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Editor’s Space

The ICSV23 — from Ancient to Modern Acoustics

It is our great pleasure to invite
you and your accompanying per-
sons to participate in the 23rd In-
ternational Congress on Sound and

Vibration (ICSV23), to be held from 10 to 14 July 2016 at the
Athenaeum Intercontinental hotel, Athens, Greece.

The International Institute of Acoustics and Vibration
(IIAV), in cooperation with the Laboratory of Transportation
Environmental Acoustics (L.T.E.A.) of the University of Thes-
saly - Faculty of Civil Engineering, are jointly organizing the
ICSV23. Almost 1000 abstracts in the field of acoustics, noise,
and vibration from 64 countries have been accepted for presen-
tation. Almost half of those submitted are from Asia, 375 from
Europe with more than 65 from Greece and Cyprus, 74 from
North and Latin Americas, and the remaining from Australia,
New Zealand, and Africa.

The attendance of so many scientists and engineers around
the world is an important opportunity for all participants to
establish new collaborations, to exchange ideas, and to share
their research results. With the purpose of collecting high-
level scientific contributions, the peer review of full papers
was offered to all the authors. More than 330 full papers have
undergone the peer-review process. This important scientific
event aiming "from ancient to modern acoustics" will be held
in the historic city of Athens, birthplace of Democracy and
famous for the acoustics of archaeological sites and theatres.
Athens has been the capital of the independent Greek state
since 1834, and the host city of the first modern-day Olympic
Games in 1896. Then 108 years later Athens hosted the 2004
Summer Olympics. Athens is also the home to the most fa-
mous UNESCO World Heritage Site: the Acropolis of Athens
under the coordinated construction of Pericles (c. 495 - 429
BC.) The site’s most important building include the Parthenon,
the Propylaia, the Erechtheion and the temple of Athena Nike.
Athens ensures also a great number of other magnificent sights
and attractions, such as the famous Herod Atticus Odeon,
which dominates the western end on the south slope of the
Acropolis, the Agora the centre of political and public life
in Athens (6th century BC), the medieval Daphni Monastery,
the Hellenic Parliament (19th century) and the Athens Trilogy,
consisting of the National Library of Greece, Athens Univer-
sity and the Academy of Athens, the National Archeological
Museum, featuring the world’s largest collection of ancient
Greek antiquities, as well as the new Acropolis Museum.

The ICSV23 Scientific Programme is structured in 15 Sub-
ject Areas, and one Special Workshop (SW-1), including sev-
eral special Structured Sessions and Regular Sessions, cover-
ing our traditional topics such as active noise and vibration
control, signal processing, simulation, machinery noise and
vibration, as well as environmental noise, vibration, sound-
scapes, occupational noise, underwater and maritime noise. A
special workshop on Strategic Noise Mapping and Noise ac-

tion Plans in Greece, Cyprus & South European Countries will
be organized during the ICSV23 Congress. Participation is of-
fered to all registered participants including students.

The ICSV23 Scientific Programme is also enriched by six
distinguished plenary lectures: Li Cheng : Interior Sound and
Vibration Control for Air Vehicle Applications; Christy Hol-
land : Microbubble Pumps: Ultrasound Theragnostic Agents;
Stelios Kephalopoulos : Common Noise Assessment Methods
for Europe (CNOSSOS-EU); Harris Mouzakis : Vibrations
and Cultural Heritage in Greece; Ricardo Musafir : Sound
Generation by Fluid Flow; and James Talbot : Building on
Springs: Towards a Performance-Based Design

Students in sound and vibration are especially welcome at
ICSV23; they can find reduced fees, a best paper award, and
other grants organized specifically for them.

The ICSV23 Technical Exhibition is an interesting and im-
portant part of the Congress. Software, Acoustical Consult-
ing, Environmental Noise & Vibration, Urban Transportation
network operators and various technical companies are taking
part. All refreshment breaks, including morning and afternoon
tea, coffee and lunch, will be held within the exhibition area.
In addition, the exhibition area is located near to the scien-
tific programme lecture halls, thus guaranteeing a high level of
delegate visitation and an optimum degree of dissemination of
their latest advances in acoustics, noise & vibration technol-
ogy.

During ICSV23, many social and cultural activities are
planned for all participants. The social programme, prepared
for the enjoyment of both participants of ICSV23 and accom-
panying persons, includes the Welcome Reception, Banquet
and a guided visit to the new Acropolis Museum in the pic-
turesque district of Plaka and Gazi. Athens is probably the sin-
gle European capital where, within less than 30 minutes from
the vibrant city centre, one can easily go to the beach or to the
nearby islands. It takes less than 2 hours from the city cen-
tre, to reach places that have both archeological and historical
interest, as well as exceptional natural surroundings such as
Cape Sounion, the city of Nafplion the famous Delphi Tem-
ple and also Hydra, Spetses, Aegina and Poros, islands of the
Saronic Gulf. These magnificent destinations will provide a
memorable programme for all participants and accompanying
persons. Additional opportunities are available to better enjoy
Athens.

Along with the IIAV officers and the Local organizing Com-
mittee, we hope you can attend ICSV23 and experience the
cultural heritage of Greece.

I look forward to welcoming you in Athens this July.

Konstantinos Vogiatzis
ICSV23 General Chair
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Dynamic Stability Analysis of a Circularly Tapered
Rotating Beam Subjected to Axial Pulsating Load
and Thermal Gradient under Various Boundary
Conditions
Rashmita Parida
Department of Mechanical Engineering, College of Engineering and Technology, Bhubaneswar Techno Campus,
Ghatikia, Bhubaneswar, Orissa, India-751003

Pusparaj Dash
Department of Mechanical Engineering, VSSUT Burla, Sambalpur, Orissa, India-768018

(Received 13 August 2013; accepted 8 October 2015)

The dynamic stability of a circularly tapered rotating beam subjected to a pulsating axial external excitation with
thermal gradient was studied for all possible combinations of clamped, guided, pinned, fixed, and free boundary
conditions. The equations of motion and associated boundary conditions were obtained using the extended Hamil-
ton’s principle. Then these equations of motion and the associated boundary conditions were non-dimensionalised.
A set of Hill’s equations were obtained from the non-dimensional equations of motion by the application of the
extended Galerkin method. The zones of parametric instability were obtained using Saito-Otomi conditions. The
effects of various boundary conditions, thermal gradient, taper, and rotational speed on the regions of parametric
instability were investigated and presented through a series of graphs. The results reveal that increasing rota-
tional speed and taper have stabilizing effects, whereas increasing thermal gradient has a destabilizing effect for
all boundary conditions of the beam.

NOMENCLATURE
A(x), A(ξ) Area of a generic section of the beam
A1 Cross sectional area at the end x = l
C0 Hub radius
c0 Dimensionless hub radius, = C0/l
d(x), d(ξ) Diameter of a generic section of the beam
d1 Diameter at the end, x = l
E(x), E(ξ) Young’s modulus at a generic section
E1 Young’s modulus at the end, x = l
I(x), I(ξ) Moment of inertia at a generic section
I1 Moment of inertia at the end, x = l
l Length of the beam
m(ξ) Mass distribution function
P0 Static axial load
P1 Dynamic axial load
p(τ) Dimensionless load
p0 Dimensionless static axial load
p1 Dimensionless dynamic axial load
S(ξ) Moment of inertia distribution function
T (ξ) Elasticity modulus distribution function
t Time
w(x, t) Transverse deflection of the beam
γ Coefficient of thermal expansion of the

beam material
δ Thermal gradient parameter
a∗ Diameter taper parameter
η Dimensionless transverse deflection, = w/l
ξ Dimensionless length, = x/l
τ Dimensionless time, = ct
ρ Density of the beam material

Ω Uniform angular velocity Ω of the
beam about z’-axis

Ω0 Rotational speed parameter
ω Excitation frequency
ω0 Dimensionless fundamental natural frequency
Θ Non-Dimensional excitation frequency, = ω/c
Ψ0 Reference temperature
Ψ1 Temperature at the end, ξ = 1

1. INTRODUCTION

The stability analysis and dynamic behaviour of a rotating
cantilever beam with axial orientation perpendicular to the axis
of spin is very essential for its practical applications such as
turbomachinery blades, rotor blades of helicopter, aircraft pro-
pellers, flexible appendages of spacecraft, satellite antennas,
and robotic manipulators, to name a few. In some cases the
structures have to operate under elevated temperatures. A lin-
ear relation is observed between the Young’s modulus and the
temperature of most engineering materials.

An ample number of publications are available regarding the
design and analysis of rotating structures. The flexural vibra-
tions of a rotating cantilever beam with a tip mass at the free
end has been studied by Bhat.1 He proposed the beam charac-
teristic orthogonal polynomials in the Rayleigh-Ritz method.
Liu and Yeh2 have investigated the influence of restrained pa-
rameters on the Eigen frequencies of rotating uniform and
non-uniform beams with a restrained base using Galerkin’s
method. The stability analysis of a rotating shaft due to pul-
sating torque applied at its end has been studied by Unger and
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Brull.3 They found that instability arising from the combi-
nation resonance has the most adverse effect. Kammer and
Schlack4 adopted the Krylov-Bogoliubov-Mitropolskii (KBM)
perturbation technique to solve the problem of instability due
to the time dependent angular velocity in a rotating Euler
beam. Namachchivaya5 investigated the dynamic stability of
rotating shaft under the excitation of combined harmonic and
stochastic load and derived the stability conditions explicitly
for the first and second order moments considering the shaft
as a two degrees of freedom system. Bauer and Eidel6 stud-
ied the effects on vibration and buckling of a rotating Euler
beam of uniform cross section because of its spin speed, hub
radius and aspect ratio considering an orientation perpendicu-
lar to the axis of rotation. The dynamic stability analysis of
rotating Timoshenko beam with a root flexibility using finite
element method was investigated for the first time by Abbas.7

Ishida et al.8 studied the vibration and stability of a rotating
shaft under a sinusoidal axial force assuming a four degrees of
freedom system. The stability of a tapered cantilever beam on
Winkler foundation subjected to a follower force was studied
by Lee.9 He found that the critical flutter loads of both tapered
beams and beams of a uniform cross section are unaffected by
the presence of viscous damping in the elastic foundation. Lin
and Chen10 studied the dynamic stability of rotating composite
beams using finite element method. Tan et al.12 discussed the
instability of a spinning pre-twisted beam under compressive
axial loads assuming Euler-Bernoulli beam theory (EBT) and
assumed mode method. Banerjee et al.12 applied the dynamic
stiffness method to analyse the free vibration of a rotating taper
beam that follows EBT. They derived some explicit analytical
expressions and used the Wittrick-Williams algorithm for the
solution. Shahba and Rajasekaran13 used the differential trans-
form element method (DTEM) and differential quadrature el-
ement method (DQEL) of lower order to solve the equations
of free vibration and stability of tapered Euler-Bernoulli beam
made of axially functionally graded material. Yang et al.14 de-
veloped a finite element model to study the free vibration of
a rotating uniform Euler-Bernoulli beam. They considered the
coupling of axial and transverse vibration and of elastic defor-
mations and rigid motion. Nayak et al.15 investigated the sta-
bility of a sandwich beam on viscoelastic supports subjected
to a pulsating axial load with temperature gradient. Soltani
et al.16 proposed a numerical solution based on power series
method to derive the critical buckling loads and frequency of
free vibrations for tapered thin beams. Bulut17 studied the dy-
namic stability of parametrically excited rotating tapered beam
and found that the number of instability zones increases with
the taper ratio.

A survey of literature reveals that some work has been done
on parametric instability and dynamic stability of a symmetric
rotating beam, parametric instability of a non-uniform beam
with thermal gradient resting on a Pasternak foundation, and
that of a symmetric sandwich beam for different boundary con-
ditions. However, no work has been done to study the static
and dynamic stability of a rotating tapered beam with thermal
gradient under various boundary conditions. Thus the present
work mainly deals with a theoretical study of a rotating ta-
pered beam with a pulsating load and thermal gradient under
various boundary conditions. The static and dynamic stabil-
ity of a rotating tapered cantilever beam which is fixed at one
end and subjected to an axial pulsating load and a steady, one-

Figure 1. System Configuration.

dimensional temperature gradient at the free end has been re-
ported. The effect of the rotation parameter, geometric param-
eters, taper parameter, and the thermal gradient on the nondi-
mensional static buckling loads zones and also on the paramet-
ric instability zones are investigated.

2. FORMULATION OF THE PROBLEM

2.1. System Configuration
A rotating tapered cantilever beam of length l set off a dis-

tance C0 from the axis of rotation which rotates at a uniform
angular velocity Ω about a vertical z’-axis is capable of oscil-
lating in the x–z plane. The beam is oriented along the x-axis
perpendicular to the axis of rotation as shown in Fig. 1. A pul-
sating axial force P (t) = P0 + P1cosωt is applied at the end
x = C0 + l of the beam along the point of C.G. of the cross-
section in the axial direction, with ω being the frequency of the
applied load, t being the time, and P0 and P1 being the static
and dynamic load amplitudes, respectively.

The following assumptions are made for deriving the equa-
tions of motion:

a) The material of the beam is homogeneous & isotropic in
nature.

b) The deflections of the beam are small and the transverse
deflection w(x, t) is the same for all points of a cross-
section.

c) The beam obeys Euler-Bernoulli beam theory.

d) Extensional deflection of the beam is neglected.

e) A steady one-dimensional temperature gradient is as-
sumed to exist along the central length of the beam.

f) Extension and rotary inertia effects are negligible.

The expressions for potential energy, kinetic energy and work
done are as follows:

V =
1

2

l∫
0

E(x)I(x)

(
∂2w

∂x2

)2

dx

+
1

2

l∫
0

ρA(x)Ω2(C0 + x)

x′∫
0

(
∂w

∂x

)2

dx; (1)

T =
1

2

l∫
0

ρA(x)

(
∂w

∂t

)2

dx+
1

2

l∫
0

ρΩ2A(x)w2dx; (2)
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WP =
1

2

l

∫
0
P (t)

(
∂w

∂x

)2

dx; (3)

where w(x, t) is transverse deflection of the beam.
The application of the extended Hamilton’s principle gives

the following equation of motion and boundary conditions:

δ
t2
∫
t1

(T − V −WP ) = 0; (4)

[E (x) I (x)w,xx],xx + ρA (x)w.tt + ρΩ2I (x)w,xx

− [N (x1)w,x],x + P (t)w,xx = 0; (5)

where N (x1) = 1
2ρA (x) Ω2

[
(C0 + l)

2 − (C0 + x′)
2
]
. The

boundary conditions at x = C0 and x = C0 + l are

[E (x) I (x)w,xx],x + P (t)w,x = 0;

[E (x) I (x)w,xx]x=l = 0;

w,t = 0. (6)

In the above expression w,x = ∂w
∂x , w,xx = ∂2w

∂x2 , w,t = ∂w
∂t ,

w,tt = ∂2w
∂t2 .

Introducing the dimensionless parameters,
ξ = x

l , η = w
l , c0 = C0

l , τ = ct;(
∵ c2 = E(x)I(x)

ρA(x)l4

)
;

∂w
∂x = ∂η

∂ξ and
(
∂w
∂x

)2
=
(
∂η
∂ξ

)2

;

∂2w
∂x2 = 1

l
∂2η
∂ξ2 and

(
∂2w
∂x2

)2

= 1
l2

(
∂2η
∂ξ2

)2

;

∂w
∂t = cl

(
∂η
∂τ

)
and

(
∂w
∂t

)2
= c2l2

(
∂η
∂τ

)2

;

p (τ) = P (t)l2

E1I1
, p (τ) = p0 + p1 cos θτ ;

()′ = ∂()
∂ξ ,

=

() ∂()
∂τ , etc.

The non dimensional equation of motion and boundary condi-
tions can be written as

[S (ξ)T (ξ) η′′] ′′ +m (ξ) η̈ +
[
rgΩ

2
0 + p (τ)

]
η′′

−Ω2
0 [q (ξ) η′]

′
= 0; (7)

and

{[S (ξ)T (ξ) η′′] ′ + p (τ) η′}ξ=1 = 0;

[S (ξ)T (ξ) η′′]ξ=1 = 0;

η (0, τ) = 0;

η′ (0, τ) = 0. (8)

In the above expressions rg = I(ξ)
A1l2

; Ω2
0 = ρA(ξ)Ω2l4

E1I1
;

Ω2
0q (ξ) = N(x1)l2

E1I1
; A (ξ) = A1m (ξ) , E (ξ) = E1T (ξ) ,

I (ξ) = I1S (ξ).

2.2. Approximate Solution
The approximate solution to the non dimensional equations

of motion is assumed as

η (ξ, τ) =
N∑
r=1

ηr (ξ) fr (τ) ; (9)

where fr(τ) is an unknown function of time and ηr(ξ) is a
coordinate function to be chosen so as to satisfy as many of
the boundary conditions in Eq. (8) as possible. It is further
assumed that ηr(ξ) can be represented by a set of functions (9)
which satisfy the conditions obtained from Eq. (7) by deleting
the terms containing ω0 and p(τ). It is further assumed that
coordinate functions for the various boundary conditions can
be approximated by the ones given in Table 1.

Substitution of the series of solutions in the non dimensional
equations of motion and subsequent application of the general
Galerkin method leads to the following matrix equations of
motion:

[M ]
{
f̈
}

+ [K] {f} − {p0 [H]− p1 cos θτ [H]} {f}

= {0} ; (10)

where f̈ = ∂2f
∂τ2 and {f} = {f1, . . . . . . . . . . . . , fN}T . The var-

ious matrix elements are given by
1∫
0

m (ξ) ηi (ξ) ηj (ξ) dξ =

Mij ;
1∫
0

{
S (ξ)T (ξ) ηi

′′
(ξ) ηj

′′
(ξ) +

Ω2
0 [q (ξ)− rg] ηi′ (ξ) ηj ′ (ξ)

}
dξ = Kij ;

1∫
0

ηi
′ (ξ) ηj

′ (ξ) dξ = Hij ; and

∵ i, j = 1, 2, . . . . . . . . . , N .

2.3. Regions of Dynamic Instability
Let [L] be the modal matrix of [M ]−1[K]. Then by the

introduction of the linear coordinate transformation, {f} =
[L]{v}, {v} being a new set of generalized coordinates yields,

{v̈}+
[
ω2
n

]
{v}+ p1 cos (θτ) [B] {v} = {0} ; (11)

where [ω2
n] is a spectral matrix corresponding to [m]−1[k] and

[B] = −[L]−1[M ]−1[H][L].
Equation (11) can be written as,

v̈n + ω2
nvn + p1 cos (θτ)

m=N∑
m=1

bnmun = 0,

n = 1, 2, . . . . . . , N (12)

Equation (12) represents a system ofN coupled Hill’s equa-
tions with complex coefficients.

