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The exact analytic solutions are obtained with the use of the eigenvalue approach for a free vibration problem of a
thermoelastic hollow cylinder in the context of Green and Naghdi theory (GNIII). The dispersion relations for the
existence of various types of possible modes of vibrations in the considered hollow cylinder are derived in a com-
pact form and the validation of the roots for the dispersion relation is presented. To illustrate the analytic results,
the numerical solution of various relations and equations has been carried out to compute the frequency, thermoe-
lastic damping and frequency shift of vibrations in a hollow cylinder of copper material with MATHEMATICA
and MATLAB software.

1. INTRODUCTION

In the literature concerning thermal effects in continuum
mechanics, several parabolic and hyperbolic theories for de-
scribing the heat conduction were developed. These hyper-
bolic theories were also called theories of second sound and
there the flow of heat was modelled with finite propagation
speed, which contrasts with the classical model based on the
Fouriers law leading to infinite propagation speed of heat sig-
nals as in.1–9 Green and Naghdi10, 11 proposed GNII and GNIII,
which is a generalized thermoelasticity theory based on en-
tropy equality rather than the usual entropy inequality. An im-
portant feature of this theory, which was not present in other
thermoelasticity theories, was that it does not accommodate
the dissipation of thermal energy. GN theory seems to be ide-
alistic from a physical point of view. The genesis lies in the
fact that the thermoelastic model of the GN theory was an ide-
alized material model. During the last years, different prob-
lems were considered by using Green and Naghdi theories, as
in Abd El-Latief et al.,12 Youssef,13 Mukhopadhyay et al.,14

Sharma et al.,15 Prasad et al.,16 Othman et al.,17 Abbas,18 and
Abbas et al.19 A survey article of representative theories in the
range of generalized thermoelasticity is given by Hetnarski and
Ignaczak.20

The vibrations in thermoelastic materials have many appli-
cations in various fields of science and technology, namely
aerospace, atomic physics, thermal power plants, and chemical
pipes. The cylinders were frequently used as structural compo-
nents and their vibrations were obviously important for practi-
cal design. Abbas studied the natural frequencies of a poroe-
lastic hollow cylinder.21 Abd-alla and Abbas investigated the
magnetoelastic longitudinal wave propagation in a transversely
isotropic circular cylinder.22 Mykityuk studied the thermoelas-
tic vibrations of a thick-walled cylinder of time-varying thick-
ness.23 Zhitnyaya analyzed an uncoupled problem of the ther-
moelastic vibrations of a cylinder.24 Marin and Lupu studied
the harmonic vibrations in thermoelasticity of micropolar bod-
ies.25 Erbay et al. investigated thermally induced vibrations in
a generalized thermoelastic solid with a cavity.26 Sharma et

al. solved the vibration analysis of a transversely isotropic hol-
low cylinder by using the matrix Frobenius method.27 Nayfeh
and Younis presented a model for thermoelastic damping in
microplates.28, 29 Rezazadeh et al. studied the thermoelastic
damping in a micro-beam resonator using modified couple
stress theory.30

The present article is devoted to study the frequency, fre-
quency shifts and damping due to thermal variations in ho-
mogenous isotropic hollow cylinder, in the context of Green
and Naghdi of type III model of non-classical (generalized)
thermoelasticity.

2. BASIC EQUATION AND FORMULATION
OF THE PROBLEM

Following Green and Naghdi, the basic equations of the
thermoelasticity theory for homogeneous isotropic material in
the absence of body forces and heat sources were considered
as the equations of motion10, 11:

σij,j = ρ
∂2ui
∂t2

; (1)

where ρ was the density of the medium, t was the time, σij
were the components of stress tensor, and ui were the compo-
nents of displacement vector. The equation of heat conduction
is: (

K∗ijT,j +Kij Ṫ,j

)
=

∂2

∂t2
(ρce + γT0e) ; (2)

where T is the temperature, ce was the specific heat at constant
strain, Kij was the thermal conductivity, K∗ij was the material
constant characteristic of the theory, T0 was the reference tem-
perature; γ = (3λ + 2µ)αt, αt was the coefficient of linear
thermal expansion. The constitutive equations were given by:

