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The influence of prestress on dynamic responses and acoustic radiation for thin cylindrical shells is analyzed in
this study. The strain-displacement equation of cylindrical shells with prestress in local areas is established based
on the Flügge theory. The structural-acoustic radiation formulation for prestressed cylindrical shells in local areas
is instituted by using the variational principle. A numerical analysis is then carried out. The numerical results are
validated by comparing the influence of prestress on acoustic radiation power and directivity. This study shows
that prestress significantly affects the dynamic characteristics of cylindrical shells.

1. INTRODUCTION

Prestress (initial stress) exists in complex structures because
of welding residual stress, structural manufacturing defects,
material thermal effects, and static external loading. Prestress
resists or aids structural deformation and alters the static and
dynamic characteristics of complex structures. For example,
the natural frequencies of a structure increase or decrease with
prestress distribution. Several studies have demonstrated the
influence of prestress on structural-acoustic radiation. A previ-
ous study analyzed the structure buckling and vibration prob-
lem of composite sandwich plates with initial stress through
the higher-order finite element theory.1 The influence of pre-
stress on the vibration frequency of concrete bridges was also
investigated using the prestress stiffness matrix.2 Regarding
uniform Euler-Bernoulli beams under linearly varying fully
tensile, the structure natural frequencies may be increased or
decreased, and parameters change the forbidden frequencies of
the mechanical system, considering the pre-stress force.3 The
influence of temperature was also determined by specifying the
arbitrary high temperature on the outer surface and the ambient
temperature on the inner surface of cylindrical shells. In this
case, the prestressed state was induced by thermal loading.4

The potential influence of prestress on resonance frequencies
was also assessed, and the results showed that prestress de-
pended on water depth.5 Moreover, prestress can be used as
a parameter to change the natural frequencies of a mechanical
system in a proposed model of the prestressed structure.6

Thin cylindrical shells are widely used in complex struc-
tures, such as aerospace, marine, mechanical, and civil con-
structs. Research on the vibration and acoustic radiation of
cylindrical shells has been a hot topic these past few years.
A non-linear finite element model based on Murnaghan third-
order elastic theory was applied to analyze the resonance struc-
ture, and the results showed that natural frequencies increased
with increasing compressive stress.7 The free-vibration char-
acteristics of cylindrical shells were also investigated for a gen-
eral class of elastic-support boundary conditions which con-
sidered depth-water pressure.8 Moreover, several studies have
investigated cylindrical shell dynamic problems with prestress
distribution. A previous study reported the output power flow

for an infinite ring-stiffened cylindrical shell submerged in
fluid induced by a cosine harmonic circumferential line force
under a uniform external hydrostatic pressure field and com-
pared the influence of depth-water pressure.9 The effect of
variation in flow velocities and hydrostatic pressures on the
dynamic behavior of fluid-conveying shells, as well as that of
support conditions on free vibration, were further studied; a
3D method for prestress distribution was also established.10, 11

Simultaneous effects of a prestress condition, including its lin-
ear and nonlinear parts and the elastic foundation on natural
frequencies of shells under various boundary conditions, were
extensively examined.12 The structure dynamic response of
cylindrical shells subjected to harmonic excitation at low natu-
ral frequencies was discussed by comparing five different non-
linear cylindrical shell theories.13 The free vibration and insta-
bility characteristics of a ring-stiffened cylindrical shell that
conveys internal fluid was analyzed using motion equations
based on the Flügge theory. The effects of fluid velocity and
ring stiffener parameters on the natural frequency and stability
characteristics of the shell were also assessed.14 The effect of
prestress on dynamic responses of fluid and initial stresses for
the pipeline were further investigated using the integral equa-
tion; the result showed that the influence of prestress at high
frequencies is essential.15 The vibration problem of cylindri-
cal shells was also evaluated using the differential quadrature
method to resolve the prestressed structure problem.16

However, most studies focused on models of uniformly dis-
tributed prestress, such as hydrostatic pressure or water pres-
sure, although fluid velocity deduces pressure. To the best of
the author’s knowledge, few results have investigated the pre-
stress problem of local area distribution, despite its wide ex-
istence in engineering design and manufacturing. With this
reason, to analyze the dynamic response and acoustic radiation
characteristics of a prestressed complex structure in local areas
is necessary. This study aimed to describe the low-frequency
dynamic and acoustic responses of a prestressed cylindrical
shell structure. The basic equations of structural-acoustic char-
acteristics for cylindrical shells were established using the clas-
sical Flügge theory. The developed model was used to deter-
mine the influence of prestress on the local area. A general
mathematical model capable of analyzing the dynamic behav-
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Figure 1. Prestress distribution in local areas.

ior of thin cylindrical shells with and without local area dis-
tribution as well as the overall and non-uniform distribution
of prestress, were developed using the elasticity model. Fi-
nally, the effectiveness of the proposed models was confirmed
through numerical calculations.