Here, ωn and bnm are complex quantities, given by ωn =
ωn,R + jωn,I ; bn,m = bnm,R + jbnm,I .

The boundaries of the region of instability of simple and
combination resonances are obtained using the following con-
ditions by Saito & Otomi.18

Case (A): Simple resonance
In this case, the regions of instability are given: When damp-

ing is present.

∣∣∣∣θ2 − ωµ,R
∣∣∣∣ < 1

4

√√√√P
2

1

(
b2µµ,R + b2µµ,I

)
ω2
µ,R

− 16ω2
µ,I . (13)

And, for the undamped case,∣∣∣∣θ2 − ωµ,R
∣∣∣∣ < 1

4

∣∣P 1bµµ,R
∣∣

ωµ,R
. (14)
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Table 1. Coordinate functions.

End arrangement Coordinate function i = 1, 2, . . . . . . , r
P-P η(ξ) = sin(πiξ)
G-P η(ξ) = cos{(2i− 1)πξ/2}
C-P η(ξ) = 2(i+ 2)ξ(i+1) − (4i+ 6)ξ(i+2) + 2(i+ 1)ξ(i+3)

C-C η(ξ) = ξ(i+1) + 2ξ(i+2) + ξ(i+3)

C-CUR η(ξ) = (i+ 3)(i+ 2)2(i+ 1){ξ(i+1) − 2ξ(i+2) + ξ(i+3)}
C-F η(ξ) = (i+ 2)(i+ 3)ξ(i+1) − 2i(i+ 3)ξ(i+2) + i(i+ 1)ξ(i+2)

for µ = 1, 2, . . . . . . , N .

Case (B): Combination resonance of the sum type
This type of resonance occurs when µ 6= v; µ, v =

1, 2, . . . . . . , N and the regions of instability are given:
For the damped case, ∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ <
ωµ,I + ωv,I

8
√
ωµ,Iωv,I

√√√√ P
2
1

ωµ,Rωv,R
(bµv,Rbvµ,R + bµv,Ibvµ,I)

−16ωµ,Iωv,I
. (15)

For the undamped case,∣∣∣∣ω2 − 1

2
(ωµ,R + ωv,R)

∣∣∣∣ < P 1

4

√
bµv,Rbvµ,R

ωµ,Rωv,R
. (16)

Case(C): Combination resonance of the difference type
This type of resonance occurs when µ < v, (µ, v =

1, 2, . . . . . . , N) and the regions of instability are given:
For the damped case, ∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ <
ωµ,I + ωv,I
8
√
ωµ,Iωv,I

√√√√ P̈ 2
1

ωµ,Rωv,R
(−bµv,Rbvµ,R + bµv,Ibvµ,I)

−16ωµ,Iωv,I
.

(17)

For the undamped case,∣∣∣∣ω2 − 1

2
(ωv,R − ωµ,R)

∣∣∣∣ < P 1

4

√
−bµv,Rbvµ,R

ωµ,Rωv,R
(18)

Dynamic stability analysis of the circularly tapered rotating
beam with axial pulsating load and thermal gradient under
various boundary conditions has been carried out by using
Eqs. (14), (16), and (18). From them, regions of instability
are obtained for various cases.

3. NUMERICAL RESULTS AND
DISSCUSSIONS

Numerical results were obtained for various values of the
parameters like rotation parameter, geometric parameter, ta-
per parameter, and thermal gradient. The linearly tapered
cantilever beam with a circular cross-section is assumed to
have a diameter varying according to the relation d (ξ) =
d1[1 + α∗(1− ξ)],
where d1 is the diameter of the beam at the end ξ = 1, and α∗

is the diameter taper parameter.

Figure 2. Stability diagram for pinned-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Consequently, the mass distribution m(ξ) and the moment
of inertia distribution S(ξ) are given by the relations
m (ξ) = [1 + α∗(1− ξ)]2;
S (ξ) = [1 + α∗(1− ξ)]4.

The temperature above the reference temperature at any
point ξ from the end of the beam is assumed to be Ψ =
Ψ0(1 − ξ). Choosing Ψ0 = Ψ1, the temperature at the end
ξ = 1, as the reference temperature, means the variation of
modulus of elasticity of the beam is denoted by
E (ξ) = E1 [1− γΨ1 (1− ξ)] , 0 6 γΨ1 < 1;
E (ξ) = E1T (ξ),
where γ is the coefficient of thermal expansion of the beam
material, δ = γΨ1 is the thermal gradient parameter, and
T (ξ) = [1− δ (1− ξ)], where δ is the thermal gradient along
the length of the beam.

The dynamic stability analysis of the system for various
boundary conditions has been analysed as follows:

If, for the change in value of a parameter, the width of the
instability zone increases or the zone is pulled down or shifted
towards a lower excitation frequency region, the stability of the
system worsens. Otherwise, if with the change in the value of
the parameter, the width of the instability zone decreases or
is pulled up or shifted towards the higher excitation frequency
region, or if the number of instability zones reduces, then the
stability of the system improves. With these above conditions,
the effect of various parameter on the dynamic stability of the
system have been analysed.

The regions of parametric instability of a beam with vari-
ous boundary conditions for two different values of rotational
speed parameters are shown in Figs. 2, 3, 5, 6, 8, 9, 11, 12, 14,
15, 17, and 18.
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Figure 3. Stability diagram for pinned-pinned beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 4. Stability diagram for pinned-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Figure 5. Stability diagram for guided-pinned beam with Ω0 = 2 (δ = 0.1,
α∗ = 2).

Figure 6. Stability diagram for guided-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Figure 7. Stability diagram for guided-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8 α∗ = 1).

Figure 8. Stability diagram for clamped-pinned beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).
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Figure 9. Stability diagram for clamped-pinned beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 10. Stability diagram for clamped-pinned beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Figure 11. Stability diagram for clamped-clamped beam with Ω0 = 5
(δ = 0.1, α∗ = 2).

Figure 12. Stability diagram for clamped-clamped beam with Ω0 = 15
(δ = 0.1, α∗ = 2).

Figure 13. Stability diagram for clamped-clamped beam with Ω0 = 5
(δ = 0.4, δ = 0.8, α∗ = 1).

Figure 14. Stability diagram for clamped-CUR beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).
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Figure 15. Stability diagram for clamped-CUR beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

Figure 16. Stability diagram for clamped-CUR beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

Combination resonances of the difference-type do not oc-
cur in any of the cases under consideration. While an increase
in the value of Ω0 reduces the width of the first-order simple
resonance zones of clamped-clamped beam, it widens some
of the combination resonance zones and shifts all the regions
to higher excitation frequencies. The combination resonance
regions at Θ = (ω3 + ω1) of a clamped-clamped beam re-
duce in width due to the increase in angular velocity. For a
beam with clamped-free end conditions, a higher rotational
speed reduces the span of most of the instability regions and
makes the beam less susceptible to periodic forces by relocat-
ing them at higher frequencies, whereas a rise in the rotational
speed increases the span of most of the instability regions of a
clamped-pinned beam and relocates them at higher excitation
frequencies. On the other hand, it repositions those around 2ω1

and (ω1 + ω2) at lower frequencies and reduces the width of
the ones at Θ = 2ω2, 2ω3 and (ω3 + ω1). With increase in
the angular velocity of pinned-pinned beam, most of the res-
onance zones are widened, but those near Θ = 2ω2 and 2ω3

are reduced in span. Further, while the instability regions in
the vicinities of 2ω1 shifts to lower frequencies, all others are
repositioned at higher ones.

From the figures, it is observed that increase in rota-
tional speed parameter stabilizes the beams with pinned-
pinned, clamped-clamped, clamped-clamped unrestrained, and

Figure 17. Stability diagram for clamped-free beam with Ω0 = 5 (δ = 0.1,
α∗ = 2).

Figure 18. Stability diagram for clamped-free beam with Ω0 = 15 (δ = 0.1,
α∗ = 2).

clamped-free conditions, whereas it has a destabilizing effect
on guided-pinned and clamped-pinned beams.

The influence of taper parameter and thermal gradient pa-
rameter on the principal region of instability is shown in
Figs. 4, 7, 10, 13, 16, and 19. The figures show the effect
of two values of the thermal gradient parameter δ on the insta-
bility regions for taper parameter α∗ = 1 for all the considered
boundary conditions. It has been observed that, for all cases,
the instability regions experience a slight increase in width and
shift towards lower excitation frequencies with an increase in
the value of δ.

4. CONCLUSION

A computational analysis of the dynamic stability of a ta-
pered cantilever beam with pulsating axial load and thermal
gradient under various boundary conditions was considered.
The programming was developed using MATLAB. The fol-
lowing are the conclusions drawn from the study.

The dynamic stability of a rotating tapered beam under a
pulsating axial load was investigated for all possible combi-
nations of clamped, guided, pinned, and free boundary con-
ditions. Results reveal that, a higher rotational speed make a
clamped-free beam less sensitive to periodic forces. While rise
in the angular velocity reduces the intensity of the simple res-
onances of clamped-clamped beam, it increases the severity of
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Figure 19. Stability diagram for clamped-free beam with Ω0 = 5 (δ = 0.4,
δ = 0.8, α∗ = 1).

some of the combination resonances. It is also observed that
clamped-pinned and pinned-pinned beams may either stabilize
or destabilize with an increase in rotational speed.

An increase in taper parameter reduces the widths of the
principal regions of instability and shifts them towards higher
excitation frequencies, thus making the beam less sensitive
to periodic forces. However, an increase in thermal gradient
widens the principal regions of instability, shifting them to-
wards lower excitation frequencies, thereby making the beam
more sensitive to periodic forces. Thus, it may be inferred that
increasing taper has stabilizing effects on the beams, whereas
increasing temperature gradient has a destabilizing effect on
the beams of all cases.
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Identifying the quantitative relationship between the sound pressure level and noise annoyance for environmental
noises is important from the viewpoint of noise assessment. In this study, a method for predicting the probabilistic
evaluation quantities like Lx ((100−x) percentile level) and LAeq (equivalent A-weighted sound pressure level) of
the noise environment is proposed by introducing a nonlinear time series regression model between the sound pres-
sure level and noise annoyance. More specifically, the joint probability distribution is expanded in an orthonormal
expansion series in which linear and nonlinear correlation information is reflected hierarchically in each expansion
coefficient. Next, statistical methods for predicting the sound pressure level and the noise annoyance are proposed
by introducing a nonlinear time series regression model based on the above probability distribution. The validity
of the proposed method is confirmed by applying it to a set of instantaneous data on sound pressure level and noise
annoyance observed in a real sound environment.

1. INTRODUCTION

Identifying the quantitative relationship between the sound
pressure level and noise annoyance for environmental noise is
important from the viewpoint of noise assessment.1–3 Usually,
an investigation based on the questionnaires is performed, as
the experimental measurement at all points in the entire area
of the regional sound environment is difficult. Furthermore,
statistical sound evaluation quantities, such as Lx based on the
probability distribution of sound pressure level andLAeq based
on averaged energy of sound pressure level, are widely used
in the evaluation of the sound environment. Therefore, it is
very important to determine the relationship between the noise
annoyance and the sound pressure level from a statistical point
of view.

In a previous study, a state estimation method was proposed
for the fluctuation waveform of the sound pressure level by
time-dependent sound pressure level based on the observation
data of noise annoyance from the viewpoint of systems theory.4

The relationship of the sound pressure level and noise annoy-
ance was regarded as the input and output of a fuzzy probabil-
ity system with uncertainty and vagueness. A method was the-
oretically derived for estimating the fluctuation waveform of
the sound pressure level or the system input by use of the ob-
servation data of the noise annoyance or the system output. In
analyses of environmental noise, two approaches can be con-
sidered. One is analysis from the bottom-up viewpoint, struc-
turally based on the fundamental mechanism on the relation-

ship between noise annoyance and sound pressure level. The
other is the top-down method, which is connected with evalu-
ation of environmental noise in the case of unknown structural
mechanism. Since the analysis method considering the physi-
cal mechanism from the bottom-up viewpoint was adopted in
the previous study, the derivation process of the estimation al-
gorithm was rather complicated.

On the other hand, a method based on the top-down view-
point can be proposed by regarding time-dependent sound
pressure level and noise annoyance as the resultant time series
data and by considering their mutual correlation information.
In this paper, a practical evaluation method is proposed, which
is simple in form as compared with the previous study. The
joint probability distribution for the sound pressure level and
noise annoyance is first considered for the purpose of using
the usual liner correlation as well as the higher order nonlin-
ear correlation information between both variables. Next, two
probabilistic methods are proposed based on the joint proba-
bility distribution in an orthonormal expansion series5, where
linear and nonlinear correlation information is reflected hier-
archically in each expansion coefficient. One method predicts
the noise annoyance based on the observation of sound pres-
sure level, and the other is a prediction for the sound pres-
sure level from the noise annoyance. Finally, the effectiveness
of the proposed methods are confirmed by applying them to a
psychological experiment with the road traffic noise, where the
linear regression model and neural network are compared.
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2. THEORETICAL CONSIDERATION

2.1. Prediction of Noise Annoyance by
Observing Sound Pressure Level

2.1.1. Prediction of noise annoyance based on con-
ditional probability distribution

The sound pressure level in the actual sound environment
exhibits complex fluctuation pat-tern. For example, there are
various linear and nonlinear correlations among several instan-
taneous values. It has been reported in psychological acoustics
that the human psychological evaluation for noise annoyance
can be distinguished up to 7 scores: 1-Very calm, 2-Calm, 3-
Mostly calm, 4-Little noisy, 5-Noisy, 6-Fairly noisy, 7-Very
noisy.6

Let x be the sound pressure level and y be the noise an-
noyance score in human evaluation (i.e. y = 1, 2, · · · , 7 ).
Furthermore, the sound pressure levels at p past discrete time
for y at an arbitrary discrete time are expressed as xp+1(p =

0, 1, 2, · · · ). The noise annoyance can be predicted recur-
sively on the basis of the sound pressure levels x1, x2, · · · , xp
by adopting y so as to maximize the conditional probability
P (y|x1, x2, · · · , xp) as the prediction of y. First, the joint
probability distribution P (y,x) of y and x(= (x1, x2, · · ·xp))
is expanded into an orthonormal polynomial series based on
the product of the standard probability distribution for each
variable.7

P (y,x) = P0 (y)P0 (x1)P0 (x2) · · ·

· · ·P0 (xp)

∞∑
m=0

∞∑
n1=0

· · ·
∞∑

np=0

Amn1···npϕm (y)φn1 (x1) · · ·

· · ·φnp (xp) . (1)

Amn1···np =
〈
ϕm (y)φn1

(x1)φn2
(x2) · · ·φnp (xp)

〉
; (2)

φni (xi) =
1√
n!
Hn

(
xi − µxi

σxi

)
; (3)

φm (y) =
1√(

N−M
h

)(m)
m!

(
1− p
p

)m
2 1

hm

m∑
j=0

(
m

j

)

(−1)m−j
(

p

1− p

)m−j

(N − y)(m−j)(y −M)
(j)

;

(4)

y(j) = y(y − h)(y − 2h) · · · (y − (n− 1)h), y(0) = 1,

where <> denotes the averaging operation with respect to
the variables. Two functions φni(xi),ϕm (y) are orthonormal
polynomials with the weighting functions P0(xi) and P0(y)

are obtained.5 Hn(•) denotes the Hermite polynomial with
nth order, and y(j) is the jth order factorial function.5 The
Gaussian distribution is adopted as the standard probability
distributions of P0(xi) for the continuous variable xi, and the

generalized binomial distribution is adopted as P0(y) for the
quantized value y.

P0 (xi) =
1√
2πσ2

xi

e
− (xi−µxi )

2

2σ2xi ; (5)

µxi =< xi >, σ2
xi =< (xi − µxi)

2 >; (6)

P0 (y) =

(
N−M

h

)
!(

y−M
h

)
!
(

N−y
h

)
!
p
y−M
h (1− p)

N−y
h ; (7)

p = (µy −M)/(N −M), µy =< y >; (8)

where N , M and h are defined as follows:

N = 7; the maximum value of y,

M = 1; the minimum value of y,

h = 1; the level difference interval of y. (9)

The linear and nonlinear correlation information between y

and x is reflected hierarchically in each expansion coefficient
Amn1···np . Next, an expansion series expression on the condi-
tional proba-bility distribution can be obtained from Eq. 1, as
follows:

P (y |x ) = P (y,x)

P (x)
=

P0(y)
∞∑

m=0

∞∑
n1=0
· · ·
∞∑

np=0
Amn1···npφm(y)ϕn1

(x1) · · ·ϕnp(xp)

∞∑
n1=0

· · ·
∞∑

np=0
A0n1···npϕn1 (x1) · · ·ϕnp (xp)

.

(10)

By substituting Eqs. (3)–(9) into Eq. (10), the conditional prob-
ability distribution can be obtained. Moreover, the probability
distribution of noise annoyance score y can be evaluated by
averaging the conditional probability distribution P (y|x) in
Eq. (10) by using time series data of sound pressure level as
follows:

P (y) = P0 (y)

∞∑
m=0〈 ∞∑

n1=0
· · ·

∞∑
np=0

Amn1···npϕn1
(x1) · · ·ϕnp (xp)

∞∑
n1=0

· · ·
∞∑

np=0
A0n1···npϕn1 (x1) · · ·ϕnp (xp)

〉
ϕm (y).

(11)

2.1.2. Prediction of noise annoyance based on multi-
dimensional nonlinear regression model

The linear and nonlinear correlation information between y
and x is all included in condi-tional probability distribution
P (y|x). Especially, when predicting y based on x, the regres-
sion function defined as the expectation of y conditioned by x

can be adopted as the prediction of y.

ŷ = 〈y| x〉 =
7∑

y=1

y · P (y| x) . (12)
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After substituting Eq. (10) into Eq. (12), by taking into consid-
eration the orthonormal condition of orthonormal polynomial
ϕm(y):

7∑
y=1

P0(y)ϕn(y)ϕm(y) = δnm; (13)

the regression function ŷ is given by Eq. (14) (top of the next
page), where d1m are coefficients in the orthogonal expansion
of y:

y =

1∑
m=0

d1mϕm(y); (15)

and can be derived as follows:

d11 =
√

(N −M)hp (1− p),
d10 = (N −M) p+M.