σij = 2µeij + [λe− γ(T − T0)] δij ; (3)

with e = eii, i, j = r, θ, z, where λ, µ were the Lame’s con-
stants and δij was the Kronecker symbol.
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Let us consider an elastic hollow cylinder of an isotropic
homogeneous medium whose state could be expressed in terms
of the space variable r and the time variable t. In a cylindrical
coordinate system (r, θ, z), for the axially symmetric problem
ur = ur(r, z, t), uθ = 0, uz = uz(r, z, t). Furthermore, if
only the axisymmetric plane strain problem was considered,
we had ur = u(r, t) and uθ = uz = 0. Thus, the strain-
displacement relations are

err =
∂u

∂r
, eθθ =

u

r
, ezz = erz = erθ = eθz = 0. (4)

The stress-strain relations are

σrr =2µ
∂u

∂r
+ λ

(
∂u

∂r
+
u

r

)
− γ(T − T0); (5)

σθθ =2µ
u

r
+ λ

(
∂u

∂r
+
u

r

)
− γ(T − T0). (6)

It was assumed that there were no body forces and heat sources
in the medium, the equation of motion and energy equation
hadthe form:

∂σrr
∂r

+
σrr − σθθ

r
= ρ

∂2u

∂t2
(7)

K∗
1

r

∂

∂r

(
r
∂T

∂r

)
+K

1

r

∂

∂r

(
r
∂2T

∂t∂r

)
=

∂2

∂t2

(
ρceT + γT0

(
∂u

∂r
+
u

r

))
. (8)

It was convenient to change the preceding equations into the
dimensionless forms. To do this, the dimensionless parameters
were introduced as

(r′, u′) =
(r, u)

cχ
, t′ =

t

χ
, ω′ = ωχ,

(σ′rr, σ
′
θθ) =

1

λ+ 2µ
(σrr, σθθ), T ′ =

T − T0
T0

, (9)

where, c2 = λ+2µ
ρ , χ = K

ρcec2
. From Eq. (9) into Eqs. (5) to

(8), one may obtain (here dashes are ignored for convenience):

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
− a2

∂T

∂r
=
∂2u

∂t2
; (10)(

ε1 +
∂

∂t

)(
∂2T

∂r2
+

1

r

∂T

∂r

)
=

∂2

∂t2

(
T + ε2

(
∂u

∂r
+
u

r

))
;

(11)

σrr =
∂u

∂r
+ a1

u

r
− a2T ; (12)

σθθ = a1
∂u

∂r
+
u

r
− a2T (13)

where a1 = λ
λ+2µ , a2 = γT0

λ+2µ , ε1 = K∗

ρcec2
, ε2 = γ

ρce
. The

boundary conditions for stress free and isothermal surfaces of
the cylinder may be expressed as:

σrr(a, t) = σrr(b, t) = 0; T (a, t) = T (b, t) = 0; (14)

where a and b are the inner and outer radii of the cylinder re-
spectively.

3. THE EXACT SOLUTION OF THE MODEL

We considered cylindrical time-harmonic vibrations so that:

u(r, t) = ū(r)eiωt, T (r, t) = Teiωt; (15)

where ω was the non-dimensional circular frequency of vibra-
tions. By placing Eq. (15) into Eqs. (10) and (11), we get:

d2ū

dr2
+

1

r

dū

dr
− ū

r2
= −ω2ū+ a2

dT

dr
; (16)

d2T

dr2
+

1

r

dT

dr
= −ω2

(
ε3T + ε4

(
dū

dr
+
ū

r

))
(17)

where ε3 = 1
ε1+iω

and ε4 = ε2
ε1+iω

. By differentiating Eq. (17)
with respect to r and using Eq. (16) we got:

d2

dr2

(
dT

dr

)
+

1

r

d

dr

(
dT

dr

)
− 1

r2

(
dT

dr

)
=

− ω2

(
−ω2ε4ū+ (ε3 + ε4a2)

dT

dr

)
. (18)

Equations (16) and (18) could be written in a vector-matrix
differential equation as follows:

LV = AV (19)

where L ≡ d2

dr2 + 1
r
d
dr −

1
r2 was the Bessel operator, V =[

ū dT
dr

]T
and A =

[
A11 A12

A21 A22

]
, with A11 = −ω2, A12 =

a2, A21 = ω4ε4, A22 = −ω2(ε3 + a2ε4).
Let us now proceed to solve Eq. (19) by the eigenvalue ap-

proach proposed by Das at al.,31 Abbas,32–34, 36 and Youssef
et al.35 The characteristic equation of the matrix A takes the
form:

A11A22 −A12A21 − (A22 +A11)λ+ λ2 = 0. (20)