This paper is organized as follows: a brief literature review
of the structural-acoustic radiation and prestress in Section 1.
The basic model of prestress in local areas of a thin plate is
demonstrated in Section 2. The motion governing the equa-
tions for cylindrical shells is presented in Section 3. Methods
for addressing prestressed cylindrical shells in local areas in
Section 4. The structural-acoustic radiation function of cylin-
drical shells is then established in Section 5. Acoustic radiation
power and directivity are numerically analyzed in Section 6 to
illustrate the validity and efficiency of the proposed method.
Finally, concluding remarks are provided in Section 7.

2. PRESTRESS MODEL

2.1. Prestress Model in Local Areas
An elastic isotropic thin plate was used to establish a pre-

stress distribution model in local areas. As shown in Fig. 1, the
structure domain Ω contains the sub-domain ΩR (more than
one domain ΩR in the domain Ω). Prestress exists in the sub-
domain ΩR.

2.2. Prestress Equation
The prestress value was defined as zero in the absence of

prestress in the design domain ΩR. The unified prestress equa-
tion of the thin plate structure was also established. A thin
plate was subjected to dynamic external loading, static external
loading, and initial stress. The structure stress in the design do-
main can be expressed as σ = {σxx, σyy, σzz, τxy, τxz, τyz}.
Thus, in the structure dynamic response, prestress consists of
two parts: initial and static loading stresses. The initial stress
consists of initial stress, welding residual stress, and material
thermal effects, whereas the static loading stress is due to static
external loading. Only prestress caused by static external load-
ing was analyzed in this study.

According to the thin plate theory, the structure stress in the
thin plate can be expressed as σzz = τxz = τyz = 0, where
z is the direction of the plate thickness. The structure stress
function can be written as σ = {σxx, σyy, 0, τxy, 0, 0}. More-
over, the cylindrical polar coordinate system indicates that the
structure stress is represented by σ = {σxx, σθθ, τxθ}.

According to the Flügge theory and the structure elastic-
ity theory, structure stresses, namely σxx, σθθ, and τxθ, are

Figure 2. Coordinate system for a cylindrical shell.

related to the strain for homogeneous and isotropic materi-
als and can be expressed as: σxx = E

1−µ2 (εxx + µεθθ),
σθθ = E

1−µ2 (εθθ + µεxx), and τxθ = E
2(1+µ)γxθ respectively.

The structure-strain displacements, εxx and εθθ, are in axial
and circumferential directions respectively. The structure shear
strain, γxθ, is in the coordinate system, E is the structural ma-
terial Young’s modulus, and µ is the Poisson ratio.

For isotropic materials, the structure prestress in local ar-
eas can be written as σ0 = {σ0

xx, σ
0
yy, σ

0
zz, τ

0
xy, τ

0
xz, τ

0
yz}. If

σ0 = 0, then prestress does not exist in the structure design
domain. Prestress has no influence on the shear strain in the
thin plate. Only two principal directions of prestress are con-
sidered, and the stress can be stated as σ0

zz = τ0
xy = τ0

xz =

τ0
yz = 0. Prestress can be rewritten with a cylindrical polar

coordinate system as σ0 = {σ0
xx, σ

0
θθ}.

The cylindrical structure stress of the thin plate subjected
to state loading, dynamic loading, and prestress can be ex-
pressed as σ = σ0 + σf = {σ0

xx, σ
0
θθ, 0, 0, 0, 0} +

{σfxx, σ
f
θθ, 0, τ

f
xθ, 0, 0}, where σ0 is the local-area prestress,

and σf is caused by dynamic external loading.

3. MOTION EQUATIONS OF CYLINDRICAL
SHELLS

In this study, the dynamic response problem of prestress in
the local areas of cylindrical shells was formulated in a cylin-
drical polar coordinate system.