2.2. Prediction of Sound Pressure Level by
Observing Noise Annoyance

The sound pressure level at an arbitrary discrete time is
predicted by observing the noise annoyance scores y (=

y1, y2, · · · , yq) up to (q − 1) past discrete time based on the
multi-dimension nonlinear regression model. Considering the
orthonormal condition of the polynomial function

∞∫
−∞

P0(x)φm(x)φn(x)dx = δmn; (16)

and using the same calculation process as given in Sec-
tion 2.1.2, the prediction x̂ of sound pres-sure level x is
given by Eq. (17) (top of the next page), where the coeffi-
cients c1m are specifically given in the orthogonal expansion

x =
1∑

m=0
c1mφm(x), as c11 = σxi , c10 = µxi . Furthermore,

the expansion coefficients Bmn1n2···nq are defined as follows:

Bmn1n2···nq =
〈
φm (x)ϕn1

(y1)ϕn2
(y2) · · ·φnq (yq)

〉
.

(18)

3. EXPERIMENTAL CONSIDERATION

The road traffic noise with frequency characteristic of broad-
band was recorded at a position being 1 m apart from one side
of the national road by use of a sound pressure level meter and
a data recorder. Two kinds of data (i.e., data 1 and data 2)
for the sound pressure level of road traffic noise in two typi-
cal cases of light and heavy traffic flow with mean values of
71.4 [dB] and 80.2 [dB] were measured by using sound pres-
sure level meter (model NL-06 integral standard type, Rion
Co.) under an A-characteristic and FAST response with a time
constant of 0.125 seconds in an RMS circuit. By replaying
the recorded data through amplifier and loudspeaker in a lab-
oratory room, 6 subjects between the ages of 22-24 with nor-
mal hearing ability judged one score among 7 noise annoyance
scores6 at every 5 seconds. The experiment was conducted in a

laboratory room, and the effect of the background noise could
be ignored.

The proposed study is focused on the derivation of a new
method to predict the sound pres-sure level and noise annoy-
ance from the theoretical viewpoint. Since the purpose of the
study is to suggest a theoretical method for estimation, the use-
fulness of the proposed method was confirmed by applying it
to 6 subjects.

3.1. Experimental Consideration for
Prediction of Noise Annoyance by
Observing Sound Pressure Level

3.1.1. Comparison of the proposed method based on
conditional probability distribution and neural
network

Two cases with and in Eq. (10) were considered:

P (y |x1 ) =

P0 (y)
i∑

m=0

i∑
n=0

Amnϕm (y)φn (x1)

i∑
n=0

A0nφn (x1)

, (p = 1)

P (y |x1, x2 ) =

P0 (y)
i∑

m=0

i∑
n1=0

i∑
n2=0

Amn1n2
ϕm (y)ϕn1

(x1)ϕn2
(x2)

i∑
n1=0

i∑
n2=0

A0n1n2φn1 (x1)φn2 (x2)

.

(p = 2) (19)

Though the conditional probability distribution in Eq. (19) is
expressed in an infinite expansion series, only finite expansion
coefficients can be used in the application to real noise envi-
ronment. The expansion coefficients Amn1n2

and A0n1n2
in

Eq. (19) with m ≤ i, n1 ≤ i and n2 ≤ i (i = 1, 2, · · · , 6)
were considered in the experiment. First, these expansion co-
efficients were calculated by use of data 1 as the learning data.
Next, the noise annoyance score was predicted by observing
the sound pressure level of data 2 as the prediction data. The
prediction results are shown in Table 1 as the recognition rate.
In an ideal case with infinite numbers of data, the recognition
rate gets better with increasing order. However, a recognition
rate sometimes decreases with increasing order because excess
order includes unnecessary information in real cases with fi-
nite numbers of available data. Therefore, the optimal order
exists, and finding the optimal order becomes an important is-
sue for future development.

In this study, the best recognition rates were obtained in the
case that p = 1, i = 4 and p = 2, i = 2. One of the prediction
results is shown in Fig. 1 in the case that p = 1 and i = 4. In
this experiment, the subjects judged annoyance scores from 3
to 7 among 7 scores by hearing the replayed road traffic noise
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ŷ =

1∑
m=0

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

np=0
Amn1n2···npd1mφn1

(x1)φn2
(x2) · · ·φnp (xp)

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

np=0
A0n1n2···npφn1

(x1)φn2
(x2) · · ·φnp (xp)

. (14)

x̂ = 〈x |y 〉 =

1∑
m=0

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nq=0
Bmn1n2···nqc1mϕn1

(y1)ϕn2
(y2) · · ·ϕnq (yq)

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nq=0
B0n1n2···nqϕn1 (y1)ϕn2 (y2) · · ·ϕnq (yq)

. (17)

Table 1. Comparison of the recognition rate between the proposed method by
conditional probability distribution and neural network. The cells with highest
recognition rate are highlighted.

Order Proposed Method
(i) p = 1 p = 2

1 71.7% 68.9%
2 68.3% 71.4%
3 73.3% 68.1%
4 76.7% 70.6%
5 71.7% 68.1%
6 69.2% 63.9%

Neural Network
- p = 1 p = 2

- 42.5% 42.0%

Figure 1. A comparison between the predicted results by the conditional prob-
ability distribution and the neural network.

of data 1. Similarly, the result from 4 to 7 among 7 scores by
hearing of data 2 was obtained. For comparison, the prediction
results by the neural network, which is frequently used in the
field of pattern recognition, were compared with the proposed
method. The neural network of three-layer structure with the
sigmoid function in the middle layer was adopted and back
propagation was used as the learning algorithm. In the learn-
ing process of the neural network, 40 different initial values
were given to decide the synaptic weight. The number of units
in a middle layer varied from 2 to 20, and the same procedures
were repeated. After the repeated estimation processes, the
weight with best recognition rate was adopted. The proposed

Figure 2. Predicted result for the probability distribution of noise annoyance.

method shows more accurate prediction for the noise annoy-
ance than the neural network. Furthermore, the predicted re-
sult for the probability distribution of noise annoyance score
based on the observed data of sound level is shown in Fig. 2 in
the case that p = 1 and i = 4. In this figure, the experimen-
tal values were obtained directly by calculating the frequency
distribution based on the evaluation data of noise annoyance
scores by 6 subjects. On the other hand, the theoretical val-
ues were predicted by using Eq. (11) based on the measured
data of sound pressure level. The theoretically-predicted prob-
ability distribution approaches the experimental values. Espe-
cially, the theoretical value with the third approximation shows
a good agreement with the actual values for the whole proba-
bility distribution of noise annoyance.

3.1.2. Comparison between multi-dimensional non-
linear regression model and linear regression
model

The prediction results of the noise annoyance score by us-
ing the multi-dimension nonlinear regression model proposed
in Section 2.1.2 were compared with the results by the standard
linear regression model (i.e., autoregression (AR) model).8

The AR model considers only the liner correlation among in-
stantaneous values of the noise annoyance and the sound pres-
sure level. However, there are several linear and nonlinear cor-
relations among the instantaneous values. Furthermore, since
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Figure 3. A comparison between the predicted results for noise annoyance by
the proposed nonlinear regression model and the linear regression model. (a)
Prediction result for data 1; (b) prediction result for data 2.

the relationship between the noise annoyance and the sound
pressure level is nonlinear, liner regression model is not ad-
equate for expressing the relationship. Therefore, a multi-
dimensional nonlinear regression model was introduced. The
prediction equations in Eq. (14) with p = 1 and p = 2 are
expressed as follows:

ŷ = 〈y | x1〉 =
∑

yP (y |x1 ) =

=

1∑
m=0

i∑
n=0

Amnd1mφn (x1)

i∑
n=0

A0nφn (x1)

, (p = 1)

ŷ = 〈y | x1, x2〉 =
∑

yP (y |x1, x2 ) =

=

1∑
m=0

i∑
n1=0

i∑
n2=0

Amn1n2
d1mφn1

(x1)φn2
(x2)

i∑
n1=0

i∑
n2=0

A0n1n2φn1 (x1)φn2 (x2)

. (p = 2)

(20)

The expansion coefficients were considered until the order
i(i = 1, 2, · · · , 6) in Eq. (20) in the same manner as Sec-
tion 3.1.1. After calculating expansion coefficients Amn and

Table 2. Prediction errors of the multi-dimensional nonlinear regression
model and linear regression model. The cells with lowest prediction error
are highlighted.

Order Multi-dimensional
(i) Nonlinear Regression

Model
p = 1 p = 2

1 0.424 0.453
2 0.423 0.401
3 0.460 0.478
4 0.459 0.469
5 0.465 0.518
6 0.464 0.518
Linear Regression Model
- p = 1 p = 2

- 0.424 0.543

(a) Prediction errors for data 1

Order Multi-dimensional
(i) Nonlinear Regression

Model
p = 1 p = 2

1 0.551 0.602
2 0.547 0.557
3 0.622 15.7
4 0.617 21.2
5 0.625 10.3
6 0.625 7.84
Linear Regression Model
- p = 1 p = 2

- 0.825 1.91

(b) Prediction errors for data 2

Amn1n2
in Eq. (20) by use of the learning data (i.e., data 1), the

noise annoyance score was predicted based on the ob-servation
of sound pressure level of data 1 and data 2. The prediction re-
sults are shown in Table 2 (a) and Table 2 (b), respectively.
The prediction errors are shown in this table. The case of tak-
ing into consideration of the expansion coefficients until i = 2

shows the most accurate prediction among all cases, and the
better prediction result is obtained in this case than the result
by the standard linear regression model. Moreover, the pro-
posed method of expansion series type sometimes shows worse
prediction for accuracy in the case of considering some higher
order expansion coefficients. The Akaikes information crite-
rion (AIC) is well known to determine an optimal order of re-
gression models.9 When calculating the expansion coefficients
using finite number of the learning data, it is one of the future
problems to find an optimal number of expansion terms by ex-
tending the AIC. The comparison between the prediction result
of the proposed method with p = 1, i = 2 and the linear re-
gression model is shown in Fig. 3. Data 1 and data 2 are sound
pressure levels measured in two typical different situations of
traffic flow. Data 1 was measured in a situation of light traffic
flow (sound level range 55-90 dB), and data 2 was measured in
a situation of heavy traffic flow (sound level range 70-100 dB).
The two data sets appear to have quite similar varying patterns
of the sound pressure level, since the traffic flow was affected
roughly by the time period of a traffic signal existing near the
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Table 3. Prediction errors of multi-dimensional nonlinear regression model
and linear regression model. The cells with lowest prediction error are
highlighted.

Order Multi-dimensional
(i) Nonlinear Regression

Model
p = 1 p = 2

1 4.00 3.63
2 3.88 3.50
3 3.35 3.44
4 3.70 3.39
5 3.36 3.10
6 3.24 3.01
Linear Regression Model
- p = 1 p = 2

- 3.27 4.01

(a) Prediction errors for data 1 in [dB]

Order Multi-dimensional
(i) Nonlinear Regression

Model
p = 1 p = 2

1 9.06 8.88
2 8.56 9.18
3 7.83 8.49
4 8.05 8.54
5 7.79 8.05
6 7.69 12.73
Linear Regression Model
- p = 1 p = 2

- 7.78 8.91

(b) Prediction errors for data 2 in [dB]

observation point. The proposed method can predict the noise
annoyance more accurately than the standard linear regression
model by choosing the expansion terms appropriately.

3.2. Experimental Consideration for
Prediction of Sound Pressure Level by
Observing Noise Annoyance

The comparison between the proposed multi-dimension
nonlinear regression model and the linear regression model for
the prediction of sound pressure level x is considered in the
same manner as Section 3.1.2. The multi-dimension nonlin-
ear regression models with p = 1 and p = 2 are expressed as
follows.

x̂ =

1∑
m=0

i∑
n=0

Bmnc1mϕn (y)

i∑
n=0

B0nϕn (y)

, (p = 1)

x̂ =

1∑
m=0

i∑
n1=0

i∑
n2=0

Bmn1n2c1mϕn1 (y1)ϕn2 (y2)

i∑
n1=0

i∑
n2=0

B0n1n2ϕn1 (y1)ϕn2 (y2)

. (p = 2)

(21)

The comparison between the prediction results by using the
proposed method and the linear regression model is shown
in Table 3. Moreover, the prediction results of the proposed

Figure 4. A comparison between the predicted results for sound pressure level
by the proposed nonlinear regression model and the linear regression model.
(a) Prediction result by proposed method for data 1; (b) Prediction result by
linear model for data 1; (c) Prediction result by proposed method for data 2;
(d) Prediction result by linear model for data 2.
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method with p = 2, i = 6 and p = 2, i = 5 are shown in Fig. 4
(a) and Fig. 4 (b), respectively. By choosing the number of ex-
pansion terms appropriately, the proposed method shows more
accurate prediction than the results of liner regression model
for the sound pressure level.

4. CONCLUSION

In this paper, statistical methods for evaluating and predict-
ing the relationship between sound pressure level and noise
annoyance were considered. More specifically, a simple eval-
uation method for the relationship between the sound pres-
sure level (objective physical quantity) and the noise annoy-
ance (subjective amount of psychology) was derived based on
the correlation infor-mation latent in both variables from the
practical viewpoints. The theory was realized by introducing
expansion series expression of probability distribution consid-
ering not only the lower order linear correlation but also the
higher order nonlinear correlation information related to hu-
man sensitivity.

The methods for predicting the time course of fluctuation
and the probability distributions of noise annoyance score from
the observation data of sound pressure level were proposed
by introducing the conditional probability distribution and the
nonlinear regression model. Furthermore, the prediction meth-
ods for the sound pressure level based on the observation of
noise annoyance were considered. Finally, the effectiveness
of the proposed methods was investigated experimentally by
applying it to the actual data of road traffic noise. The pro-
posed approach is quite different from standard methods based
on linear regression model, and it is still in the early stage of
development of prediction method based on the correlation in-
formation of the sound pressure level and noise annoyance.
Therefore, many practical problems are left to be considered
in the future. For example, (i) the proposed method should be
applied to the other actual data of sound environment, and its
practical usefulness should be verified in each actual situation;
(ii) the optimal order selection method for the statistical regres-
sion models based on the higher order correlation information
should be investigated by considering the complexity of a phe-
nomenon and the number of data which can be used; and (iii)
the proposed theory should be extended to the actual situation
under existence of the external noise.
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Perforated mufflers are widely used in automotive intake and exhaust systems and need to be properly designed.
However, multi-objective optimization in practical perforated muffler designs usually involves finite element or
boundary element models, which demand a higher computation time for evolutionary algorithms. In this paper,
an approximate model for transmission loss (TL) predictions is established by correcting the thickness correction
coefficient in the transfer matrix using the data calculated by the finite element model (FEM). The approximate
model is computationally cheap and applicable for TL predictions above the plane wave cut-off frequency. A
popular evolutionary algorithm, NSGA-, amalgamated with the approximate model, has been adopted to carry
out the multi-objective optimization of a multi-chamber perforated muffler. The goals of optimization are to
maximize TL at the target frequency range, as well as to minimize the valleys of TL and the size of the muffler.
Both transmission loss and insertion loss of the optimized muffler are measured. Numerical and experimental
results are in good agreement and show significant improvements of acoustic performance precisely at the target
frequency range. Consequently, the combination of the approximate model and the NSGA- algorithm provides a
fast, effective, and robust approach to co-axial perforated muffler optimization problems.

NOMENCLATURE

a Radius of perforated holes (m)
b Distance between two perforated holes (m)
c Sound speed (ms−1)
d Inner tube diameter (m)
D Outer tube diameter (m)
dh Diameter of perforated holes (m)
f Frequency (Hz)
ω Angular frequency (ω = 2πf )
k Wave number (k = ω/c)
j Imaginary unit
l Total length of the chamber (m)
lc Length of the perforated segment (m)
la Length of the non-perforated segment near inlet (m)
lb Length of the non-perforated segment near outlet (m)
p Acoustic pressure (Pa)
Re Expansion ratio (Re = D/d)
Rl Perforated length ratio (Rl = lc/l)
t Thickness of inner tube (m)
te Equivalent acoustic thickness (m)
u Acoustic particle velocity (ms−1)
ρ Air density (kg·m−1)
µ Dynamic viscosity of air (Pa·s)
ζp Specific acoustic impedance of the perforated tube
Ap Acoustic admittance of the perforated tube
Rh Specific resistance of acoustic impedance
α thickness correction coefficient
η Porosity of the perforated tube

1. INTRODUCTION

Perforated mufflers have been widely used for reducing
noise in automobiles, compressors, venting systems, etc. Var-
ious methods have been developed to predict the acoustic per-
formance of perforated mufflers. The transfer matrix method
based on the plane wave theory is the earliest and fastest
method. Sullivan and Crocker1 first analysed the acoustic wave
propagation in a co-axial perforated muffler and presented the
coupled differential equations. Jayaraman and Yam2 then pre-
sented a decoupling solution for Sullivan and Crocker’s1 equa-
tions and provided the transfer matrix of co-axial perforated
mufflers. Further, Munjal3 improved the transfer matrix by
considering the effects of mean flow, and developed a cascad-
ing method using the transfer matrices of basic acoustic ele-
ments for relatively simple mufflers. To analyse the complex
mufflers with multiply-connected parts, Vijayasree and Mun-
jal4 developed an integrated transfer matrix method. However,
these methods are only appropriate below the plane wave cut-
off frequency. Numerical techniques such as finite element
methods (FEM) and boundary element methods (BEM) have
been proven to be more accurate at higher frequencies. Barbi-
eri, et al.5 applied the Galerkin-FEM to obtain the four-pole
parameters to predict the acoustic performance. Kirby6 devel-
oped a fast and accurate hybrid finite element method for mod-
elling automotive dissipative mufflers with perforated ducts
and absorbing material. Wu, et al.7 developed a direct mixed-
body BEM to derive the four-pole parameters and predict the
transmission loss of perforated mufflers. Ji, et al.8 proposed a
multi-domain BEM to analyse three-pass perforated duct muf-
flers.
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Figure 1. Schematic of a co-axial perforated muffler.

Practical muffler designs are usually governed by multi-
ple conflicting criteria and constrains, which require multi-
objective optimization. Evolutionary algorithms such as the
genetic algorithm (GA) are suitable in this case owing to their
robustness and the ability to avoid the drop in local optimum;
however, the computation is time-consuming due to the large
searching space. In previous papers, the shape optimizations of
perforated mufflers with parallel-flow, cross-flow, and reverse-
flow ducts based on the transfer matrix method and various
evolutionary algorithms were discussed.9–11 Airaksinen, et
al.12 provided a combined use of a hybrid finite method and
genetic algorithm for the multi-objective optimization of var-
ious mufflers. However, these optimizations are either lim-
ited in use or computationally expensive. The idea behind the
approximate model is to create an engineering method which
uses an explicit model to evaluate design objectives and vari-
ables instead of a complex numerical model. Chang, et al.13, 14

linked the objective functions with a polynomial neural net-
work model (NNM) using the primary sample points obtained
by the BEM, and the NNM was applied to HQ muffler opti-
mizations. But the NNM was only valid in a certain frequency
rather than a wide frequency range.