The roots of the characteristic Eq. (20), which were also the
eigenvalues of matrix A, were of the form λ = λ1, λ = λ2.
The eigenvector X =

[
x1 x2

]T
, which corresponded to the

eigenvalue λ, could be calculated as:

x1 = A12, x2 = λ−A11. (21)

From Eq. (20), we could easily calculate the eigenvector Xj ,
which corresponded to the eigenvalue λj , j = 1, 2. For further
reference, we shall use the following notations:

X1 = [X]λ=λ1
, X2 = [X]λ=λ2

. (22)

The solution of Eq. (20) could be written as follows:

V = X1 (A1I1(p1r) +A2K1(p1r)) +

X2 (A3I1(p2r) +A4K1(p2r)) ; (23)

where p1 =
√
λ1, p2 =

√
λ2, I1, K1 were the modified of

Bessels functions and A1, A2, A3, A4 were arbitrary constants
to be determined. Upon using Eq. (23), the displacement and
temperature gradient were obtained as:

ū(r) = x11 (A1I1(p1r) +A2K1(p1r)) +

x21 (A3I1(p2r) +A4K1(p2r)) ; (24)
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dT

dr
= x12 (A1I1(p1r) +A2K1(p1r)) +

x22 (A3I1(p2r) +A4K1(p2r)) ; (25)

where xji was the component number i of the eigenvector num-
ber j. Thus, the exact solutions of field variables could be writ-
ten for r and t as:

u(r, t) =

[
x11 (A1I1(p1r) +A2K1(p1r)) +

x21 (A3I1(p2r) +A4K1(p2r))

]
eiωt; (26)

T (r, t) =

[
x12
p1

(A1I0(p1r)−A2K0(p1r)) +

x22
p2

(A3I0(p2r)−A4K0(p2r))

]
eiωt; (27)

σrr(r, t) =

A1

[
(p21x

1
1 − βx12)

p1
I0(p1r) +

x11(ξ − 1)

r
I1(p1r)

]
+

A2

[
(βx12 − p21x11)

p1
K0(p1r) +

x11(ξ − 1)

r
K1(p1r)

]
+

A3

[
(p22x

2
1 − βx22)

p2
I0(p2r) +

x21(ξ − 1)

r
I1(p2r)

]
+

A4

[
(βx22 − p22x21)

p2
K0(p2r) +

x21(ξ − 1)

r
K1(p2r)

]
; (28)

σθθ(r, t) =

A1

[
(p21ξx

1
1 − βx12)

p1
I0(p1r)−

x11(ξ − 1)

r
I1(p1r)

]
+

A2

[
(βx12 − p21ξx11)

p1
K0(p1r)−

x11(ξ − 1)

r
K1(p1r)

]
+

A3

[
(p22ξx

2
1 − βx22)

p2
I0(p2r)−

x21(ξ − 1)

r
I1(p2r)

]
+

A4

[
(βx22 − p22ξx21)

p2
K0(p2r)−

x21(ξ − 1)

r
K1(p2r)

]
. (29)

4. DISPERSION RELATIONS

We assumed that the thermoelastic hollow cylinder was sub-
jected to traction-free and isothermal boundary conditions,
Eq. (15), at its surfaces (r = a, b). By applying boundary
conditions, which were Eqs. (15), (27), and (28), we obtain
a system of four homogeneous linear algebraic equations in
unknowns A1, A2, A3, and A4. This system would have a
nontrivial solution if and only if the determinant of the coeffi-
cients A1, A2, A3, and A4 vanished and such a requirement of
nontrivial solution lead to dispersion equations given by:

∆ = det(Lij) = 0, i, j = 1, 2, 3, 4; (30)

where,

L11 =
(p21x

1
1 − a2x12)

p1
I0(p1a) +

x11(a1 − 1)

a
I1(p1a);

L12 =
(a2x

1
2 − p21x11)

p1
K0(p1a) +

x11(a1 − 1)

a
K1(p1a);

Figure 1. Non-dimensional frequency ωR verses the length to mean radius
ratio η.

Figure 2. Thermoelastic damping Q−1 versus m for different values of η.