3.1. Free Vibration Formulations of
Cylindrical Shells

The structure of isotropic, infinite, and thin cylindrical shells
in a fluid medium contains the region ΩS with the bound-
ary ΓS . The dynamic response of the shells was determined
in a cylindrical polar coordinate system (x, θ, r), as shown in
Fig. 2, where the x-axis is the axis of the shell and r and θ are
the radial and circumferential directions respectively.

The general assumptions in the structural-acoustic analy-
sis for cylindrical shells include the following: the structure
material is isotropic and linearly elastic; the fluid medium
is isotropic, inviscid, and incompressible; the acoustic wave
equation is linear; the deformation of the shell is small; the
shell and fluid gravity force are neglected; and the shell thick-
ness t is smaller than the shell’s mean radius. In addition, only
the low- and middle-frequency domains of acoustic radiation
are discussed in this study, while structure-fluid coupling are
not.

Figure 2 shows the circular cylindrical shell structure with
thickness t, length L, and radius of the middle surface R.
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Therefore, the dynamic displacement vector u in the cylindri-
cal polar coordinate system can be expressed as:

u = {ux(x, θ, r, t), uθ(x, θ, r, t), ur(x, θ, r, t)}T ; (1)

where ux, uθ, and ur represent the displacements of an ar-
bitrary point on the middle surface of shell axial, tangential,
and radial displacements respectively. The superscript T is the
transposition of a vector/matrix in the equation. Dynamic dis-
placement in the middle surface of the cylindrical shell struc-
ture can be obtained using the classical Flügge theory and can
be expressed as:

ux =

∞∑
n=−∞

∫ ∞
−∞

Ux(kx)e(inθ+ikxx)dx,

uθ =

∞∑
n=−∞

∫ ∞
−∞

Uθ(kx)e(inθ+ikxx)dx,

and

ur =

∞∑
n=−∞

∫ ∞
−∞

Ur(kx)e(inθ+ikxx)dx,

where Ux, Uθ, and Ur are the shell spectral displacement am-
plitudes of the axial, tangential, and radial directions respec-
tively. The parameter kx is the wave number in the axial direc-
tion.

3.2. Strain-displacement Equation of
Cylindrical Shells

The cylindrical shell structure loaded by residual stress or
static loading can resist or aid structure deformation. The strain
field associated with the vibration of a prestressed cylindrical
shell consists of prestress and dynamic stress. As such, the
strain-displacement relations include several nonlinear terms.
Therefore, the total strain field ε for prestressed cylindrical
shells may be represented as the cylindrical polar coordinate
system using:

ε = ε0 + εf = {ε0
xx, ε

0
θθ, 0, 0, 0, 0}+ {εfxx, ε

f
θθ, 0, γ

f
xθ, 0, 0};

(2)
where ε is the strain vector of the cylindrical shell and ε0 is
the strain vector caused by local-area prestress. Only the linear
strain was discussed in this study, such as {ε0

xx, ε
0
θθ, 0, 0, 0, 0},

where ε0
xx and ε0

θθ are the axial and circumferential strains by
prestress respectively.

The structure strain, εf = {εfxx, ε
f
θθ, 0, γ

f
xθ, 0, 0}, is the dy-

namic strain components in the cylindrical coordinate system
and includes strain and shear strain, which was caused by har-
monic external loading. Based on the classical Flügge theory,
εfxx, εfθθ, and γfxθ are strain components in the cylindrical co-
ordinate system.

In the middle surface of the structure, the relationship
of the strain-displacement equation for the thin cylindrical
shell structure can be expressed as: εfxx = ∂ux

∂x , εfθθ =
1
R
∂uθ
∂θ + ur

R , and γfxθ = 1
R
∂ux
∂θ + ∂uθ

∂x . The strain-
displacement equation can be written in vector form as: εf =
{ux,x, 1

R (uθ,θ + ur), 0,
1
Rux,θ + uθ,x, 0, 0}T . Meanwhile, the

strain-displacement equation can be rewritten in matrix form
as:

εf = Yζ; (3)

where Y =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 and ζ = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}T .

Furthermore, ζ1 = ux,x, ζ2 = 1
R (uθ,θ + ur), ζ4 = 1

R (ux,θ),
and ζ5 = uθ,x.