In the course of the authors’ previous work, it was fortu-
itously found that by changing the thickness correction coef-
ficient in the transfer matrix of the co-axial perforated muf-
flers, the accuracy of TL prediction was remarkably improved
above the cut-off frequency, and the TL prediction under the
cut-off frequency was as accurate as before. Hence, an appro-
priate model for TL predictions was established by introducing
a formula of the thickness correction coefficient to the conven-
tional transfer matrix. The formula of the thickness correction
coefficient was obtained by the Taguchi design and polyno-
mial regression, and the sample points were calculated by the
FEM. Then, the approximate model was adopted to the multi-
objective optimization of a multi-chamber perforated muffler,
which is used for intake noise attenuation of a regenerative
flow compressor in a fuel cell vehicle, combined with the GA.
A prototype was produced based on the optimal results. In-
sertion loss measurements of the prototype were taken and the
results have shown the optimization model to be convincing.

2. APPROXIMATE MODEL

As shown in Fig. 1, a co-axial perforated muffler is com-
posed of an inner perforated tube and an outer resonating

(a)

(b)

(c)

(d)

Figure 2. Transmission loss of perforated mufflers [d=49 mm, D=164.4 mm,
la=lb=0, lc=257.2 mm, t=0.9 mm; (a) η=8.4%, dh=2.49 mm; (b) η=8.4%,
dh=4.98 mm; (c) η=25.7%, dh=2.49 mm; (d) η=25.7%, dh=4.98 mm]. [Ex-
perimental data from Lee (2005)16].

chamber. The transfer matrix [T] of co-axial perforated muf-
flers is derived in Appendix A. So the transmission loss (TL)
can be calculated by3

TL = 20 log(
|A + B + C + D|

2
). (1)

It should be noted that the transfer matrix method (TMM) is
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Figure 3. FE Model of the perforated muffler.

Figure 4. Cross section of a perforated plate.

valid only below the cutoff frequency of plane wave3

fcut = 1.841
c

πd0
(2)

However, in the course of the authors’ previous work on per-
forated mufflers, it was fortuitously found that by changing the
thickness correction coefficient α in the expression of acoustic
impedance to an appropriate value, the accuracy of TL pre-
diction was remarkably improved above the cut-off frequency,
and the TL prediction under the cut-off frequency was as ac-
curate as before. Some cases are shown in Fig. 2. There are
other cases showing a similar phenomenon. Corrected coef-
ficient α takes into consideration mainly additional acoustical
masses outside the holes coming from distributed radial ve-
locities through a perforated wall.15 This suggests that a 1-D
model suitable for TL prediction above the cut-off frequency
may be obtained by introducing an appropriate model of the
thickness correction coefficient to the conventional transfer
matrix.

2.1. Thickness Correction
To acquire the thickness correction coefficient, the finite el-

ement method (FEM) was adopted to predict TL of perforated
mufflers. The computations were taken by ACTRAN. The FE
model is illustrated in Fig. 3. The Incident wave of the inlet is
defined as unit sound intensity, and the reflect wave is defined
as free. The outlet is defined as non-reflected.

Instead of meshing all the orifices, the transfer admittance
boundary condition is defined between the inner and outer sur-
faces of a perforated tube. As shown in Fig. 4, the impedance
of a single perforation can be written as

Zp =
p1 − p2
v

= Rp + jXp; (3)

where p1 and p2 are the upstream and downstream sound pres-
sure, and v = v1 = v2 is the average particle velocity in the
orifice.

Therefore, the impedance of the whole plate is

Zp =
Zp
η

=
1

η
(Rp + jXp); (4)

where η is the porosity of the perforated tube, and for a square
grid, η = π a

2

b2

In the above expressions, the impedance can be split into vis-
cous effects contribution and end correction contribution. Us-
ing Crandall’s theoretical model17 for viscous effects in narrow
tubes, the impedance for a single perforation can be expressed
as

Zp = jωρt[1− 2√
−jksa

J1(
√
−jksa)

J0(
√
−jksa)

]−1; (5)

where ω is the angular frequency, J0 and J1 are order 0 and
order 1 Bessel functions, and ksa =

√
ωρ
µ a is the shear

wavenumber.
For avoiding the evaluation of Bessel functions with com-

plex argument, approximate solutions depending on the range
of the dimensionless shear wavenumber k s a can be deduced.
When |ksa| > 10, the approximate solutions for Bessel func-
tions can be written as

J1(
√
−jksa)

J0(
√
−jksa)

= −j. (6)

When Eq. (6) is applied to Eq. (5), the impedance con-
tributed by viscous effects reduces to

Zviscp = Rviscp + jXvisc
p =

√
2ωµρ

t

a
+ jωρt. (7)

As for the end correction effects, the resistive end correc-
tion accounts for the frictional losses due to viscous effects at
the surface of the plate, and the reactive end correction is due
to the imaginary part of the radiation impedance at the tube’s
ends. The resistive and reactive end corrections are commonly
adopted as Rcorrp =

√
8ωµρ and Xcorr

p = 2ωρ 8
3πa.18 How-

ever, the general expressions assume that there is no interac-
tion between two adjacent holes. In the case for high porosity
values, the interaction cannot be neglected. Therefore, a cor-
rection factor αp = 1.47

√
η− 0.47

√
η3 is adopted to describe

the interaction,19 and then the impedance of a single perforate
is written as

Rp = Rviscp +Rcorrp =
√

8ωµρ(
t

2a
+ 1); (8)

Xp = Xvisc
p +Xcorr

p = ωρ[t+ 2
8

3π
a(1− αp)]. (9)

Taking Eqs. (8) and (9) into Eq. (4), the impedance of the
perforated plane can be written as

Zp =

√
8ωµρ

η
(
t

2a
+ 1)

+j
ωρ

η
[t+ 2

8

3π
a(1− 1.47

√
η + 0.47

√
η3)]. (10)

With applying Eq. (10) to the perforated tube wall, the in-
fluence of perforation on the sound field can be considered in
the numerical computations. The incident sound power of the
inlet (Wi) and outlet (Wo) can be acquired through computa-
tion, and thus the transmission loss can be expressed as

TL = 10 log
Wi

Wo
. (11)

As shown in Fig. 5, the FEM results are in good agreement
with experimental data; thus, the finite element method can
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Table 1. Parameters and levels used in the experiments.

Symbol Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
d (m) 0.04 0.045 0.05 0.055 0.06 0.065 0.07

Re (D/d) 1.6 1.7 1.8 1.9 2 2.1 2.2
l (m) 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Rl (lc/l) 0.19 0.27 0.35 0.43 0.51 0.59 0.67
t (m) 0.0008 0.0012 0.0016 0.002 0.0024 0.0028 0.0032
dh (m) 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
η 0.14 0.18 0.22 0.26 0.3 0.34 0.38

Figure 5. Transmission loss of perforated muffler; [d=49 mm, D=164.4 mm,
la=lb=0, lc=257.2 mm, t=0.9 mm, η=25.7%, dh=4.98 mm]. [Experimental
data from Lee (2005)16].

be used as the numerical experiment. Altering the thickness
correction coefficient α to make the transmission loss curve
predicted by the TMM closer to that predicted by the FEM.
An updated thickness correction coefficient α̂ was calculated
to minimize the residual sum of squares of transmission loss:

min f(α̂) =

n∑
i=1

(TLFEM − TLTMM (α̂))
2
. (12)

Therefore, the corrected acoustic thickness for TL predic-
tion through the TMM above the cut-off frequency can be ex-
pressed as

te =
t + α̂dh
η

. (13)

2.2. Taguchi Design
As illustrated in Fig. 1, there are eight design parameters of

a straight perforated muffler. Because the switch of inlet and
outlet won’t change the transmission loss, the length of non-
perforated segment la and lb can be considered as one param-
eter. Obtaining a more accurate expression of the equivalent
thickness and the design parameters means more experimental
levels. The full factorial experimental design of seven parame-
ters at seven levels would necessitate 77 experiments. To save
experimental time and cost, the Taguchi method20 was used
for the design of experiments and a L49(77) orthogonal array
was applied. The seven design parameters and their factor lev-
els are summarized in Table 1. The experimental results are
presented in Appendix B.

2.3. Polynomial Repression
Regression analysis is an approach to modelling the rela-

tionship between the dependent variable and explanatory vari-
ables. In this article, with the experimental data in Appendix B,

Table 2. ANOVA for regression model.

Source DF SS MS F p
Model 8 0.0019 0.0002 167.409 0.000

Residual 40 0.000058 0.000
Total 48 0.002

R2 = 0.971 R2
adj = 0.965

a multiple linear stepwise regression analysis was performed to
predict the equivalent thickness. Mathematical modelling was
carried out by using a second-order polynomial equation as

te = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix
2
i ; (14)

where xi = d,Re, l, Rl, t, dh, 1/ηi = 1, 2, ..., 7, βi is the re-
gression coefficient, and k is the number of design parame-
ters. The least square estimate method was adopted to interpret
the estimated regression coefficient and the following equation
was obtained:

te = −0.0281 + 0.2064d + 0.0093Re + 0.0542l + 0.0060Rl

+ 0.0018Rl2 + 2.8909t + 2.0056dh + 1.4850× 10 - 4 1

η2
.

(15)
The results of analysis of variance (ANOVA) are shown in

Table 2. It calculates the sum of squares (SS), the mean of
square (MS), the degree of freedom (DF), the ratio Fisher (F ),
and significance (p). In this model F (8, 48) = 167.409 >
2.907 (F0.01(8, 48)), and overall significance (p) is close to
zero, which indicates a more than 99% confidence level of the
statistical hypotheses. The determination coefficient R2 and
adjusted determination coefficient R2

adj are equal to 0.971 and
0.965, respectively, which indicate that 97.1% of the total vari-
ations are explained by the model.

The results of the regression coefficient test are shown in Ta-
ble 3. The significances (p) of all independent variables reach
α-level of 0.05, which indicates that every independent vari-
able has a strong effect on the equivalent thickness. The results
predicted by the regression model are compared to experimen-
tal data in Fig. 6. It can be seen that model predictions present
a good agreement with the experimental data, and the resid-
ual error rates are under 8%. This means that the regression
model provides a fair explanation of the relationship between
the independent variables and the response.

3. MODEL VALIDATION

Before performing the optimization, the mathematical
model should be validated first. Figure 7 shows the compar-
ison between the predictions by the approximate model with
experimental results from Lee.16 Figure 7 (a) shows that am-
plitude errors occurred in the theoretical prediction of muffler
1 at the third and fourth peak frequency, yet the errors are
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Table 3. Results of regression coefficient test.

Independent Regression Standard t p
variables coefficient error

Constance -0.0281 0.00255 -14.595 0.000
d 0.2064 0.01717 12.138 0.000

D/d 0.0093 0.00086 9.369 0.000
l 0.0542 0.00858 4.690 0.000
lc/l 0.0060 0.00674 3.374 0.002

(lc/l)2 0.0018 0.00774 -2.396 0.000
t 2.8909 0.21458 13.740 0.000
dh 2.0056 0.17167 9.311 0.000
1/η2 1.4850E-4 0.00012 27.581 0.021

Figure 6. Comparison of regression model results with experimental data.

accepted in engineering applications. The theoretical predic-
tions of other mufflers are in good agreement with experimen-
tal results. Consequently, the proposed mathematical model is
proven to be valid above the plane wave cut-off frequency, and
will be applied for the shape optimization of multi-chamber
perforated mufflers.

4. MULTI-OBJECTIVE OPTIMIZATION

Most practical optimization problems are governed by mul-
tiple conflicting criteria and constraints. The general formu-
lation of a multi-objective optimization problem can be de-
scribed as follows:

min [f1(x), f2(x), ... , fn(x)]

s.t.

{
gi(x) ≤ 0, i = 1, 2, ... , p
hj(x) = 0, j = 1, 2, ... , q

x ∈ S

; (16)

where f = (f1(x), f2(x), ..., fn(x)) represents the objective
functions, gi(x) ≤ 0 represents inequality constraints, and
hj(x) = 0 represents equality constraints. x is the vector of
n independent variables that belongs to a feasible region S of
design space Rn. Unlike the single objective optimization, the
solution of a multi-objective optimization is not a single point,
but a set of non-inferiority solutions known as Pareto optima.

In this section, a multi-objective optimization was presented
for multi-chamber perforated mufflers of a regenerative flow
compressor in a fuel cell vehicle. The approximate model pre-
sented in section 2 was applied to the transmission loss predic-
tion of the muffler. The NSGA-II was adopted as the optimiza-
tion algorithm.

(a)

(b)

(c)

(d)

Figure 7. Comparison between predicted and experimental transmission loss
[d=49 mm, D=164.4 mm, la=lb=0, lc=257.2 mm, t=0.9 mm; (a) η=8.4%,
dh=2.49 mm;(b) η=8.4%, dh=4.98 mm; (c) η=25.7%, dh=2.49 mm; (d)
η=25.7%, dh=4.98 mm]. [Experimental data from Lee (2005)16].

4.1. Objective Functions

The objectives are to maximize the TL value at the target
frequency range and minimize the volume of the muffler. In
this case, the objective functions are as follows:
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1. The average value of TL at target frequency range:

f1(x) = − 1

ω2 − ω1

∫ ω2

ω1

TL(ω)dω; (17)

where ω1 ≤ ω ≤ ω2 is the frequency range. The blade
number of the regenerative blower is 55, and the common
rotation speed is 1100–3800 rpm; hence, the blade pass-
ing frequency (BPF) is 1000–3500 Hz. As the tonal noise
at BPF is particularly annoying and contributes most to
the noise level,21 the target frequency range was set at
1000–3500 Hz. The transmission loss can be calculated
by Eq. (21).

2. Average valley value of TL: Though the average value
of TL could be high, valleys may occur at certain fre-
quency ranges. A threshold value was defined as 5 dB
below the average value of TL; thus, the average valley
value of TL can be expressed by Eq. (18) (on top of the
next page), where ωi1 ≤ ω ≤ ωi2 is the ith frequency
range of valleys, and TLav is the average value of TL at
1000–3500 Hz.

3. Volume of the muffler:

f3( x ) =

n∑
1

πD2li
4

, i = 1, 2, 3; (19)

where li is the length of ith resonating chamber.

4.2. NSGA-II Algorithm
Genetic algorithms (GAs) are adoptive heuristic search al-

gorithms premised on the Darwinian notion of natural selec-
tion and evolution. The non-dominated sorting genetic al-
gorithm (NSGA- II) developed by Deb22 is a multi-objective
optimization algorithm using an elite-preserving strategy and
an explicit diversity preserving mechanism. Like any conven-
tional GAs, NSGA-II first creates a population of individuals
that correspond to the design parameters randomly, and use
selection, crossover, and mutation to create an offspring popu-
lation. While conventional GAs select solutions based on the
value of the fitness functions, NSGA-II makes selection based
on non-domination rank and crowding distance. More details
of can be found in Deb’s paper.22 The structure of NSGA- II
optimization is depicted in Fig. 8.

4.3. Optimization Case
A multi-chamber perforated muffler was adopted for inlet

noise elimination of a regenerative flow compressor in a fuel
cell vehicle. The schematic of the multi-chamber perforated
muffler is given in Fig. 9. The multi-chamber perforated muf-
fler includes three perforated tubes and the straight tubes which
connect them. The four-pole constants of each element are
considered unaffected. So, the overall transfer matrix of the
muffler is given by the product of the individual element ma-
trices:

T * = TS1 · TP1 · TS2 · TP2 · TS3 · TP3 · TS4; (20)

where Ts is the transfer matrix of the straight tube, and Tp
is the modified transfer matrix in the approximate model.

Figure 8. The block diagram of the NSGA-II algorithm.

Figure 9. Schematic of the multi-chamber perforated muffler.

The four-pole constants of Tp can be obtained by substituting
Eqs. (13) and (15) into the conventional transfer matrix.

Transmission loss of the muffler can be calculated in terms
of the four-pole constants as

TL = 20log(

∣∣T *
11 + T *

12 + T *
21 + T *

22

∣∣
2

). (21)

The geometry of the muffler is determined by eighteen param-
eters, two of which are fixed, and sixteen are varied for op-
timization. The fixed parameters are the diameter of the res-
onating chamberD = 0.1 m and the diameter of the perforated
tube d = 0.05 m. Therefore, the cut-off frequency of the muf-
fler is fcut=1.841 c

πD = 1990 Hz. The ranges of optimization
parameters of the ith (i = 1, 2, 3) chamber are presented in Ta-
ble 5. The total length is constrained as l = l1+l2+l3 ≤ 0.2 m.

The Pareto front of the three-chamber perforated muffler op-
timization is illustrated in Fig. 10. The Pareto solutions clearly
reveal the conflicts among the three objects. Considering the
priority of each object, four optimal design points are selected
and presented in Table 4. The transmission losses of these four

Table 5. Ranges of optimization parameters of ith chamber (i=1, 2, 3).

Parameter li (m) lai/li lbi/li t (m) dhi (m) ηi
Lower limit 0.05 0.12 0.12 0.001 0.001 0.1
Upper limit 0.2 0.81 0.81 0.006 0.01 0.4
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f2(x) =


n∑
1

1

ωi2 − ωi1

∫ ωi2

ωi1

[TLav − 5− TL(ω)]dω, TLav − 5 > TL(ω), i = 1, 2, ..., n

0, TLav − 5 ≤ TL(ω)

; (18)

Table 4. Results of the three-chamber muffler optimization.

l1 (m) la1/l1 lb1/l1 dh1 (m) η1
No. l2 (m) la2/l2 lb2/l2 t (m) dh2 (m) η2 f1(x) f2(x) f3(x)

l3 (m) la3/l3 lb3/l3 dh3 (m) η3
0.0539 0.1945 0.1209 0.0019 0.3367

1 0.1230 0.3470 0.1191 0.0020 0.0017 0.2570 -48.1 17.8 1.52
0.0168 0.2231 0.1867 0.0017 0.2941
0.0506 0.1939 0.1343 0.0021 0.3146

2 0.1307 0.3135 0.1642 0.0028 0.0015 0.2326 -42.5 10.0 1.56
0.0168 0.2231 0.1867 0.0017 0.2941
0.0352 0.1974 0.1493 0.0018 0.3246

3 0.1164 0.3589 0.1144 0.0021 0.0020 0.3358 -41.4 19.4 1.33
0.0175 0.2097 0.0978 0.0018 0.3529
0.0328 0.1713 0.1608 0.0017 0.3027

4 0.0975 0.3184 0.1230 0.0021 0.0019 0.2433 -34.9 16.9 1.13
0.0137 0.2409 0.1127 0.0017 0.2773

(a)

(b)

Figure 10. Pareto front of the multi-chamber muffler optimization.

mufflers are shown in Fig. 11. For each of the four mufflers, the
transmission loss at the target frequency range is much larger
than other frequency ranges. Muffler No. 1 is considered the
best because its average TL value is the highest, and the lowest
TL value is over 20 dB, also with an acceptable size.