L13 =
(p22x

2
1 − a2x22)

p2
I0(p2a) +

x21(a1 − 1)

a
I1(p2a);

L14 =
(a2x

2
2 − p22x21)

p2
K0(p2a) +

x21(a1 − 1)

a
K1(p2a);

L21 =
(p21x

1
1 − a2x12)

p1
I0(p1b) +

x11(a1 − 1)

b
I1(p1b);

L22 =
(a2x

1
2 − p21x11)

p1
K0(p1b) +

x11(a1 − 1)

b
K1(p1b);

L23 =
(p22x

2
1 − a2x22)

p2
I0(p2b) +

x21(a1 − 1)

b
I1(p2b);

L24 =
(a2x

2
2 − p22x21)

p2
K0(p2b) +

x21(a1 − 1)

b
K1(p2b);

L31 =
x12
p1
I0(p1a), L32 = −x

1
2

p1
K0(p1a)

L33 =
x22
p2
I0(p2a), L34 = −x

2
2

p2
K0(p2a)

L41 =
x12
p1
I0(p1b), L42 = −x

2
1

p1
K0(p1b)

L43 =
x22
p2
I0(p2b), L44 = −x

2
2

p2
K0(p2b)

5. NUMERICAL RESULTS AND DISCUSSION

The copper material had been chosen for the purposes of nu-
merical evaluations in the space-time domain. From the mate-
rial constants, we got the non-dimensional values of the prob-
lem as Abbas:37

µ = 3.86× 1010(kg)(m)−1(s)−2;
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Table 1. The validation of the roots for the dispersion relation.

m η = 0.4 η = 0.8
ω ∆ ω ∆

1 0.7062 + 0.00002i 4.2 × 10−16 − 1.5 × 10−17i 0.5628 + 0.00016i 9.9 × 10−16 + 1.1 × 10−15i
2 6.3247 + 0.00825i −3.2 × 10−16 − 6.9 × 10−16i 2.4331 + 0.00738i −1.0 × 10−16 + 1.8 × 10−17i
5 25.143 + 0.00839i 5.1 × 10−19 − 2.4 × 10−19i 9.4425 + 0.00834i 5.0 × 10−16 − 7.1 × 10−17i

10 56.553 + 0.00839i −23 × 10−18 − 4.4 × 10−19i 21.213 + 0.00839i −2.0 × 10−18 + 7.1 × 10−18i
15 87.967 + 0.0084i 7.3 × 10−19 + 1.3 × 10−18i 32.991 + 0.00839i 1.7 × 10−17 + 4.8 × 10−18i
20 119.38 + 0.0084i −3.1 × 10−19 − 1.8 × 10−18i 44.771 + 0.00839i −2.7 × 10−17 + 1.5 × 10−18i

Figure 3. Frequency shift ωs versus m for different values of η.

λ = 7.76× 1010(kg)(m)−1(s)−2;

ce = 3.831× 102(m)2(K)−1(s)−2;

K = 3.68× 102(kg)(m)(K)−1(s)−3;

ρ0 = 8.954× 103(kg)(m)−3;

αt = 17.8× 10−6(K)−1;

T0 = 293(K); a = 1. (31)

The numerical computation had been carried out with the
help of MATHEMATICA and MATLAB files for the length to
mean radius ratio

(
η = b−a

R

)
, where a = 1, b > a, R = a+b

2 .
Due to the presence of a dissipation term in the heat conduc-
tion equation, the frequency equation in the general complex
transcendental equation provided us with a complex frequency
value, ωm = ωmR + iωmI , where m was the mode number that
corresponded to the roots of the transcendental Eq. (30) and
ωmR and ωmI were the real part and imaginary parts of frequency
ωm. The thermoelastic damping factor was given by:

Q−1 = 2

∣∣∣∣ωmIωmR
∣∣∣∣ .

The frequency shift due to thermal variations was defined as:

ωs =

∣∣∣∣ωmR − ωmoωmo

∣∣∣∣ ;
where ωmo was the frequency in elastic hollow cylinder.

The calculation of the roots of the dispersion relation
Eq. (30) represented a major task and required a rather exten-
sive effort of numerical computation. The frequency spectrum
ωm versus the different values of the length to mean radius ra-
tio η for the first twenty modes was computed by the interval
halving method. The validation of the roots for the dispersion
relation is presented in Table 1.