3.3. The Stress-Strain Equation of
the Cylindrical Shell

In the cylindrical shell structure, the general constituent
stress-strain relationship between the stress and strain vectors
can be obtained by using the following equation:

σ = Dε = σ0 + Dεf ; (4)

where σ0 is the prestress vector, viz. σ0 = {σ0
xx, σ

0
θθ}

and σ0
xx, σ0

θθ are the normal prestress vector components in
the cylindrical coordinate system, and D represents the shell
stress-strain matrix. For the isotropic material structure, the
constitutive relationship matrix D can be expressed as:

D =
E

(1+µ)(1−2µ)


1−µ µ µ 0 0 0
µ 1−µ µ 0 0 0
µ µ 1−µ 0 0 0
0 0 0 0.5−µ 0 0
0 0 0 0 0.5−µ 0
0 0 0 0 0 0.5−µ

 ;

where E is the Young’s modulus, and µ is the Poisson ratio.

3.4. Governing Formulation of
the Cylindrical Shell

In a small shell element with unit length, the displacement
vector of the cylindrical shell u was governed by the motion
equation. The dynamic displacement parameter of the cylin-
drical shell is u = {ux, uθ, ur}T . In the structure domain ΩS ,
the appropriate function for the shell domain can be expressed
as:

ρSü−∇ · σ = 0 in ΩS ; (5)

where ρS is the density of the cylindrical shell, dot represents
a derivative with respect to time, and ΩS is the shell solution
domain.

If fluid-structural coupling is weak and can be neglected, es-
pecially for air, the influence of acoustic pressure on the struc-
ture can also be neglected, and the shell’s motion equation can
be proposed. If the distribution function of prestress is defined,
the amplitude and frequency of external loading is also given.
Combining the boundary condition and substituting Eqs. (3)
and (4) into Eq. (5) yields the following equation that governs
the motion of the cylindrical shell:∫

ΩS

δεTDε dΩS +

∫
ΩS

δuT ρü dΩS −
∫

ΩS

δuT f dΩS = 0; (6)

where u is the cylindrical shell displacement vector, such as
u = {ux, uθ, ur}T , ρS represents the inertia force accelera-
tion matrix, and f is the vector of the shell body force.

These motion equations of shell in the acoustic medium can
be rewritten in a variational formula by using the Hamilton
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principle. Hence, the following motion equation can be ob-
tained:∫

ΩS

δ(ε0+εf )TD(ε0+εf ) dΩS +

∫
ΩS

δuTNT
SρSNSü dΩS −∫

ΩS

δuTNT
S f dΩS = 0; (7)

where the first, second, and third parts represent strain energy
variation in the structure, kinetic energy variation in the struc-
ture, and external force acting on the structure of the virtual
variation in external forces respectively.

4. SOLUTION OF MOTION EQUATION

4.1. Structure Discretization
In Eq. (7), the governing motion of the cylindrical shell sub-

jected to boundary conditions was solved by using the finite
element method (FEM). The cylindrical shell was also dis-
cretized by introducing cylindrical frustums, in which the shell
displacement variable u(x, θ, r, t) and the variational form
δu(x, θ, r, t) can be expressed as:

u(x, θ, r, t) = {NSux,NSuθ,NSur}T = Nu; (8a)

δu(x, θ, r, t) = {δ(NSux), δ(NSuθ), δ(NSur)}T

= δuTNT ; (8b)

where u = {ux,uθ,ur}T represents the nodal displacement
vector. ux, uθ, and ur are the nodal displacement in the axial,
tangential, and radial directions respectively. NS denotes the
shape function matrix of the element and N is the assembled
shape function matrix. The relationship between matrix N and

matrix NS can be obtained by using N =

NS 0 0
0 NS 0
0 0 NS

.

Defining dζ = G du, then there is dε = dεf =
YG du. The transformation matrix G can be de-

fined as G =

N
T
S,x 0 0

NT
S,x

R 0 0

0
NT
S,x

R 0 NT
S,x 0 0

0
NT
S,x

R 0 0 0 0


T

. The linear strain-

displacement matrix A can be obtained by substituting the
transformation matrix G into Eq. (4). In addition, the differen-
tial equations of the structural dynamic strain can be expressed
as:

dεf = YG du = A du =



∂NS

∂x 0 0
0 ∂NS

R∂x
NS

R
0 0 0

∂NS

R∂θ
∂NS

∂x 0
0 0 0
0 0 0

 du. (9)