5. EXPERIMENTAL VALIDATION

Transmission loss and insertion loss measurements were
carried out in order to validate the optimization results. The
parameters of the muffler are shown as No. 1 in Table 4. The
measurements were taken in a reverberation room.

Figure 11. Transmission losses of optimized mufflers.

5.1. Transmission Loss Measurement
The two-load method was applied to measure the trans-

mission loss of the muffler. The schematic diagram and the
photograph of the measurement are shown in Fig. 12. The
experimental apparatus consisted of three parts: the source,
the test section, and the data processing system. The loud-
speaker driven by a power amplifier generated white noise sig-
nals containing all frequencies of interest. In the test section,
the tested muffler was installed in an impedance tube. Four
microphones were installed both upstream and downstream of
the muffler. The LMS data acquisition system was used to col-
lect the signals from the microphones and then feed the data to
the computer-controlled Fourier analyser.

In this measurement, two loads were achieved by an outlet
tube with and without an end cap. The transmission loss can
be obtained by using four-pole equations.23

The sound pressure measured at location 1 ∼ 4 can be ex-
pressed as

p1 = p+u e
jk(L1+L2) + p−u e

−jk(L1+L2); (22)

p2 = p+u e
jkL2 + p−u e

−jkL2 ; (23)

p3 = p+d e
−jkL3 + p−d e

jkL3 ; (24)

p4 = p+d e
−jk(L3+L4) + p−d e

jk(L3+L4); (25)
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(a)

(b)

Figure 12. Experimental setup; (a) diagram of test arrangement; (b) photo-
graph of test environment.

where the superscript + refers to incident waves, and the su-
perscript − refers to reflected waves; the subscript u refers to
the region upstream of the muffler, and d refers to the region
downstream of the muffler.

Using the wave decomposition theory, the incident and re-
flected wave can be calculated by equations

p+u =
p1e

−jkL2 − p2e−jk(L1+L2)

ejkL1 − e−jkL1
; (26)

p−u =
p1e

jkL2 − p2ejk(L1+L2)

e−jkL1 − ejkL1
; (27)

p+d =
p3e

jk(L3+L4) − p4ejkL3

ejkL4 − e−jkL4
; (28)

p−d =
p3e

−jk(L3+L4) − p4e−jkL3

e−jkL4 − ejkL4
. (29)

The four-pole equation for incident and reflected waves up-
stream and downstream of the muffler can be expressed as{

p+ua

p−ua

}
=

[
A B
C D

]{
p+da

p−da

}
; (30)

{
p+ub

p−ub

}
=

[
A B
C D

]{
p+db

p−db

}
; (31)

where the subscript a refers to configuration without the end
cap, and b refers to configuration with the end cap.

Therefore, the transmission loss of the muffler can be calcu-
lated as

TL = 20log10 |A| = 20log10

∣∣∣∣p+uap−db − p+ubp−dap+dap
−
db − p

+
dbp

−
da

∣∣∣∣ . (32)

Figure 13. Transmission loss comparison.

Figure 13 shows the comparison of the experimental, the-
oretical, and numerical predictions of transmission loss. The
transmission loss predicted by the approximate model is con-
sistent with the FEM results on the whole, while the peak at
1530 Hz doesn’t appear in the FEM results, and the ampli-
tudes of theoretical results are higher than the FEM at certain
frequency.

It should be noticed that the thickness correction is based
on the FEM results of single-chamber perforated mufflers. So,
the application of the modified TMM to the transmission loss
predictions of multi-chamber perforated mufflers may lead to
a larger deviation. In order to test this hypothesis, transmis-
sion loss of each chamber was calculated by a modified TMM
and FEM, and the results were given in Fig. 14. As shown in
Fig. 14, the transmission losses predicted by modified TMM
of chamber 1 and chamber 3 are in good agreement with the
FEM results. As for chamber 2, the transmission loss curves
are quite close on the whole. The errors are mainly the second
peak at 2750 Hz, which is 2900 Hz in the FEM results, and
the third peak at 3460 Hz, which is 3330 Hz in the FEM re-
sults. Nonetheless, errors are acceptable considering the target
frequency bandwidth is quite broad.

Note, however, that the most remarkable error of TL predic-
tions of the optimized muffler at 1530 Hz, which comes from
chamber 2 as shown in Fig. 14 (b), agrees quite well with the
FEM results of the single chamber 2 calculation. Therefore,
the reason for the calculation error at 1530 Hz of the optimized
muffler is not the error of chamber 2, but the coupling effect of
the three chambers. Figure 15 shows the pressure maps of both
the optimized muffler and chamber 2 at 1530 Hz. In the case of
chamber 2, it shows a first order radial duct modal at 1530 Hz,
which causes the corresponding peak of transmission loss. Yet
this modal of chamber 2 in the optimized muffler disappears
due to the effect of chamber 1.

5.2. Insertion Loss Measurement
Though transmission loss is most easily predicted theoreti-

cally, insertion loss is more widely used in engineering appli-
cations. Besides, the transmission losses are predicted without
mean flow, while the muffler in the compressor system oper-
ates with grazing flow, and the grazing flow at high speeds
may reduce the transmission loss.24 Thus, it is necessary to
measure the insertion loss of the muffler under the typical op-
erating conditions of the compressor.
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(a)

(b)

(c)

Figure 14. Transmission loss comparisons of each chamber: (a) Chamber 1;
(b) Chamber 2; (c) Chamber 3.

The diagram and the photograph of the insertion loss mea-
surement are shown in Fig. 16. The compressor and the motor
were covered with absorbing material. A microphone was in-
stalled 0.5 m away from the compressor inlet and 45◦ to the
axial direction. Sound pressure levels (SPL) were measured
by the microphone with and without the muffler. Measure-
ments were taken at every 400 rpm for 1000–3800 rpm range
in steady conditions, and from 1000 rpm to 3800 rpm in run-up
conditions.

Figure 17 shows the SPL of intake noise in run-up condi-
tions. Notice that the SPL of inlet noise was remarkably atten-

Figure 15. Pressure maps of the optimized muffler and chamber 2.

(a)

(b)

Figure 16. Experimental setup: (a) diagram of test arrangement; (b) photo-
graph of test environment.

uated at the target frequency range of 1000–3500 Hz with muf-
flers. Figure 18 shows the SPL of intake noise at 3000 RPM.
The SPL was reduced by 25 dB at 1000–3500 Hz. And
the tonal noise level at BPF was reduced from 92.35 dB to
57.94 dB in a drop of 34.41 dB. In other stationary condi-
tions, tonal noise levels also appeared the highest of the full
frequency band, as well as the insertion loss at BPF.

6. CONCLUSION

An approximate model was established by introducing the
formula of the thickness correction coefficient in the conven-
tional transfer matrix. The thickness correction was calculated
precisely by comparing the transmission loss curves predicted
by the TMM with those predicted by the FEM, and the cor-
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(a)

(b)

Figure 17. SPL of intake noise under run-up conditions: (a) without muffler;
(b) with muffler.

Figure 18. SPL of intake noise at 3000 RPM.

rection formula was obtained by the Taguchi design and poly-
nomial regression analysis. The approximate model has been
proven effective within acceptable accuracy limits.

In this study, multi-objective shape optimization of multi-
chamber perforated mufflers was presented. NSGA- II was
used as the optimization algorithm, and transmission loss was
calculated by the approximate model. Certain Pareto solutions
were chosen, and a prototype was manufactured based on one
of the Pareto solutions. Both transmission loss and insertion
loss of the optimized muffler were measured. Numerical and
experimental results are in good agreement and show signif-
icant improvements of acoustic performance precisely at the
target frequency range.

Consequently, the combination of the approximate model

and the NSGA-II algorithm provides a fast, effective, and ro-
bust approach to co-axial perforated muffler optimization prob-
lems.
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APPENDIX A. TRANSFER MATRIX OF
PERFORATED MUFFLER

As shown in Fig. 1, a co-axial perforated muffler is com-
posed of an inner perforated tube and an outer resonat-
ing chamber. Under the isentropic progresses, for a per-
forated muffler without mean flow, the governing equations
can be written as3 in Eq. (1), (on top of the next page).
where α1 = k2− 4jk

dζp
, α2 = 4jk

dζp
, α3 = 4jkd

(D2−d2)ζp
, α4 = k2−α3,

k = 2πf
c , and ζp = p1−p1a

ρcuh
is the normalized specific acoustic

impedance of the perforated tube, which is defined as

ζp =
Rh + jk(t+ αdh)

η
; (2)

where Rh is the specific resistance, and α is the thickness cor-
rection coefficient.

Eq. (1) can be conveniently expressed in following matrix
form Eq. (3) (see the top of the next page).

Decoupling Eq. 3, the relationship of acoustic pressure and
normal particle velocity can be obtained as

p1
ρcu1
p1a
ρcu1a

 = [Ω]


C1eλ1x

C2eλ2x

C3eλ3x

C4eλ4x

 ; (4)

where λ is the eigenvalues of [N ], and [Ω] is the model matrix
formed by eigenvectors of [N ]:

λ = ±

√
−(α1 + α4)/2±

√
(α1 − α4)2/4 + α2α3; (5)

Ω1i

Ω2i

Ω3i

Ω4i

 =


1

jλi/k

−(α1 + λ2i )/α2

−jλi(α1 + λ2i )/(kα2)

 i = 1 2 3 4. (6)

Thus, the relationship of acoustic pressure and particle ve-
locity between x = 0 and x = lc can be obtained as

p1(0)
ρcu1(0)
p1a(0)
ρcu1a(0)

 = [R]


p1(lc)
ρcu1(lc)
p1a(lc)
ρcu1a(lc)

 ; (7)

where [R] = [Ω] [E] [Ω]
−1, [E] = diag(exp(−λilc)), i =

1, 2, 3, 4

The boundary conditions of outer tube are given as{
ρ0c0u1a = −j tan(kla)p1a

ρ0c0u2a = j tan(klb)p2a
(8)
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d2p1
dx2

+ α1p1 + α2p1a = 0
d2p1a
dx2

+ α3p1 + α4p1a = 0jkρcu1 =
dp1
dx

jkρcu1a = − dp1a
dx

; (1)


dp1/dx

dρcu1/dx
dp1a/dx

dρcu1a/dx

 =


0 −jk 0 0

−jα1/k 0 −jα2/k 0
0 0 0 −jk

−jα3/k 0 −jα4/k 0




p1
ρcu1
p1a
ρcu1a

 = [N]


p1
ρcu1
p1a
ρcu1a

 (3)

Taking Eq. (8) into Eq. (7), the transfer matrix of perforated
mufflers is obtained as[

p1
ρ0c0u1

]
= [T]

[
p2

ρ0c0u2

]
=
[
A B
C D

] [
p2

ρ0c0u2

]
;

(9)
where:
A = R11 − (R13 + jR14tan(klb))(R41 + jR31tan(kla))/Z

B = R12 − (R13 + jR14tan(klb))(R42 + jR32tan(kla))/Z

C = R21 − (R23 + jR24tan(klb))(R41 + jR31tan(kla))/Z

D = R22 − (R23 + jR24tan(klb))(R42 + jR32tan(kla))/Z

Z = R43 + jR44tan(klb) + jtan(kla)(R33 + jR34tan(klb))

APPENDIX B. THE NUMERICAL EXPERI-
MENTAL RESULTS OF THE TAGUCHI AR-
RAY

The numerical experimental results of the Taguchi array are
presented in Table 6 (on the next page).
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In this paper, vibration equations of an orthotropic, thin rectangular plate wrapped around a porous drum are
developed, considering residual stress effects. It is assumed that the plate is subjected to tension from both opposite
sides and wrapped continuously around a cylindrical drum so that the wrapped portion behaves like a circular
cylindrical shell. First of all, the Lame’ parameters, required to constitute the geometry relations, are established
for typical cylindrical shallow shell in cylindrical coordinate system. Then, the equations of motion are derived
by utilizing the stored strain energy principle based on the Love assumptions. Finally, a set of more complete
vibration equations is introduced by applying the simplifications of the Donnell-Mushtari-Vlasov theory. The
equations derived under more stringent and precise assumptions are compared with those obtained and available
in literature, and the discripancies are highlighted. The present study only aims to mathematically develop the
governing relationships, where a numerical solution separately done by the authors can be found in other literature
in which vibrational behavior has been completely discussed for moving and stable anisotropic wrapped plates.

NOMENCLATURE

A1, A2 gyroscopic inertia matrix
Cij Stiffness matrix corresponding

to extension
Dij Stiffness matrix corresponding

to bending
e1, e2, e3 Unit vectors
g1, g2 Decomposed variables
h Thickness of plate
K1 to K4 Symmetric stiffness matrix
k Curvature
L1, L3 Length of flat segments
L2 Length of wrapped or curved segment
M Resultant moment, mass matrix
m Number of terms in approximation

function, longitudinal
n Number of terms in approximatio

function, lateral
P0 Air pressure
P , P ′ Typical vector points
Pij Dummy coefficients or stiffness ratios
Q, Q Stiffness matrices principal & material

direction
Q(t), Q̇(t) Reduced order matrix of spatial vector q
Qθz , Qyz Transverse shear forces
q Time dependent variable(vector)
qr Static load
R(x, y) Radius of the drum or wrapped region
R Redial direction, Residual index
r Displacement vector
T Tension
U Potential energy
u Displacement in x direction
v Displacement in y direction

W Spatial or time independent variable (matrix)
w Transverse displacement in z direction
X , Y , Z Cartesian directions
α1, α2, α3 Orthogonal curvilinear coordinates
ε Strain
Φ(θ, y) Spatial or time independent variable of Airy

Function
φ Airy Function
ϕ Direct angle with X direction
θ Tangential direction
θw Wrapping angle
ρ Mass density
σr Residual stress
υ Poisson’s ration
ω Excitation or response frequency
Ψ1
ij , Ψ2

ij Approximation functions
ξ Local coordinate in longitudinal direction
∇2
k(·),∇2

r(·) Second order Laplace operators

1. INTRODUCTION

Wrapped plates are widely used in many industries, such as
manufacturing of papers, foils, and magnetic films; conveyer
belt systems and band saw blades.1–12 The general schematic
of the application is shown in Fig. 1. The safety of relatively
thin products, such as newspapers and webs, as well as their
manufacturing appliance, has drawn the attention of engineers
in recent years to make a design mechanism that is more effi-
cient and versatile.

Vibration analysis of plates and shells during translation
has been turned to an essential process in order to extract the
modal properties and to prevent possible damages or failure.
As shown in Fig. 1, because of the shape of the drum circum-
ference, the mid part of the plate behaves like a cylindrical
shell. It is also supposed that the pressurized air exits from the
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Figure 1. Lateral view of tensioned plate wrapped around a porous drum, (a)
without air pressure, (b) with air pressure Po after reaching to the steady state,
θ angle of wrapped segment, R radius of drum, L1, L3 flat segments length.

holes around a drum and makes an air cushion in order to mit-
igate the contact between the plate and the drum and to avoid
damage specially to considerably thin plates.

Fluid-structure interaction between the plate and ejected air
from a porous drum has been studied by Müftü and Cole.8 The
governing equations, with a relatively high accuracy rate, have
been derived based on the Donnel theory, which considers non-
linear terms in strains and then is solved by the finite difference
method and then by simplifying the equilibrium equation. The
helical wrapping case has also been investigated separately by
Müftü.12

Lopez and Müftü13 analysed vibration of a thin tensioned
web that had been helically wrapped around a turn-bar based
on Kirchhoff-Love assumptions. They extracted dynamic
properties including natural frequencies and mode shapes in
the stable case by finite element method, and later, Sadeqi
et al.,1, 14, 15 followed and extended their investigations to or-
thotropic and anisotropic moving web, utilizing numerical
Rayleigh-Ritz solution. Conflict between fiber orientation and
helical wrapping angle, as well as critical speed limitation, was
reported in their study.

The present work, aims to introduce a new set of equa-
tions, which governs the wrapping process with higher accu-
racy compared to the previous ones, considering the effect of
stored stress, called residual stress, in the structure during the
translation and wrapping.

First, in the next section, the general geometric aspect of
the issue, as well as Lame’ parameters, is surveyed, and the
strains are obtained for a cylindrical shell that is continuously
joined to rectangular flat plates from two sides based on Love
assumptions in the cylindrical coordinate system.

Then, in Section 3, the governing equations of motion of the
orthotropic tensioned shell- plate wrapped around a drum are
derived based on the Donnell-Mushtari-Vlasov theory, consid-
ering the uniformly exhausted air pressure. The effects of air
pressure and tension are separately considered as initial stress
(residual stress) in the static equation set, which appears in the
dynamic set of equations or in the same equations of motion.
It is shown that the in- plane forces can be analyzed for both
orthotropic and isotropic cases utilizing the Airy Stress Func-
tion coupled with the bending equations. Heaviside function is
also used to present curvature distribution along the plate.

It is supposed that the tensioned plate encompasses the drum
completely and is continuously bent around it. The exhausted
air acts as a uniform distributed load on the shell segment and
raises the plate till it reaches a steady state (Fig. 1 b)). Hence,
the final transverse displacement in the gap between the shell
and drum is the summation of the radial and lateral displace-
ments with respect to the origin.

Figure 2. The neutral surface of a cylindrical shell in triple Cartesian (X , Y ,
Z), cylindrical (r, θ, y), and orthogonal curvilinear (α1, α2, α3) coordinate
system.

It is also assumed that the magnitude of the tension is con-
stant during the translating process, and the supports at two
opposite edges (where tension acts on) are considered a simple
hinge. Therefore, the air pressure that raises the plate (sepa-
ration between the plate and drum) causes an increase in the
plate length and, consequently, would increase its stiffness.

In Section 4, as a result, obtained equations are compared to
other references and newly appearing terms and discrepancies
are clarified and discussed, but more numerical results can be
found in Sadeqi et al1.