The first twenty modes of non-dimensional frequency ωR
verses the length to radius ratio η are presented in Fig. 1.
It was observed that the non-dimensional frequency ωR de-
creased with an increasing length to mean radius ratio. The
thermoelastic damping Q−1 versus m for different values of

the length to mean radius ratio η are presented in Fig. 2, from
which it is seen that the thermoelastic damping Q−1 increased
initially to attain its maximum peak value at the second mode
before it decreased in order to become ultimately asymptotic
with increasing m. Figure 3 shows the variation of the fre-
quency shift ωs versus m for different values of the length to
mean radius ratio η. It could be inferred that the frequency
shift ωs increased sharply to attain its maximum peak value
at the second mode and then decreased to become ultimately
asymptotic with increasing m.

6. CONCLUSIONS

The exact solution for a free vibration of thermoelastic hol-
low cylinder under GNIII model has been done with the help of
the eigenvalue approach. The eigenvalue approach is applied
successfully to get an explicit, totally analytic, and uniformly
valid solution for the current problem. The validation of the
roots for the dispersion relation is also presented. The closed
form solution obtained here opens the scope of further studies
in mathematics, science, and engineering disciplines.

REFERENCES
1 Lord, H. W. and Y. Shulman. A generalized dynamical

theory of thermoelasticity, Journal of the Mechanics and
Physics of Solids, 15(5),299–309, (1967).

2 Green, A. E. and K. A. Lindsay. Thermoelasticity, Journal
of Elasticity, 2(1), 1–7 (1972).

3 Dhaliwal, R. S. and H. H. Sherief. Generalized thermoelas-
ticity for anisotropic media, Quarterly of Applied Mathe-
matics, 38(1), 1–8 (1980).

4 Sherief, H. H. and M. N. Anwar. A problem in general-
ized thermoelasticity for an infinitely long annular cylinder,
International Journal of Engineering Science, 26(3), 301–
306, (1988).

5 Sherief, H. H. and M. A. Ezzat. A problem in general-
ized magneto-thermoelasticity for an infinitely long annu-
lar cylinder, Journal of Engineering Mathematics, 34(1–4),
387–402, (1998).

6 Abbas, I. A. and A. M. Zenkour. LS model on electro-
magneto-thermoelastic response of an infinite functionally
graded cylinder, Composite Structures, 96, 89–96, (2013).

7 Abbas, I. A. Generalized magneto-thermoelastic interaction
in a fiber-reinforced anisotropic hollow cylinder, Interna-
tional Journal of Thermophysics, 33(3): 567–579, (2012).

8 . Abd-alla, A. N. and I. Abbas. A problem of generalized
magnetothermo-elasticity for an infinitely long, perfectly
conducting cylinder. Journal of Thermal Stresses, 25(11),
1009–1025, (2002).

International Journal of Acoustics and Vibration, Vol. 21, No. 3, 2016 269



I. A. Abbas: EXACT SOLUTION FOR A FREE VIBRATION OF THERMOELASTIC HOLLOW CYLINDER UNDER GNIII MODEL

9 Abbas, I. A. and H. M. Youssef. A nonlinear generalized
thermoelasticity model of temperature-dependent materials
using finite element method, International Journal of Ther-
mophysics, 33(7), 1302–1313, (2012).

10 Green, A. E. and P. M. Naghdi. Thermoelasticity without
energy dissipation, Journal of Elasticity, 31(3), 189–208,
(1993).

11 Green, A. E. and P. M. Naghdi. On undamped heat waves
in an elastic solid, Journal of Thermal Stresses, 15(2), 253–
264, (1992).

12 Abd El-Latief, A. M. and S. E. Khader. Exact solution of
thermoelastic problem for a one-dimensional bar without
energy dissipation, ISRN Mechanical Engineering, 2014,
(2014).

13 Youssef, H. M. State-space approach to two-temperature
generalized thermoelasticity without energy dissipation of
medium subjected to moving heat source, Applied Math-
ematics and Mechanics (English Edition), 34(1),63–74,
(2013).

14 Mukhopadhyay, S. and R. Kumar. A problem on ther-
moelastic interactions without energy dissipation in an un-
bounded medium with a spherical cavity, Proceedings of
the National Academy of Sciences India Section A — Phys-
ical Sciences, 79(1), 135–140, (2009).

15 Sharma, S., K. Sharma, and R. R. Bhargava. Effect of
viscosity on wave propagation in anisotropic thermoelastic
with Green–Naghdi theory type-II and type-III, Materials
Physics and Mechanics, 16(2), 144–158, (2013).

16 Prasad, R., S. Das, and S. Mukhopadhyay. A two-
dimensional problem of a mode i crack in a type III ther-
moelastic medium, Mathematics and Mechanics of Solids,
18(5), 506–523, (2013).

