then investigated. The cylinder parameters from
Section 3 were used to calculate the displacement fields. For a
plane wave load, the vector f̂ in Eq. (26) was equal to:

f̂ = { 0T 0T fTt 0T 0T }T; (37)

The entries of the vector in Eq. (37) are listed in the Appendix.
The wave speed of the plane wave load was 343 ms-1 and the

Figure 4. Longitudinal displacement of the shell at (a) 30 Hz, (b) 60 Hz and
(c) 90 Hz versus longitudinal location. The solid line is the analytical model
and the circular markers are the finite element model with discrete springs
modeling the stiffener. The dashed line x = b = 0.5 m denotes the location
of the end of the stiffener.

frequency of excitation is 60 Hz. Fig. 6 is a plot of the cylinder
displacement in the (a) longitudinal direction, (b) the tangen-
tial direction, and (c) the radial direction versus spatial loca-
tion z and angle θ using stiffness constants of the spacer pa-
rameters in Section 3, as this corresponded to a relatively soft
elastomeric stiffener. The scale of the plot was in dB ref m.
Figure 7 is a plot of the cylinder displacement in the (a) longi-
tudinal direction, (b) the tangential direction, and (c) the radial
direction versus spatial location z and angle θ using stiffness
constants of Kz = 2.46 × 105 Nm-1, Kt = 4.33 × 105 Nm-1,
and Kr = 6.28 × 105 Nm-1, which were derived from spacer
properties of ES = 1.00× 108 Nm-2, GS = 3.45× 107 Nm-2,
and aS = 0.0980 m, AS = 0.0012 m2, Iθ = 1.18× 10−5 m4,
and IZ = 5.91× 10−6 m4, using the approximations:

Kz ≈
AsEs
b

; (38)

Kt ≈
GsIθ
a3s

; (39)

and

Kr ≈
EsIz
a3s

. (40)
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Figure 5. Convergence of the radial displacement versus total number of sum-
mation terms in each series and frequency for cylinder with periodic ring stiff-
eners expressed in a decibel scale. The stiffener constants used in the model
were (a) Kz = Kr = 1 × 104 Nm-1, (b) Kz = Kr = 1 × 105 Nm-1, and
(c) Kz = Kr = 1× 106 Nm-1.

These values corresponded to a relatively hard elastomeric
stiffener. The scale of the plot was in dB ref m. A comparison
of Figs. 6 and 7 shows that as the stiffener value increased,
the displacements had more spatial variation. Additionally,
the effect of the hard stiffener was clearly discernable from
0 to 2.0 m in the displacement fields in Fig. 7, whereas it was
less observable for the case of the soft stiffener. Figure 8 is a
plot of the normalized magnitude of the (a) longitudinal coef-
ficients, (b) tangential coefficients, and (c) radial coefficients
versus longitudinal index s and tangential index t for the soft
stiffener. Figure 9 is a plot of the normalized magnitude of the
(a) longitudinal coefficients, (b) tangential coefficients, and (c)
radial coefficients versus longitudinal index s and tangential
index t for the hard stiffener. Because both of these plots were
normalized, their scales were in dB. These plots were included
so that the individual mode contributions could be discerned.
Note that the higher order modes for the system with the hard
stiffener had more energy than the system with the soft stiff-
ener. Numerical simulations suggested that when the values of
the higher order modes were approximately 80 dB below the
value of the maximum mode, the displacement summations
converged. One final note was that if the external load was

Figure 6. Displacement of the shell in the (a) longitudinal direction, (b) tan-
gential direction and (c) radial direction modeled with a soft stiffener at 60 Hz
versus longitudinal location and angular location. The scale of the plot is in
dB ref m.

some form other than a normal ring load or plane wave, then
its analytical form had to be transformed into a series solution
and inserted into the right hand side of Eq. (22) for longitudi-
nal excitation, Eq. (23) for tangential excitation, and Eq. (24)
for radial excitation.

5. CONCLUSIONS

This paper has derived a model of an infinite length cylin-
drical shell with finite length and periodically spaced ring stiff-
eners. Using a dynamic formulation of the Donnell shell equa-
tions, the stiffener effects are included as forces on the right
hand side of the longitudinal, tangential, and radial equations
of motion using Heaviside step functions. The displacements
are then written as double summations with unknown coeffi-
cients multiplied by a tangential and a longitudinal function.
These are inserted into the equations of motion and the Heav-
iside functions are replaced with their Fourier series represen-
tations. These equations are then orthogonalized on both the
angular and longitudinal domains, resulting in sets of algebraic
double indexed equations. These equations are assembled into
a global matrix equation and the result is a solution to the dis-
placement fields. Two example problems are included and dis-
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Figure 7. Displacement of the shell in the (a) longitudinal direction, (b) tan-
gential direction and (c) radial direction modeled with a hard stiffener at 60 Hz
versus longitudinal location and angular location. The scale of the plot is in
dB ref m.

cussed: the system subjected to a ring load and the system sub-
jected to a plane wave. The ring load example is verified with
finite element results. The problem of varying the stiffness of
the stiffeners is studied and the corresponding changes in the
shell displacements are examined. Finally, the modal distribu-
tion of the displacement field and convergence of the double
summations is discussed.
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APPENDIX — MATRIX AND VECTOR
ENTRIES

The entries of the matrices and vectors in the text are listed
below. The entries of A(s, t) in Eq. (25) are

a1,1 = ρhω2 − ρhc2pk2s −
ρhc2p(1− ν)t2

2a2
; (A.1)

a1,2 =
−ρhc2p(1 + ν)kst

2a
; (A.2)

a1,3 =
ρhc2pν iks

a
; (A.3)

a2,1 =
−ρhc2p(1 + ν)kst

2a
; (A.4)

a2,2 = ρhω2 −
ρhc2p(1− ν)k2s

2
−
ρhc2pt

2

a2
; (A.5)

a2,3 =
ρhc2p it

a2
; (A.6)

a3,1 =
ρhc2pν iks

a
; (A.7)

a3,2 =
ρhc2p it

a2
; (A.8)

and

a3,3 =
ρhc2p
a2

+
ρh3c2pk

4
s

12
+
ρh3c2pk

2
st

2

6a2
+
ρh3c2pt

4

12a4
− ρhω2.

(A.9)
The non-zero entry of Zm in Eq. (28) is

z1,1 = dm. (A.10)

The non-zero entry of Tm in Eq. (29) is

t2,2 = dm. (A.11)

The non-zero entry of Rm in Eq. (30) is

r3,3 = dm. (A.12)

The non-zero entry of f in Eq. (25) is

f3,1 = Pa. (A.13)

The non-zero entry of fTt in Eq. (37) is

fTt =
{

0 0 Pa itεt Jt
(
ωc
a

) }T
. (A.14)
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