2. GENERAL EQUATION OF CYLINDRICAL
SHELL

Figure 2 shows a cylindrical non-closed shallow shell ele-
ment illustrated in three coordinate systems: Global Cartesian,
Cylindrical and Orthogonal Curvilinear.

Using Love assumptions together with a new coordinate sys-
tem (Fig. 2), the governing equations can be derived.13 Using
a reference neutral surface as shown in Fig. 2, the differen-
tial variation of the displacement vector r between neighboring
points P and P ′ is16, 17

dr̄ =
∂r̄

∂α1
dα1 +

∂r̄

∂α2
dα2; (1)

and the magnitude of ds becomes

(ds)2 = A2
1(dα1)2 +A2

2(dα2)2. (2)

This equation is the first fundamental form, and the coeffi-
cients A1, A2 are the Lame’ parameters. These parameters are
determined with respect to the chosen system of coordinates.
If the cylindrical system is selected as reference coordinates,
the position vector can be rewritten in terms of θ and y as:

r̄ = R sin θē1 + yē2 +R cos θē3; (3)

where e1, e2, e3 are the unit vectors in X , Y , Z direction,
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respectively. Considering α1 = θ, and α2 = y results in

A1 =

∣∣∣∣∂r∂θ
∣∣∣∣ = |R sin θe1 −R cos θe3| =

= R
√

cos2 θ + sin2 θ = R; (4a)

A2 =

∣∣∣∣∂r̄∂y
∣∣∣∣ = |ē2| = 1. (4b)

In the present study the cylindrical coordinates for either flat
or wrapped (curved) parts is used. In this coordinate system,
the radial, rotational, and longitudinal components are in y, θ,
z, directions, respectively. Also, in order to present the curva-
ture distribution along the plate, use Heaviside step function is
introduced as

1

R (θ)
=


0 tan−1

(
L1

R

)
+ π+θw

2 < θ < π+θw
2

1
R

π+θw
2 ≤ θ ≤ π−θw

2

0 π−θw
2 < θ < π−θw

2 − tan−1
(
L3

R

) . (5)

which helps to define the curvature effects in terms of the wrap-
ping angle θw and the flat segment length L1, L3.

2.1. Strain-Displacement Relations

Using assumptions of the Love theory, strain-displacement
relations can be expressed as:

 εθ
εy
εθy

 =


ε0θ
ε0y
ε0θy

+ z

 kθ
ky
kθy

 =


1
A1

∂u
∂θ + w

R(θ) + 1
2A2

1

(
∂w
∂θ

)2
1
A2

∂v
∂y + 1

2A2
2

(
∂w
∂y

)2
1
A1

∂v
∂θ + 1

A2

∂u
∂y + 1

A1A2

(
∂w
∂θ

) (
∂w
∂y

)
+

z


1
A1

∂
∂θ

(
u

R(θ) −
1
A1

∂w
∂θ

)
1
A2

∂
∂y

(
− 1
A2

∂w
∂y

)
1
A2

∂
∂y

(
u

R(θ) −
1
A1

∂w
∂θ

)
+ 1

A1

∂
∂θ

(
− 1
A2

∂w
∂y

)
 . (6)

2.2. Stress-Strain Relationship & Resultant
Loads

For an orthotropic element, the stress strain relationship is: σθ
σy
σθy

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 εθ
εy
εθy

 ;

Q11 =
E1

1− υ12υ21
, Q12 = υ21Q11,

Q22 =
E2

E1
Q11, Q66 = G12; (7)

where E1, E2 are elastic modules, G12 indicates shear mod-
ules and υ12, υ21 show Poisson’s ratio in the material principal
directions. Resultant force due to normal stress in θ direction

will be

Nθ +Nr
θ

Ny +Nr
y

Nθy +Nr
θy

Mθ +Mr
θ

My +Mr
y

Mθy +Mr
θy


=

h
2∫

−h
2



σθ + σrθ
σy + σry
σθy + σrθy
z(σθ + σrθ)
z(σy + σry)
z(σθy + σrθy)


dz

=


C11 C12 0 0 0 0
C12 C22 0 0 0 0
0 0 C66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66





ε0θ
ε0y
ε0θy
kθ
ky
kθy


;

Cij = Q̄ijh, Dij = Q̄ij
h3

12
; (8)

whereQij is the sameQij in Eq. (7), after transformation and h
thickness of the plate. Also, superscript r, indicates the residual
effects.

2.3. Equation of Motion
Using the Minimum Potential Energy Principle, the stored

strain energy in an infinitesimal element, which is under stress
σ (due to transverse pressure) and residual or pre-stress σr (due
to tension and bending) will be17

dU = [
1

2
(σθεθ + σyεy + σθyεθy + σθzεθz + σyzεyz)+

+σrθεθ + σryεy + σrθyεθy + σrθzεθz + σryzεyz]dV. (9)

Substituting the stresses in terms of resultant loads, and fi-
nally rearranging the expressions in terms of displacements (u,
v, w) , five relationships coupled of residual and non-residual
terms are achievable and can be divided into two sets: one
static set due to the static load qr resulting in initial stresses as

−A2
∂Nr

θ

∂θ
−A1

∂Nr
θy

∂y
−A1A2

Qrθz
R(θ)

= A1A2q
r
θ ; (10a)

−A2

∂Nr
θy

∂θ
−A1

∂Nr
y

∂y
= A1A2q

r
y; (10b)

−A2
∂Qrθz
∂θ

−A1

∂Qryz
∂y

+A1A2
Nr
θ

R(θ)
= A1A2q

r
z ; (10c)

A2
∂Mr

θ

∂θ
+A1

∂Mr
θy

∂y
−A1A2Q

r
θz = 0; (10d)

A2

∂Mr
θy

∂θ
+A1

∂Mr
y

∂y
−A1A2Q

r
yz = 0; (10e)

whereQθz andQyz , according to the plane stress assumptions,
are the transverse shear forces as

Qθz =

z=h
2∫

z=−h
2

(σθz + σrθz)dz,

Qyz =

z=h
2∫

z=−h
2

(σyz + σryz)dz; (11)

and another, dynamic set due to the dynamic loads q, demon-
strating the vibration behavior of the problem. Disregarding
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the resultant forces Nθ, Ny , Nθy compared to the residual re-
sultant forces Nr

θ , Nr
y , Nr

θy, these equations can be rearranged
as:

−A2
∂Nθ
∂θ
−A1

∂Nθy
∂y
−A1A2

Qθz
R(θ)

+A1A2ρhü = A1A2qθ;

(12a)

−A2

∂Nθy
∂θ

−A1

∂Ny
∂y

+A1A2ρhv̈ = A1A2qy; (12b)

−A2
∂Qθz
∂θ
−A1

∂Qyz
∂y

+A1A2
Nθ
R(θ)

−A2

A1

(
∂Nr

θ

∂θ

)(
∂w

∂θ

)
−

A2

A1
Nr
θ

(
∂2w

∂θ2

)
− A1

A2

(
∂Nr

y

∂y

)(
∂w

∂y

)
− A1

A2
Nr
y

(
∂2w

∂y2

)
−(

∂Nr
θy

∂θ

)(
∂w

∂y

)
−
(
∂Nr

θy

∂y

)(
∂w

∂θ

)
− (Nr

θy)

(
2
∂2w

∂θ∂y

)
+

A1A2ρhẅ = A1A2qz; (12c)

A2
∂Mθ

∂θ
+A1

∂Mθy

∂y
−A1A2Qθz = 0; (12d)

A2

∂Mθy

∂θ
+A1

∂My

∂y
−A1A2Qyz = 0; (12e)

In the present paper, the Donnell-Mushtari-Vlasov theory
is used to simplify and reach a solvable form rather than fac-
ing difficulties caused by coupling that exists between the in-
plane forces (Eqs. (12a) and (12b)) and the bending moments
(Eqs. (12c)-(12e)).

3. DONNELL-MUSHTARI-VLASOV THEORY

The theory is applicable for shells under transverse loads,
and in contrast to other theories, the bending and in-plane ef-
fects are also considered. The fundamental assumption is to
neglect the effect of in-plane deflection in the bending strains
but not in the plane strains.

The second assumption is to neglect the in-plane inertial ef-
fects (ü, v̈), and the last, the termQθz/Rmust be eliminated in
Eq. (12a). Applying these assumptions as well as substituting
the values of in-plane and bending strains into the two moment
Eqs. (12d) and (12e), then substituting shear forces in terms of
related moments in Eq. (12c), five Eqs. (12a)-(12e) are reduce
to three. Finally, by introducing the Airy stress function φ as

Nθ =
1

A2
2

∂2ϕ

∂y2
; (13a)

Ny =
1

A2
1

∂2ϕ

∂θ2
; (13b)

Nθy = − 1

A1A2

∂2ϕ

∂y∂θ
; (13c)

three equations can be diminished again to a single equation
but with two unknowns as

D11
1

A4
1

∂4w

∂θ4
+ 2(D12 + 2D66)

1

A2
1

∂4w

∂θ2∂y2
+

+D22
∂4w

∂y4
+∇2

kϕ−∇2
rw + ρhẅ = qz; (14)

where ∇2
k(·) and ∇2

r(·) are as in Eqs. (15a) and (15b) (see on
the next page).

Now, the deflection components u, v are eliminated and one
equation remains with two unknowns w and φ. To find the sec-
ond equation, the compatibility equation is necessary, which
can be written as17

kθ
R(θ)

+
1

A2
1

(
∂2(ε0y)

∂θ2

)
+

1

A2
1

(
∂2(ε0θ)

∂y2

)
−

− 1

A1A2

∂2(ε0θy)

∂θ∂y
= 0. (16)

Substituting the strains with terms of the axial forces given by
ε0θ
ε0y
ε0θy

 =

 P11 −P12 0
P12 −P22

0 P66

 Nθ
Ny
Nθy

 ;

P11 =
C22

C11C22 − C2
12

, P22 = P11
C11

C22
,

P12 = P11
C12

C22
, P66 =

1

C66
; (17)

and using Eqs. (13a)–(13c) results in

P22
1

A4
1

∂4ϕ

∂θ4
+

1

A2
1A

2
2

(P66 − 2P12)
∂4ϕ

∂θ2∂y2
+

+
1

A4
2

P11
∂4ϕ

∂y4
−
(

1

R(θ)

∂2w

∂y2

)
= 0; (18)

The previous equation together with Eq. (14), are the equa-
tions of motion of an orthotropic shell wrapped around a
porous pressurized drum. These fourth order equations are
coupled, and four boundary conditions are needed at each edge
(two for w, and two for φ) to solve them. A numerical ap-
proach has been taken to solve the typical simplified equations
for the anisotropic moving case in Sadeqi et al.1 Assuming
harmonic time dependence and separation of variables as

w(θ, y, t) = W (θ, y)ejωt =

m∑
i=1

n∑
j=1

g1ijΨ
1
ij(θ, y)ejωt; (19a)

ϕ(θ, y, t) = Φ(θ, y)ejωt =

m∑
i=1

n∑
j=1

g2ijΨ
2
ij(θ, y)ejωt; (19b)

and also by decomposing in terms of variables g1 and g2, the
following matrix can be defined as[

K1 −Mω2 K2

K3 K4

]{
g1

g2

}
= 0; (20)

where g1 and g2 are of rank(m × n)×1 , vectors and K1 to
K4, and M are symmetric (m × n) × (m × n) rank matrices
in terms of approximation functions given by Ψ1

ij , Ψ2
ij (see1).

For the isotropic case, Eq. (14) becomes

D∇4w +∇2
kϕ−∇2

rw + ρhẅ = qz; (21)

where

∇4(.) =

(
1

A4
1

∂4(.)

∂θ4
+

2

A2
1A

2
2

∂2(.)

∂θ2
∂2(.)

∂y2
+

1

A4
1

∂4(.)

∂y4

)
;

(22)
and other operators, compatibility equation, boundary condi-
tions, and Airy function φ remain the same as for the or-
thotropic case. Following a similar procedure leads to

Eh∇2
kw −∇4ϕ = 0; (23)
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∇2
k(·) =

1

A1A2

∂

∂y

(
1

R(θ)

A1

A2

∂(·)
∂y

)
; (15a)

∇2
r(·) =

1

A2
1

(
Nr
θ

∂2(.)

∂θ2
+

(
∂(Nr

θ )

∂θ

)(
∂(.)

∂θ

))
+

1

A2
2

(
Nr
y

∂2(.)

∂y2
+

(
∂(Nr

y )

∂y

)(
∂(.)

∂y

))
+

1

A1A2

[
2

(
Nr
θy

∂2(.)

∂θ∂y

)
+

(
∂(Nr

θy)

∂θ

)(
∂(.)

∂y

)
+

(
∂(Nr

θy)

∂y

)(
∂(.)

∂θ

)]
. (15b)

Nx +Nr
x = C

[
1

A1(x)

∂u

∂x
+

w

R(x)
+

1

2A2
1(x)

(
∂w

∂x

)2

+υ

(
∂v

∂y
+

1

2

(
∂w

∂y

)2
)]

, C =
Eh

(1− v2)
; (28)

substituting w and φ from Eqs. (19a) and (19b) into
Eqs. (21) and (23) and then applying operators∇4 and∇2

k, re-
spectively, and subtracting each other gives a single but higher
order equation achieved as17–20

D∇8W + Eh∇4
kW −∇4∇2

rW − ρhω2∇4W = 0; (24)

which is the appropriate form of vibration equation for the
isotropic case.

4. COMPARISON WITH OTHER
REFERENCES

Substituting θ = x/R and transforming to the Cartesian co-
ordinates with A1 = A2 = 1, the equations obtained in the
present work are compared to the simplified cases available in
other references. In the absence of dynamic load qz and accel-
eration term ẅ, for isotropic case, Eq. (22) becomes:

D∇4w −∇2
rw +∇2

kϕ = 0; (25)

where operators from Eqs. (15a) and (15b) can be expressed as

∇2
rw = Nr

x

∂2w

∂x2
+ 2Nr

xy

∂2w

∂x∂y
+Nr

y

∂2w

∂y2
+

+
∂Nr

xy

∂x

∂w

∂y
+
∂Nr

xy

∂y

∂w

∂x
+
∂Nr

y

∂y

∂w

∂y
; (26)

∇2
kϕ =

Nx
R(x)

. (27)

Substituting the values of in-plane forces from Hooke’s law in
terms of strains is presented in Eq. (28) (see on the top of the
page).

Considering the upward direction of air pressure as posi-
tive, and since the tension in x direction and the distributed air
pressure normal to shell are the only external loads, solution of
in-plane force Nr

θ in Eq. (10c), results in

Nr
x = T +R(x)qrz . (29)

Neglecting the in-plane strains and substituting for Nx from
static solution leads to:

D∇4w − (T +R(x)qrz)
∂2w

∂x2
− 2Nr

xy

∂2w

∂x∂y
−Nr

y

∂2w

∂y2
−

∂Nr
xy

∂x

∂w

∂y
−
∂Nr

xy

∂y

∂w

∂x
−
∂Nr

y

∂y

∂w

∂y
+

C

R2(x)
w

= qrz +
T

R(x)
. (30)

4.1. Equilibrium Equation in Reference8

The governing equation for the non-helical wrapping case of
plate, has been developed by Müftü and Cole8 based on Donnel
theory as

D∇4w − T ∂
2w

∂x2
−Ny

∂2w

∂y2
− 2Nxy

∂2w

∂x∂y
+

C

R2(x)
w =

= p− T

R(x)
;

(31)

where p is the air pressure so that the positive direction is as-
sumed to be downward. The basic differences between this
equation and one obtained here (Eq. (30)) can be expressed as:

1. The effect of exhausting air pressure on increasing ten-
sion is considered in Eq. (3). The air pressure (assum-
ing upward direction as positive) causes the wrapped part
to rise up, and also causes increasing elongation from
boundaries; consequently, the value of effective tension
increases. In Müftü and Cole,8 it is assumed that the ten-
sion is constant during the process; therefore, the plate
together with the supports could move in a rigid manner
as long as it would reach a steady state.
On the other hand, the effect of tension on the air pres-
sure is the same for both equations because the tension
T causes a pressure equal to T/R from the wrapped re-
gion to the drum surface. Hence, the minimum pressure
required to separate the wrapped part from the drum is
T/R.

2. In Eq. (31), there are no residual resultant forces Nr
y and

Nr
xy . These can be neglected in the absence of distributed

in-plane forces and small thickness. Otherwise, the static
set Eqs. (10a)-(10e), should be independently solved us-
ing the Airy function φ.

4.2. Equations for Non-Helical Wrapping12,13

The equilibrium equation for wrapped plate in the presence
of the air pressure exhausted from the turn bar has been devel-
oped as12

D∇4w − T ∂
2w

∂x2
+

C

R2(x)
w = p+ pc −

T

R(x)
; (32a)

where pc, the air pressure, is considered the contact pressure.
The in-plane forces are also neglected in this equation. In the
absence of in-plane forces (Ny = Nxy = 0), and for static
load, Eq. (30), can be simplified to

D∇4w−(T + qrzR(x))
∂2w

∂x2
+

C

R2(x)
w = qrz+

T

R(x)
; (32b)
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Note that if the positive direction of air pressure in both
Eqs. (32a) and (32b) are assumed to be the same, the right-
hand-side terms would be equal. Also, the vibration equation
of the mentioned plate in Müftü12 is presented as

D∇4w − T ∂
2w

∂x2
+

C

R2(x)
w + ρhẅ = 0. (33a)

In the absence of air pressure (qrz = 0) and in-plane forces
(Ny = Nxy = 0), Eq. (21), could be simplified to

D∇4w− (T + qrzR(x))
∂2w

∂x2
+

C

R2(x)
w+ ρhẅ = 0. (33b)

For constant tension during the process of wrapping and
also after reaching steady state, Eqs. (33a) and (33b) would
be equal.

5. SUMMARY AND CONCLUSION
In this study, general equations of wrapped orthotropic plate

were developed by defining new coordinates and virtual work
approach. It was shown that in/out plane forces affect the bend-
ing moments and vice versa, so that the constitutive equations
appear as coupled form. Any change in the tension leads to
change in the air pressure required to separate the plate of the
cylindrical drum, as well as stiffness of the plate and natural
frequencies.

First, two residual and dynamic sets of quintuplet equations
were obtained, then by using the Donnell-Mushtari-Vlasov
theory, they were simplified and reduced to three equations in
terms of second-order derivation of transverse displacement w
and, finally, by defining Airy functions, reduced to two equa-
tions of forth order. In other words, the five second-order equa-
tions were diminished to the three equations of higher order
and could even decrease for isotropic case to a single equation
of eighth order.