4.2. Motion Function of the Cylindrical Shell
Nonlinear terms (second- and third-order) were neglected

under low shell deformation and only the nonlinear strain-
displacement relationship were used to derive the geometric
stiffness matrix during standard discretization. The following
equation governing the motion of the shell in the global co-
ordinate system was obtained using the variational principle.
By substituting Eqs. (3), (8), and (9) into Eq. (7), a motion

equation can be yielded, which governs the motion of the cylin-
drical shell system as a standard discretization form:∫

ΩS

NT
SρSN

T
S ü dΩS +

∫
ΩS

ATDAu dΩS +∫
ΩS

GTSGu dΩS −
∫

ΩS

f dΩS = 0; (10)

where ü is the shell nodal acceleration vector, u is the
shell nodal displacement vector, and the matrix S is pro-
vided by the structural prestress matrix and can be written as:

S =

σ0
xxI2 τ0

xθI2 τ0
xγI2

τ0
xθI2 σ0

θθI2 τ0
θγI2

τ0
xγI2 τ0

θγI2 σ0
γγI2

, where I2 is a unit matrix of or-

der 2. The local area prestress σ0 = {σ0
xx, σ

0
θθ, 0, 0, 0, 0}

is substituted into matrix S, which can be written as:

S =

σ0
xxI2 0 0
0 σ0

θθI2 0
0 0 0

.

The integral equation can then be obtained as:

mSü + kSu + f = 0; (11)

where f is the elemental matrix of external loading, mS

is the elemental mass matrix and represented as mS =∫
ΩS

NT
SρSN

T
S dΩS ; kS = k0 + kσ is the elemental stiff-

ness matrix, k0 =
∫

ΩS
ATDA dΩS is the elemental stiffness

matrix of the cylindrical shell without prestress, and kσ =∫
ΩS

GTSG dΩS is the additional part of the elemental stiff-
ness matrix for the cylindrical shell with prestress and defined
as prestress stiffness matrix. The structural stiffness matrix
was modified due to the the existence of prestress in the local
area. Thus, the overall stiffness matrix was altered, the effect
of fluid-structural coupling was neglected, and the mass matrix
was not affected by prestress.

If the viscous damping matrix is considered, then the vis-
cous damping matrix cS in the differential equation can be ex-
pressed as:

mSü + cSu̇ + kSu + f = 0. (12)

The nodal displacement vector matrix was obtained by sub-
stituting the displacement vector equation and the harmonic
loading equation into Eq. (12). In addition, the nodal normal
velocity vector vn(ω) can be obtained. The nodal particle nor-
mal velocity was used as boundary condition in the acoustic
radiation analysis with the boundary element method (BEM).

5. ACOUSTIC RADIATION FUNCTION
Structure vibration induces acoustic radiation. BEM was

used to calculate the acoustic radiation behavior (acoustic pres-
sure and acoustic radiation power) with structure response
(harmonic normal velocity) as the boundary condition. Only
the low-middle frequency domains of the exterior acoustic ra-
diation of the continuum structure were analyzed in this study,
which only considered the steady-state response of the vibrat-
ing structure. The standard acoustic wave equations were re-
duced to the Helmholtz equation in the harmonic response
problem. For an arbitrary shape structure, the governing dif-
ferential equation and boundary condition in steady-state linear
acoustics is the classical 3D Helmholtz equation as follows:

∇2p(x, θ, r, t) + k2p(x, θ, r, t) = 0; (13)

∂2w

∂t2
= −1

ρ

∂p(x, θ, r, t)

∂r

∣∣∣
r=R

; (14)
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where p is the acoustic pressure of the acoustic field point, k
(= ω/c) denotes the wave number, and ω and c are the angu-
lar frequency and speed of sound respectively, and ∇2 is the
Laplace operator. The acoustic wave assumes harmonic time
variations throughout the analysis with eiωt dependence sup-
pressed for simplicity.

At the structure-fluid boundaries ΓS , the acoustic pres-
sure must satisfy the Neumann boundary condition ∂p/∂n =
−iωρvn, where vn is the nodal normal velocity of the struc-
ture, ρ is the density of the fluid medium, and n is the outer-
normal unit vector of the structure surface. Moreover, the
acoustic pressure p precisely and automatically satisfies the
Sommerfeld condition at infinity, lim

r→∞
[r(∂p/∂r− ikp)] = 0.