17 Othman, M. I. A. and S. Y. Atwa. Thermoelastic plane
waves for an elastic solid half-space under hydrostatic ini-
tial stress of type III, Meccanica, 47(6), 1337–1347, (2012).

18 Abbas, I. A. A GN model for thermoelastic interaction in
an unbounded fiber-reinforced anisotropic medium with a
circular hole, Applied Mathematics Letters, 26(2), 232–
239, (2013).

19 Abbas, I. A. and A. M. Zenkour. The effect of rota-
tion and initial stress on thermal shock problem for a
fiber-reinforced anisotropic half-space using green-naghdi
theory, Journal of Computational and Theoretical
Nanoscience, 11(2), 331–338, (2014).

20 Hetnarski, R. B. and J. Ignaczak. Generalized thermoelas-
ticity, Journal of Thermal Stresses, 22(4), 451–476, (1999).

21 Abbas, I. Natural frequencies of a poroelastic hollow cylin-
der, Acta Mechanica, 186(1–4), 229–237, (2006).

22 Abd-alla, A. N. and I. A. A. Abbas. Magnetoelastic longitu-
dinal wave propagation in a transversely isotropic circular
cylinder, Applied Mathematics and Computation, 127(2–
3), 347–360, (2002).

23 Mykityuk, Y. I. Thermoelastic vibrations of a thick-walled
cylinder of time-varying thickness, Soviet Applied Mechan-
ics, 5(11), 1237–1240, (1972).

24 Zhitnyaya, V. G. The uncoupled problem of thermoelastic
vibrations of a cylinder, Journal of Mathematical Sciences,
92(5), 4190–4192, (1998).

25 Marin, M. and M. Lupu. On harmonic vibrations in ther-
moelasticity of micropolar bodies, Journal of Vibration and
Control, 4(5), 507–518, (1998).

26 Erbay, HA., S. Erbay, and S. Dost. Thermally induced vi-
brations in a generalized thermoelastic solid with a cavity,
Journal of Thermal Stresses, 14(2), 161–171, (1991).

27 Sharma, J. N., H. Singh, and Y. D. Sharma. Vibration anal-
ysis of a transversely isotropic hollow cylinder by using
the matrix Frobenius method, Journal of Thermal Stresses,
34(9), 934–957, (2011).

28 Nayfeh, A. H. and M. I. Younis. A model for thermoelastic
damping in microplates, (2004)

29 Nayfeh, A. H. and M. I. Younis, Modeling and simulations
of thermoelastic damping in microplates, Journal of Mi-
cromechanics and Microengineering, 14(12), 1711–1717,
(2004).

30 Rezazadeh, G., et al. Thermoelastic damping in a micro-
beam resonator using modified couple stress theory, Acta
Mechanica, 223(6), 1137–1152, (2012).

31 Das, N. C., A. Lahiri, and R. R. Giri. Eigenvalue approach
to generalized thermoelasticity, Indian Journal of Pure and
Applied Mathematics, 28(12), 1573–1594, (1997).

32 Abbas, I. A. Eigenvalue approach to fractional order gener-
alized magneto-thermoelastic medium subjected to moving
heat source, Journal of Magnetism and Magnetic Materi-
als, 377, 452–459, (2015).

33 Abbas, I. A. Eigenvalue approach in a three-dimensional
generalized thermoelastic interactions with temperature-
dependent material properties, Computers & Mathematics
with Applications, 68(12), 2036–2056, (2014).

34 Abbas, I. A. Eigenvalue approach for an unbounded
medium with a spherical cavity based upon two-
temperature generalized thermoelastic theory, Journal of
Mechanical Science and Technology, 28(10), 4193–4198,
(2014).

35 Youssef, H. M. and I. A. Abbas. Fractional order gener-
alized thermoelasticity with variable thermal conductivity,
Journal of Vibroengineering, 16(8), 4077–4087, (2014).

36 Abbas, I. A. A GN model based upon two-temperature
generalized thermoelastic theory in an unbounded medium
with a spherical cavity, Applied Mathematics and Compu-
tation, 245, 108–115, (2014).

37 Abbas, I. Generalized magneto-thermoelasticity in a non-
homogeneous isotropic hollow cylinder using the finite ele-
ment method, Archive of Applied Mechanics, 79(1), 41–50,
(2009).

270 International Journal of Acoustics and Vibration, Vol. 21, No. 3, 2016