It was also shown that the obtained equations had additional
terms than available ones in other references, because of con-
tributing the in/out of plane resultant force in bending equation
which causes a higher accuracy in analysis. Moreover, interac-
tion between the tension and air pressure as a transverse load
was considered and kept in the equations.

A numerical solution to find frequencies and mode shapes
for a typical simplified equations of anisotropic moving
wrapped plate studied in a separate paper, which has been ad-
dressed in the context.
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The Adomian decomposition method (ADM) and high-pass filters are employed in this study to investigate the
free vibrations and damage detection of cracked Euler-Bernoulli beams. Based on the ADM and employing some
simple mathematical operations, the closed-form series solution of the mode shapes can be determined for beams
consisting of an arbitrary number of cracks under general boundary conditions in a recursive way. Then, a high-
pass filter is used to extract the irregularity profile from the corresponding mode shape. The location and size of
the cracks in the beam can be determined by the peak value of the irregularity profile. The numerical results for
different locations and depths of cracks on the damaged beam under different boundary conditions are presented.
The results show that the proposed method is effective and accurate. The experimental work for aluminium can-
tilever beams with one and two cracks was performed to verify the proposed method. The successful detection
of cracks in the beam demonstrates that the proposed method has great potential in crack detection of beam-type
structures, as it is simple and does not require the mode shapes of an uncracked beam as a baseline.

1. INTRODUCTION

Recently, many vibration-based damage detection tech-
niques have been developed due to their non-destructive na-
ture.1–3 The popularity of these techniques is based on the
fact that the loss of stiffness due to structural damage changes
the dynamic response of the structure. With these techniques,
damages can be detected by monitoring the vibration param-
eters, such as damping ratios, natural frequencies, and mode
shapes.

Mode shapes and/or their derivatives are generally used to
predict the location and the size of the damage rather than
natural frequencies. Because the natural frequencies are the
global features of the structure, it is difficult to determine the
damage location with a frequency-based method.1 Since the
1990s, a lot of damage detection algorithms based on mode
shape have been proposed for damage detection and localiza-
tion.1, 2, 4, 5 Most of these methods require knowing the mode
shapes of the health structures, which are difficult to obtain
(and sometimes impossible), in order to establish a baseline
for damage detection.

If the applicability of the mode shaped-based damage de-
tection approach could be extended by eliminating the need
for the baseline mode shapes, this approach would be signif-
icantly expanded in structural damage detection applications.
Because of this potential, the non-baseline mode shape-based
damage detection approaches have received more and more at-
tention. Recently, Qiao and Cao6 calculated the fractal dimen-
sion (FD) and waveform fractal dimension (WFD) of the mode
shape from a cracked beam to determine the damage location

and quantification. Ismail, et al.7 used fourth derivatives of
the mode shapes to directly identify the location of damage
for reinforced concrete beams. The application of 1-D and 2-
D wavelet transform methods to displacement mode shape for
damage detection of beam and plate structures have also been
extensively investigated.8, 9

Ratcliffe, et al.10, 11 proposed the gapped smoothing method
(GSM) and the global fitting method (GFM) for damage detec-
tion. The GSM and GFM do not require data from the undam-
aged structure. By applying GSM or GFM to the mode shapes
of the damaged structures, a smoothing curve, which could be
regarded as a substitution for the mode shape from the undam-
aged structure, can be extracted. The GSM and GFM later
used the operating deflection shape and its curvature data, and
were extended to directly use two-dimensional COS data for
damage detections.12–14

Recently, Wang and Qiao15 proposed an irregularity-based
method to detect the cracks in beam structures. In this method,
The Gaussian filter and triangular filter are applied on the mode
shapes to extract the irregularities from the mode shape of the
cracked beam, indicating the damage in the structure. The
irregularity-based method was extended to detect the delam-
ination in composite laminated beams and plates.16, 17

In this study, high-pass filters are used to extract the irregu-
larities from the mode shapes and determine the damage situa-
tion in a beam. The aim of the paper presented here is twofold.
Firstly, mode shapes for a beam with an arbitrary number of
cracks under general boundary conditions are determined by
the Adomian decomposition method (ADM).18–22 Using the
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Figure 1. The coordinate system for a multiple-cracked beam, elastically re-
strained at both ends.

ADM, the governing differential equation for each section of
the cracked beam becomes a recursive algebraic equation. The
boundary conditions and continuity conditions at crack loca-
tions become simple algebraic frequency equations that are
suitable for symbolic computation. Moreover, after some sim-
ple algebraic operations on these frequency equations, we can
obtain the natural frequency and corresponding closed-form
series solution of mode shape simultaneously.

As a second aim, this paper seeks to detect the location and
depth of cracks in beam structures by using high-pass filters.
The mode shapes are filtered by using a 3rd-order Butterworth
high-pass filter, and their irregularities are extracted. The nu-
merical calculation with different crack locations, depths, and
number are discussed for a damaged beam under different
boundary conditions. Finally, by using two aluminium can-
tilever beams with one and two cracks, the experimental dam-
age detection was performed to verify the proposed method.

2. THE ADM FOR A CRACKED BEAM

Consider the free vibration of a uniform Euler-Bernoulli
beam of length L consisting of J open cracks elastically re-
strained at both ends, as shown in Fig. 1. It is assumed that the
cracks are located at L1, L2, . . . , LJ−1, and 0 < L1 < L2 <

. . . < LJ < L. The beam is divided into (J + 1) sections with
the (J + 1) mirror systems of reference xj (j = 0, 1, . . . , J).

The ordinary differential equation describing the free vibra-
tion in each section is as follows:

d4φj(xj)

dx4
j

−msω
2

EI
φj(xj) = 0, xj ∈ [0, Lj ], j = 0, 1, . . . , J ;

(1)
where subscript j denotes the beam between the jth crack and
(j + 1)th crack. φj(xj) and ω are the structural mode shape
and the natural frequency, respectively. E is Young’s modulus.
I = bh3

12 is the cross-sectional moment of inertia of the beam.
ms = ρbh is the mass per unit length. ρ, b, and h are the
density, width, and thickness of the beam, respectively.

Equation (1) can be rewritten in dimensionless form as fol-
lows:

d4Φj(Xj)

dX4
j

− Ω4Φj(Xj) = 0, Xj ∈ [0, Rj ]; (2)

where Xj =
xj

L , Φj(Xj) =
φj(xj)
L , Rj =

Lj

L , Ω4 = msω
2L4

EI ,

Ω is the dimensionless natural frequency, and the nth dimen-
sionless natural frequency is denoted as Ω(n).

According to the ADM,18–22 φj(Xj) in Eq. (2) can be ex-
pressed in terms of an infinite series

Φj(Xj) =

∞∑
m=0

Φ
[m]
j (Xj); (3)

where the component function Φ
[m]
j (Xj) will be determined

recurrently.
If a linear operator G = d4

dX4 is imposed, the inverse op-
erator of G is therefore a 4-fold integral operator defined by
G−1 =

∫∫∫∫
(. . .)dXdXdXdX , and

G−1G [Φj(Xj)] = Φj(Xj)− Φj(0)− dΦj(0)

dXj
Xj −

d2Φj(0)

dX2
j

X2
j

2
− d3Φj(0)

dX3
j

X3
j

6
. (4)

Applying this on both sides of Eq. (2) with G−1, we get

G−1G [Φj(Xj)] = Ω4G−1 [Φj(Xj)] =

= Ω4G−1

[ ∞∑
m=0

Φ
[m]
j (Xj)

]
. (5)

Comparing Eqs. (4) and (5), we get

Φj(Xj) = Φj(0) +
dΦj(0)

dXj
Xj +

d2Φj(0)

dX2
j

X2
j

2
+

d3Φj(0)

dX3
j

X3
j

6
+ Ω4G−1

[ ∞∑
m=0

Φ
[m]
j (Xj)

]
. (6)

Finally, by using Eq. (3), the approximated solution of Eq. (6)
can be determined by using the following recurrence relation:

Φ
[0]
j (Xj) = Φj(0) +

dΦj(0)

dXj
Xj +

d2Φj(0)

dX2
j

X2
j

2
+

d3Φj(0)

dX3
j

X3
j

6
; (7)

Φ
[m]
j (Xj) = Ω4G−1

[
Φ

[m−1]
j (Xj)

]
; m ≥ 1. (8)

By substituting Eqs. (7) and (8) into Eq. (3), and approximat-
ing the above solution by the truncated series, the following
equation is found:

Φj(Xj) =

M−1∑
m=0

Φ
[m]
j (Xj) =

=

3∑
s=0

dsΦj(0)

dXs

M∑
m=0

[
Ω4m

X4m+n
j

(4m+ n)!

]
. (9)

Equation (9) implies that
∑∞
m=M Φ

[m]
j (Xj) is negligibly

small. The number of the series summation limit M is de-
termined by convergence requirement in practice.

The unknown parameters dsΦj(0)
dXs (s = 0, 1, 2, 3) and Ω in

Eq. (9) can be determined based on the boundary condition
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equations and the continuity conditions of each section of the
beam.

The boundary conditions at the ends of the beam shown in
Fig. 1 can be expressed in dimensionless form as follows:

d2Φ0(0)

dX2
0

−KR0
dΦ0(0)

dX0
= 0,

d3Φ0(0)

dX3
0

+KT0Φ0(0) = 0; (10)

d2ΦJ(RJ)

dX2
J

+KRJ
dΦJ(RJ)

dXJ
= 0,

d3ΦJ(RJ)

dX3
J

−KTJΦJ(RJ) = 0; (11)

where KR0 = kR0L
EI , KT0 = kT0L

3

EI , KRJ = kRJL
EI , KTJ =

kTJL
3

EI , and RJ = LJ

L . kT0 and kTJ are the stiffness of the
translational springs, and kR0 and kRJ are the stiffness of the
rotational springs at x0 = 0 and xJ = LJ , respectively.

Substituting Eq. (9) into Eq. (10), the mode shape function
for the first section Φ0(X0) can be expressed as a linear func-
tion of Φ0(0) and dΦ0(0)

dX0
, as follows:

Φ0(X0) = Φ0(0)

{
M−1∑
m=0

[
Ω4m X4m

0

(4m)!

]
−

KT0

M−1∑
m=0

[
Ω4m X4m+3

0

(4m+ 3)!

]}
+

dΦ0(0)

dX0

{
M−1∑
m=0

[
Ω4m X4m+1

0

(4m+ 1)!

]
+

KR0

M−1∑
m=0

[
Ω4m X4m+2

0

(4m+ 2)!

]}
. (12)

Due to the localized crack effect, the crack of the beam can
be simulated as a massless spring.6 For each crack between
the two sections, conditions can be introduced which impose
continuity of displacement, bending moment, and shear. More-
over, an additional condition imposes equilibrium between the
transmitted bending moment and the rotation of the spring rep-
resenting the crack. Consequently, the continuity conditions in
dimensionless form are6, 8

Φj+1(0) = Φj(Rj),

dΦj+1(0)

dXj+1
=
dΦj(Rj)

dXj
+ θj

d2Φj(Rj)

dX2
j

; (13)

d2Φj+1(0)

dX2
j+1

=
d2Φj(Rj)

dX2
j

,

d3Φj+1(0)

dX3
j+1

=
d3Φj(Rj)

dX3
j

; (14)

where θj is the dimensionless jth crack flexibility. θj =

5.346h · J
(aj
h

)
and aj is the depth of the jth crack. J

(aj
h

)
is

the dimensional local compliance function,6, 15 given by

J
(aj
h

)
= 1.8624r2

j − 3.95r3
j + 16.37r4

j − 37.226r5
j +

76.81r6
j − 126.9r7

j + 172r8
j − 43.97r9

j + 66.56r10
j ;

(15)

Figure 2. Damage detection procedure using high-pass filter.

where rj is the dimensionless depth of the jth crack, rj =
aj
h .

Substituting Eqs. (13) and (14) into Eq. (9), the mode shapes
for the section-j (j ≥ 0) can be written as

Φj+1(Xj+1) = Φj(Rj)

M−1∑
m=0

[
Ω4m

X4m
j+1

(4m)!

]
+[

dΦj(Rj)

dXj
+ θj

d2Φj(Rj)

dX2
j

]
M−1∑
m=0

[
Ω4m

X4m+1
j+1

(4m+ 1)!

]
+

d2Φj(Rj)

dX2
j

M−1∑
m=0

[
Ω4m

X4m+2
j

(4m+ 2)!

]
+

d3Φj(Rj)

dX3
j

M−1∑
m=0

[
Ω4m

X4m+3
j+1

(4m+ 3)!

]
. (16)

Notice that there are only three unknown parameters (Φ0(0),
dΦ0(0)
dX0

, and Ω) in Eq. (16) in a recursive way. By substituting
Eqs. (16) into Eqs. (11) and (12), this boundary condition equa-
tion can be expressed as linear functions of Φ0(0) and dΦ0(0)

dX0
,

such as

f11(Ω)Φ0(0) + f12(Ω)
dΦ0(0)

dX0
= 0; (17)

f21(Ω)Φ0(0) + f22(Ω)
dΦ0(0)

dX0
= 0. (18)
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Figure 3. The first four mode shapes of the cantilever beam with two cracks.

From Eqs. (17) and (18), the dimensionless natural frequency
Ω can be solved by

f11(Ω)f22(Ω)− f12(Ω)f21(Ω) =

N∑
n=0

SnΩn = 0. (19)

Notice that Eq. (19) is a polynomial of degree N evaluated
at Ω. By using the functions sym2poly and roots in the
MATLAB Symbolic Math Toolbox, Eq. (19) can be directly
solved. The next step is to determine the nth mode shape func-
tion corresponding to the nth dimensionless natural frequency
Ω(n). Substituting the solved Ω(n) into Eq. (17) or (18), the
unknown parameter dΦ0(0)

dX0
can be expressed as the function of

Φ0(0), as follows:

dΦ0(0)

dX0
= −f11(Ω)

f12(Ω)
Φ0(0) = −f21(Ω)

f22(Ω)
Φ0(0). (20)

Substituting Eq. (20) into Eqs. (12) and (16), the mode shape
function for each section can be obtained. The mode shape
function for the entire beam can be written as

Φ(X) =
[
Φ0(X0) Φ1(X1) . . . ΦJ(XJ)

]
. (21)

It should be noted that the proposed method can be used
to analyse the vibration of beams consisting of an arbitrary
number of cracks in a recursive way, and the complexity of
the vibration is the same order of a uniform beam without any
cracks. The solution can be obtained by solving a set of al-
gebraic equations with only three unknowns, and the resultant
problem is significantly simpler compared to the one obtained
through a traditional way.

3. DAMAGE DETECTION USING HIGH-PASS
FILTER

It has been demonstrated that the mode shapes of the dam-
age structures consist the irregularities induced by the damage.
The mode shapes of the damage structures Φ(x) can be ex-
pressed as

Φ(x) = Φh(x) +R(x); (22)

Figure 4. The irregularity profile R2 for (a) the first mode shape; (b) the
second mode shape.

Figure 5. The peak R2 value of the first mode varies with the second crack
depth.

where Φh(x) is the mode shape for the health structure,R(x) is
the irregularity curve due to the damage, and R2(x) is termed
as the irregularity profile,15 which is used as a damage index
(DI) throughout this study.

However, it is impossible to directly observe the irregularity
profile R2 from the mode shape only. The irregularities on the
mode shapes should be amplified and separated to determine
the locations and sizes of damages. In this study, the irregular-
ities on the mode shapes are extracted through the separation
of damage information in frequency domain rather than tradi-
tional spatial domain. It was found that the irregularities due to
damage create an additional high-frequency component in the
amplitude spectrum of the mode shapes that is not present in
the health structures.23 This means that it is possible to extract
the irregularities of the mode shapes by using high-pass filters.
The basic idea of the damage detection procedure is shown in
Fig. 2.
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Figure 6. The first four mode shapes for the two-cracked beam with different boundary conditions (Other parameters listed in Table 1): (a) KT0 = 10,
KR0 = 20, KTJ = 100, KRJ = 200; (b) KT0 = 400, KR0 = 300, KTJ = 200, KRJ = 100; (c) KT0 = 700, KR0 = 600, KTJ = 150, KRJ = 50;
(d) KT0 = KR0 = KTJ = KRJ = 1000.

4. NUMERICAL CALCULATIONS

4.1. A Cantilever Beam with Two Cracks
In order to verify the proposed method for damage detec-

tion, a cantilever aluminium beam with two cracks at a dis-
tance of 0.3L and 0.5L from the clamped end, respectively, is
considered firstly. The relative depths of these two cracks are
the same and chosen as a/h = 0.1. The beam under anal-
ysis has the following properties: length L = 0.51 m, rect-
angular cross-section with width b = 0.03 m, and thickness
h = 0.004 m. A 3rd-order high-pass Butterworth filter is used
to extract the irregularity profile. Figure 3 shows the first four
mode shapes for the cracked beams. From Fig. 3, no effects
from the cracks can be observed in the mode shape. Figure 4
shows the extracted irregularities profileR2 of the first and sec-
ond modes. From Fig. 4, it can be found that the locations of
the cracks can be determined using the irregularity profile.

To study the ability of the proposed method to detect crack
depth, it was assumed that the location and depth of the first
crack location are R1 = 0.1 and r1 = 0.1, respectively. Fig-
ure 5 shows the effect of the depths of the peak R2 values of
the first mode at the second crack location. From Fig. 5, it can

be seen that the peak R2 value is larger when the crack depth
is increased. This means that the peak R2 value can be applied
as a criterion for crack depth.

4.2. Two Cracks Beam under General
Boundary Conditions

Because the proposed method based on the ADM technique
offers a unified and systematic procedure for vibration analy-
sis of the cracked beam with arbitrary boundary conditions, the
calculation of the natural frequencies and corresponding mode
shapes for different boundary conditions can be very easy. For
example, the modification of boundary conditions from one
case to another is as simple as changing the values of the stiff-
ness of translational and rotational springs. And it does not
involve any changes to the solution procedures or algorithms.
Table 1 lists the first four dimensionless natural frequencies
Ω(n) for the beam with two cracks with different boundary
conditions. Figure 6 shows the first four corresponding mode
shapes for the cracked beams listed in Table 1. Figure 7 shows
the extracted irregularities profile R2 of the first mode under
different boundary conditions. In all cases, the cracks can be

174 International Journal of Acoustics and Vibration, Vol. 21, No. 2, 2016



Q. Mao: VIBRATION ANALYSIS OF CRACKED BEAMS USING ADOMIAN DECOMPOSITION METHOD AND NON-BASELINE DAMAGE. . .

Figure 7. The irregularities profile R2 of the first mode under different bound-
ary conditions shown in Fig. 6.

easily detected from the irregularity profiles.