The associated form of the pressure field of the cylindrical shell
can be expressed by applying the variable separation method to
solve the acoustic wave equation:

p(x, θ, r) =

∞∑
n=−∞

Pn(x)H(1)
n (kr)einθ; (15)

where n is the expansion coefficient,H(1)
n (kr) is the n-th order

Hankel function of the first kind, Pn(x) is the pressure ampli-

tude, and k =
√
k2
f − k2

x, kf = ω/c. In addition, the radial

velocity vn(~r) in the acoustic field is vn(~r) = − 1
iωρ

∂p
∂r .

In this study, the acoustic medium was defined as air. The
feedback coupling between the acoustic medium and the vi-
brating structure was also neglected because of its weak in-
fluence. The acoustic radiation field quantities were relevant
to acoustic radiation pressure and power. However, acoustic
pressure varies according to spatial position, and the calcula-
tion is time consuming. Acoustic power was a suitable param-
eter to be used for quantifying the radiation on the structure
surface. Acoustic power is also related to the characteristics
of structure vibration and does not change with spatial posi-
tion. Therefore, the power parameter of acoustic radiation is
preferred over the acoustic pressure parameter for structural-
acoustic analysis and evaluation. In the acoustic field domain,
the acoustic radiation power describes the energy flow of an
assumed integral surface and can be defined as:

Π =
1

2

∫
Γ

Re{p(~r) · v∗n(~r)} dΓ; (16)

where “Re” represents the real part of a complex variable, p(~r)
is the acoustic pressure at the acoustic field point, as shown in
Eq. (15), v∗n(~r) is the field-point normal complex conjugate
operator velocity of fluid-particle, and Γ is the integral sur-
face of acoustic domain. After omitting the acoustic transmis-
sion loss and absorption of the boundary and source points, the
acoustic radiation power of the exterior acoustic field is equal
to that of the source point surface. The structure surface radia-
tion acoustic power can be written as:

Π =
1

2
Re

∫
Γ

pfv
∗
n dΓ; (17)

where Γ is the structure-fluid interface, pf is the acoustic pres-
sure on the structural surface, and v∗n is the nodal normal com-
plex conjugate velocity on the structural surface. In the vibra-
tion structure, pf = ρcvn exits, where the phase angle be-
tween acoustic pressure pf and the normal velocity v∗n is 0.

Figure 3. Finite element model of the cylindrical shell.

6. NUMERICAL RESULTS AND DISCUSSION
A cylindrical shell structure under external harmonic exci-

tation in air was used to demonstrate the influence of prestress
in local areas on the structural-acoustic characteristics of the
shells. In the numerical examples, FEM was used to analyze
structural dynamic response, whereas BEM was applied to deal
with the exterior acoustic radiation problem, structure vibra-
tion, acoustic power, and acoustic directivity. This study only
focused on the steady-state dynamic response of the vibrating
structure.

6.1. Model Description
A finite thin cylindrical shell structure with supported

boundary condition immersed in fluid was used in this study, as
shown in Fig. 3. The radius, length, and thickness of the cylin-
drical shell are 1.5, 4.8, and 0.01 m respectively. The cylin-
drical shell structure was discretized using FEM. In the model,
the zero point of the overall coordinate system is located at the
center of the cylindrical shell.

The material of the cylindrical shell structure is steel with
mechanical performance parameters as follows: density, ρ =
7800 kg/m3; modulus of elasticity, E = 210 GPa; and the
Poisson ratio, µ = 0.3. The total weight of the cylindrical
shell is 1764.0 kg, whereas the fundamental frequency is ω =
7.6 Hz.

In the structural-acoustic analysis, the acoustic properties of
the fluid (i.e. air) are isotropic and homogeneous, with density
(ρ) of 1.225 kg/m3, speed of sound (c) of 343 m/s, acoustic
power reference value (W0) of 1 × 10−12 Watt, and acoustic
pressure reference value (p0) of 2× 10−5 Pa.

A time-harmonic line force loading on the shell struc-
ture was also observed. The first concentrated loading is
f(t) = F sin(2πft), with a prescribed amplitude of P <
0, 0, 200.0 > N. The frequency of the external force is f =
61 Hz, which was applied to a point on P1, as shown in Fig. 3.
The second concentrated loading is f(t) = F sin(2πft), with
a prescribed amplitude of P < 0, 0,−200.0 > N. The fre-
quency of the external force is f = 61 Hz, which was applied
to a point on P2, as shown in Fig. 3.

6.2. Structure Prestress
Prestress of the cylindrical shell structure was induced by

ring static loading. A uniform distribution of static loading
was observed on the cylindrical shell structure, as shown in
Fig. 3. The length of the static loading region is 0.2 m on
the axis direction. The amplitude of the static surface force is
1.6× 106 Pa, and the normal direction of the force is inward.

The deformation parameter of the cylindrical shell structure
was obtained according to the numerical analysis of the struc-
ture subjected to static loading. In addition, the contour maps
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Figure 4. Contour maps of prestress distribution.

Table 1. Comparison of mode frequencies.

Mode order Without prestress With prestress
1 7.6 7.2
2 9.1 8.9
3 12.0 11.0
4 20.0 19.4
5 20.1 20.0
6 33.8 32.5

Figure 5. Comparison of velocity.

of the structure stress distribution are illustrated in Fig. 4. The
structure stress is concentrated in the center of the shell struc-
ture near the static loading region. Far from the static load-
ing region, the stress is very small and can be omitted. The
maximum value of the structure stress of the shell structure is
107 MPa. The structure stress is defined as local-area prestress
in the dynamic response analysis.

6.3. Vibration of the Cylindrical Shell
The dynamic characteristic of the cylindrical shell structure

changed with prestress distribution. Table 1 shows the mode
frequencies of the structure with or without prestress distribu-
tion. The influence of prestress on the dynamic behavior of the
shell structure is considered significant.

The vibration characteristics of the cylindrical shell were
compared in the absence or presence of prestress distribution.
The velocity of the cylindrical shell structure can be calcu-
lated using the FEM code. Frequency variation in the analysis
ranges from 0 Hz to 400 Hz, and the frequency step size is
2 Hz. Figure 5 demonstrates the comparison of the node ve-
locity of the defined point located on the static loading region
with or without prestress.

As shown in Fig. 5, the influence of prestress on the dynamic
behavior of the cylindrical shell structure is evident.

Figure 6. Comparison of acoustic power.

Figure 7. Comparison of acoustic pressure.

6.4. Acoustic Radiation of the Cylindrical
Shell

Acoustic pressure in the field point and acoustic radiation
power were obtained using the BEM code combined with
the normal velocity of the cylindrical shell structure. Fre-
quency variation in radiated acoustic power ranges from 0 Hz
to 400 Hz, and the frequency step size is 2 Hz. Figure 6 shows
the comparison between the acoustic radiation power with and
without prestress. As shown in Figs. 6 and 7, the influence of
prestress on acoustic radiation power, as well as on acoustic
pressure in the field point of the cylindrical shell structure is
evident, with the field point located in (0, 5, and 5).

Numerical analysis showed that the stiffness matrix of the
cylindrical shell structure and the dynamic response parame-
ter were altered in the presence of prestress. Acoustic radia-
tion power was then changed, and the maximum value of the
acoustic radiation power significantly increased.

6.5. Acoustic Directivity Analysis
The influence of prestress, which is located in local areas

of the acoustic source point on acoustic pressure directivity
was compared. In the directivity analysis, acoustic pressure
was compared in the frequency of 61 Hz. The acoustic field
was located in the horizontal plane midway along the cylinder
length. Figure 8 shows the comparison between the acoustic
radiation directivity with and without prestress.

306 International Journal of Acoustics and Vibration, Vol. 21, No. 3, 2016



L. Chen, et al.: ACOUSTIC CHARACTERISTIC ANALYSIS OF PRESTRESSED CYLINDRICAL SHELLS IN LOCAL AREAS

Figure 8. Comparison of the acoustic directivity.

A comparison of Figs. 5, 6, 7, and 8 shows that the dynamic
characteristics are significantly reduced. Additionally, the in-
fluence of the existing prestress is obvious.

7. CONCLUSIONS

In this study, acoustic radiation power is proposed as a per-
formance index to address vibration and acoustic radiation
problem of a prestressed cylindrical shell structure in local
area distribution. The following conclusions are drawn through
numerical analysis and comparison. The existence of local
prestress changes the stiffness of the structure. Prestress dis-
tributed in local areas significantly influences sound radiation
and is evident in low-frequency band. Meanwhile, the structure
of radiation directivity can be changed. Future studies will fo-
cus on fluid-structure coupling characteristics at the interface.
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