5. EXPERIMENTAL VERIFICATION

5.1. Experiment Setup

To verify the above damage detection results, a set of lab-
oratory experiments was performed to examine its effective-
ness for real measurement data. Two applications including
the cantilever beams with one crack and two cracks are il-
lustrated. Two aluminium cantilever beams with dimensions
600×30×4 mm, Young’s modulusE = 70×109 Pa, and den-
sity ρs = 2700 kg/m3 are fabricated. The beams were clamped
at one end and free at the other, and the effective length of both
beams is 510 mm, as shown in Fig. 8(a). The cracks were
made using a saw cut. The crack is located at 255 mm from
the clamped end for the one-crack beam, and the crack loca-
tions are at 150 mm and 300 mm from the clamped end for
the other beam. The depth of all through-width cut is about
1–1.5 mm.

It is well known that there are two methods for modal test
using the impact hammer, i.e. a roving hammer or a rov-
ing accelerometer. In this study, all experiments were car-
ried out with the roving impact hammer. The beams were ex-
cited by a moving hammer from Sinocera Piezotronics, Inc.
(Yangzhou, China) with a plastic tip and a force transducer
(with the sensitivity of 4 pC/N and a load range of 0–2000 N)
at 17 points, equally spaced (every 30 mm) along the length
of the beam. The excitation points were numbered from 1
to 17, starting from the fixed end. An accelerometer from
Sinocera Piezotronics, Inc. with the weight of 28 g, sensitivity
of 50 pC/g, and a frequency range of 0.5–6000 Hz is mounted
at the opposite side of the 5th hammer excitation point (the
distance of 150 mm from the clamped end) to measure the re-
sponse of the beams. A SINOCERA dynamic signal analyser
(with 4 channels, but only 2nd and 3rd channel used) is used
to acquire the frequency response functions between force and
the accelerations, as shown in Fig. 8(b). The square and expo-

Figure 8. Photographs of (a) the cantilever beams; (b) experiment setup in the
laboratory.

Figure 9. The interpolated mode shapes for the beam (a) with one crack at
255 mm, and (b) with two cracks at 150 mm and 300 mm.

nential windows were used to filter the force and acceleration
signals, respectively. Three measurements were taken for each
impact location to help minimize variance errors. Finally, the
post-processing software (N-MODAL) was used to obtain the
modal parameters such as natural frequencies, damping ratios,
and mode shapes. N-MODAL software contains two built-in
curve-fitting methods: Peak Fit and Polynomial Fit. The Poly-
nomial Fit method was used to extract the experimental modal
parameters.

5.2. Experimental Results
In brief, only the second measured modes of the beam with

one and two cracks are used to extract the irregularity profile
R2. Notice that there are only 17 experimental measurement
points, and if the high-pass filter is directly implemented, many
points of the sample data would be detected as singularities. In
this study, a cubic spline interpolation technique is applied to
smooth the transition from one point to another. As a result, a
total number of 200 interpolated points is obtained. Figure 9
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Table 1. The first four dimensionless natural frequencies Ω(n) for a two-cracks beam under different boundary conditions (crack location R1 = 0.1, R2 = 0.4;
crack depth r1 = 0.1, r2 = 0.15).

Stiffness of springs (Boundary conditions) Mode index
KT0 KR0 KTJ KRJ 1 2 3 4

10 20 100 200 2.602601 4.221255 6.381824 9.281358
400 300 200 100 4.054168 5.662266 7.367550 9.749038
700 600 150 50 3.980091 5.712174 7.701976 9.916163

1000 1000 1000 1000 4.518749 6.915724 8.752670 10.635948

Figure 10. The irregularity profile R2 for the beam with one crack at 255 mm.

Figure 11. The irregularity profile R2 for the beam with two cracks at 150 mm
and 300 mm.

shows the interpolated mode shapes of the beam.

By using 3rd-order high-pass Butterworth filter, the irreg-
ularity profiles R2 for the mode shapes shown in Fig. 9 are
obtained and presented in Figs. 10 and 11. From Figs. 10 and
11, it can be seen that the largest peak values appear at the
crack locations. This means that the proposed method based
on high-pass filters can successfully detect the damage in ac-
tual tests.

6. CONCLUSIONS

In this study, the vibration of Euler-Bernoulli beams un-
der different boundary conditions with an arbitrary number
of cracks are analysed in a recursive way based on the Ado-
mian decomposition method (ADM). Then the high-pass fil-
ters are introduced to detect the damage for beams under dif-
ferent boundary conditions. In this method, the mode shapes
can be filtered and their irregularities due to damage are ex-
tracted. Furthermore, it is possible to determine the depth of
a crack in beams by the peak value at the crack location of
the irregularity profile. The main advantage of the proposed
method is that the information of the undamaged structure is
not required. To further validate the proposed method, the ex-
perimental damage detection was investigated using two alu-
minium cantilever beams with one and two cracks, respec-
tively. The results demonstrate favourable feasibility and ef-
fectiveness of the proposed damage detection method.
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The present work analyses the vibration behaviour of non-homogeneous orthotropic visco-elastic rectangular plate
of parabolically varying thickness on the basis of classical plate theory when the all edges are clamped and are
subjected to linearly thermal variation. For non-homogeneity of the plate material it is assumed that the density of
the plate material varies parabolically along the x-direction. For visco-elastic materials, basic elastic and viscous
elements are combined. The Kelvin model for visco-elasticity is considered here, which is a combination of elastic
and viscous elements connected in parallel. Using the separation of variable method, the governing differential
equation has been solved. The time period and deflection corresponding to the first two modes of vibrations of
clamped plates have been calculated for different values of thermal gradients, non-homogeneity constants, taper
constants, and aspect ratio, with the help of Rayleigh-Ritz techniques, and are shown by graphs.

1. INTRODUCTION

The thermal effect of non-homogenous viscoelastic plates
on vibration is of great interest in the field of engineering, with
applications such as improved designing of gas turbines, jet
engines, space craft, and nuclear power projects, where met-
als and their alloys exhibit visco-elastic behaviour. Therefore,
for these reasons, such structures are exposed to high-intensity
heat fluxes, and thus the material properties undergo signifi-
cant changes. In particular, the thermal effect of elasticity of
the material on the modules cannot be taken as negligible.

Space technology is developing very rapidly in the present
era, and the importance of studying the vibration of plates of
certain aspect ratios with some simple restraints on the bound-
aries has increased. The motors of rockets and aircraft in
cold regions are developed with the use of soft filaments in
aerospace structure supported with elastic or visco-elastic me-
dia. When finalising a design, a construction engineer should
understand the first few modes of vibration, as they are signif-
icant.

Plates of variable thickness have been extensively used in
civil, electronic, mechanical, aerospace, and marine engineer-
ing applications. The practical importance of such plates has
made vibration analysis essential, especially since the vibra-
tory response needs to be accurately determined in the design
process in order to avoid resonance excited by internal or ex-
ternal forces.

The plate type’s structural components in aircraft and rock-
ets have to operate under elevated temperatures that cause non-
homogeneity in the plate material, i.e. elastic constants of the
materials become functions of space variables. An up-to-date
survey of the research in this area shows that authors have

come across various models to account for non-homogeneity
of plate materials, and many researchers have proposed deal-
ing with vibration. However, none of them consider non-
homogeneity with a thermal effect on orthotropic visco-elastic
plates of parabolically varying thickness.

The term vibration describes repetitive motion that can be
measured and observed in a structure. Unwanted vibration
can cause fatigue or degrade the performance of the structure.
Therefore, it is desirable to eliminate or reduce the effects of
vibration. In other cases, the goal may be to understand the
effect of vibration on the structure, to control or modify the
vibration, or to isolate it from the structure and minimise the
structural responses.

Vibration can be sub-categorised, such as free versus forced
vibration, sinusoidal versus, and linear versus rotation-induced
vibration. Free vibration is the natural response of a structure
to some impact or displacement. The response is completely
determined by the properties of the structure, and its vibra-
tion can be understood by examining the structures mechan-
ical properties. For example, when we pluck the string of a
guitar, it vibrates at the tuned frequency and generates the de-
sired sound. The frequency of the tone is a function of the
tension in string and is not related to the plucking technique.

A great deal of research informs the study presented here.
Laura, et al. discussed transverse vibrations of rectangular
plates with thickness varying in two directions and with edges
elastically restrained against rotation.1 Leissas monograph2

contains an excellent discussion of the subject of vibrating
plates with elastic edge support. Gupta and Singhal discussed
the effect of non-homogeneity on the thermally-induced vi-
bration of an orthotropic visco-elastic rectangular plate of lin-
early varying thickness.3 Lal has studied the transverse vibra-
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tions of orthotropic non-uniform rectangular plates with con-
tinuously varying density.4 Sobotka examined the free vibra-
tion of visco-elastic orthotropic rectangular plates.5 Singh and
Saxena analysed the transverse vibration of rectangular plates
with bi-directional thickness variation.6 Bambill, et al. stud-
ied the transverse vibrations of an orthotropic rectangular plate
of linearly varying thickness and a free edge.7 Tomar and
Gupta solved the vibration problem of an orthotropic rectan-
gular plate of varying thickness subjected to a thermal gradi-
ent.8–10

Gupta, et al. discussed the vibration of non-homogeneous
circular plate of nonlinear thickness variation by a quadrature
method.11 Gupta and Kumar studied the effect of exponen-
tial temperature variation on vibration of orthotropic rectangu-
lar plate with linearly thickness variation in both directions.12

Gupta, et al. solved the problem of thermal effect on vibra-
tion of non-homogeneous orthotropic rectangular plate hav-
ing bi-directional parabolically varying thickness.13 Gupta and
Khanna discussed vibration of viscoelastic rectangular plate
with linearly thickness variations in both directions.14 Laura
and Gutierrez discussed vibration analysis of a rectangular
plate subjected to a thermal gradient.15 Gupta and Khanna
solved the problem of vibrations of clamped visco-elastic rect-
angular plate with parabolic variable thickness.16 Effect of
thermal gradient on free vibration of clamped visco elastic
plate was discussed by Gupta and Kaur.17 Finally, Gupta and
Kumar studied the thermal effect on vibration of orthotropic
rectangular plate with parabolic thickness variations.18

The analysis presented in this chapter studies the effect of
parabolic non-homogeneity on thermally-induced vibration of
an orthotropic visco-elastic rectangular plate of parabolically
varying thickness. It is clamp-supported on all four edges. The
assumption of small deflection and linear orthotropic visco-
elastic properties are made. It is further assumed that the visco-
elastic properties of the plate are of the Kelvin type. The time
period and deflection for the first two modes of vibration are
calculated for the various values of thermal constants, non-
homogeneity constants, aspect ratio, and taper constants. The
results are shown graphically.

2. ANALYSIS

The equation of motion of a visco-elastic rectangular plate
of variable thickness is as follows:3[

Dx
∂4W
∂x4 +Dy

∂4W
∂y4 + 2H ∂4W

∂x2∂y2 + 2∂H
∂x

∂3W
∂x∂y2

+2∂H
∂y

∂3W
∂x2∂y + 2∂Dx

∂x
∂3W
∂x3 + 2

∂Dy

∂y
∂3W
∂y3 + ∂2Dx

∂x2
∂2W
∂x2

+
∂2Dy

∂y2
∂2W
∂y2 +

∂2D′
1

∂x2
∂2W
∂y2 +

∂2D′
1

∂y2
∂2W
∂x2 + 4

∂2Dxy

∂x∂y
∂2W
∂x∂y

]
−ρhp2W = 0;

(1)

and
T̈ + p2D̃T = 0; (2)

where Eqs. 1 and 2 are the differential equations of motion for
an orthotropic plate of variable thickness, and the time func-
tion for visco-elastic orthotropic plate for free vibration, re-
spectively. Here, p2 is a constant, and H = D′1 + 2Dxy ,

Dx = Exh
3

12(1−vxvy)
, is called the flexural rigidity of the plate in

x-direction,
Dy =

Eyh
3

12(1−vxvy) , is called the flexural rigidity of the plate in
y-direction,
Dxy =

Gxyh
3

12 , is called the torsion rigidity,
D′1 = vxDy(= vyDx), D̃ is the Rheological operator, Ex and
Ey are the modules of elasticity in x- and y-directions, respec-
tively, vx and vy are the Poisson ratios, and Gxy is the shear
modulus.

The study assumes steady, one-dimensional temperature dis-
tribution along the length, i.e. the x-direction, for the plate as

τ = τ0

(
1− x

a

)
; (3)

where τ denotes the temperature excess above the reference
temperature at any point at distance x

a , and τ0 denotes the tem-
perature excess above the reference temperature at the end, i.e.
x = a.

The temperature dependence of the modulus of elasticity for
most engineering materials can be expressed in the following
form:

Ex = E1(1− γτ),
Ey = E2(1− γτ),
Gxy = G0(1− γτ)

 . (4)

Here, E1 and E2 are values of the Youngs moduli, respec-
tively, along the x- and y-axis at the reference temperature, i.e.
at τ = 0, and γ is the slope of the variation of the modulus of
elasticity with τ .

Thus, the modulus variation becomes

Ex(x) = E1[1− α(1− x/a)],
Ey(x) = E2[1− α(1− x/a)],
Gxy(x) = G0[1− α(1− x/a)]

 ; (5)

where α = γτ0(0 ≤ α < 1), a parameter known as thermal
gradient.

The expression for the strain energy V and kinetic energy P
in the plate are:2

V =
1

2

∫ a

0

∫ b

0

[
Dx(W,xx)

2
+Dy(W,yy)

2

+ 2D1W,xxW,yy + 4Dxy(W,xy)
2
]
dxdy; (6)

P =
1

2
p2
∫ a

0

∫ b

0

ρhW 2dxdy. (7)

This study assumes that the thickness and density both vary
parabolically in the x-direction, respectively; therefore, one
can take

h = h0

{
1 + β(x/a)

2
}

; (8)

and
ρ = ρ0{1 + α1(x/a)2}; (9)

where β is the taper constant and α1 is the non-homogeneity
constant.
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3. SOLUTION AND FREQUENCY EQUATION

The Rayleigh-Ritz technique has been utilised here for find-
ing the solution. This method requires that the maximum strain
energy must be equal to the maximum kinetic energy. So, it is
necessary for the problem under consideration that

δ(V − P ) = 0; (10)

for arbitrary variations of W , satisfying the relevant geometri-
cal boundary conditions, which are

W = W,x = 0 at x = 0, a,

W = W,y = 0 at y = 0,b; (11)

and the corresponding two-term deflection function is taken as
follows:3

W =[(x/a)(y/b)(1− x/a)(1− y/b)]2

[A1 +A2(x/a)(y/b)(1− x/a)(1− y/b)]. (12)

The non-dimensional variables are

X = x/a, Y = y/a,

W̄ = W/a, h̄ = h/a,

ρ̄ = ρ/a

E1
∗ = E1/(1− νxνy),

E2
∗ = E2/(1− νxνy),

E∗ = νxE2∗ = νyE1
∗. (13)

By using Eqs. 5, 8, 9, and 13 in Eqs. 6 and 7, one gets

P =
1

2
ρop

2h̄oa
5

∫ 1

0

∫ b/a

0

[
(1+α1X

2)(1+βX2)W̄ 2
]
dXdY ;

(14)
and

V = R

∫ 1

0

∫ b/a

0

[
{1−α(1−X)}(1 + βX2)3{(W ,XX)2

+ (E2
∗/E1

∗)(W ,Y Y )2 + (2E∗/E1
∗)W ,XXW ,Y Y

+ (4Go/E1
∗)(W ,XY )2}

]
dXdY ; (15)

where
R =

1

2
(E1 ∗ h̄o

3
/12)a. (16)

Upon substituting the values of P and V from Eqs. 14 and 15
into Eq. 10, we get (

V1 − λ2p2P1

)
= 0 (17)

V1 =

∫ 1

0

∫ b/a

0

[
{1−α(1−X)}(1 + βX2)3{(W ,XX)2

+ (E2
∗/E1

∗)(W ,Y Y )2 + (2E∗/E1
∗)W ,XXW ,Y Y

+ (4Go/E1
∗)(W ,XY )2}

]
dXdY ; (18)

and

P1 =

∫ 1

0

∫ b/a

0

[
{1+α1X

2)}(1 + βX2)W̄ 2
]
dXdY ; (19)

where

λ2 =
12a4ρo

E1
∗h̄o

2 . (20)

Eq. 17 involves the unknowns A1 and A2, arising due to the
substitution of W (x, y) from Eq. 12. These two constants are
to be determined from Eq. 17, as follows:

∂

∂An
(V1 − λ2p2P1) = 0, where n = 1, 2. (21)

Upon simplifying Eq. 21 we get

bn1A1 + bn2A2 = 0; (22)

where n = 1, 2, and bn1, bn2 involves parametric constants
and the frequency parameter p. For a non-trivial solution, the
determinant of the coefficient of Eq. 22 must be zero. So, we
get the frequency as follows:∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ = 0. (23)

Upon solving Eq. 23, one gets a quadratic equation in p2,
which gives two values of p2. Upon substituting the value of
A1 = 1, by choice, into Eq. 12, one gets A2 = −b11/b12, and
hence W becomes

W =[XY
a

b
(1−X)(1− Y a

b
)]2

[1 + (−b11
b12

)XY (
a

b
)(1−X)(1− Y a

b
)]. (24)

4. TIME FUNCTION OF VIBRATION OF
VISCO-ELASTIC PLATES

The expression for the time function of free vibrations of
visco-elastic plates of variable thickness can be derived from
Eq. 2, which depends upon the visco-elastic operator D̃, and
which for Kelvins Model, can be taken as follows:

D̃ ≡
{

1 +
( η
G

)( d

dt

)}
; (25)

where η is the visco-elastic constant and G is the shear mod-
ulus. Assuming that the temperature dependence of the visco-
elastic constant η and the shear modulus G are in the same
form as that of Youngs moduli, we have

G(τ) = G0(1− γ1τ), η(τ) = η0(1− γ2τ); (26)

whereG0 is the shear modulus, and η0 is the visco-elastic con-
stant at some reference temperature, i.e. at τ = 0, γ1 and γ2
are the slope variation of τ with G and η, respectively. Substi-
tuting the value of τ from Eq. 3, and using Eq. 13 in Eq. 26,
one gets the following:

G = G0[1− α5(1−X)], where α5 = γ1τ0, 0 ≤ α5 < 1

η = η0[1− α4(1−X)], where α4 = γ2τ0, 0 ≤ α4 < 1.
(27)

Here, α4 and α5 are thermal constants.
After using Eq. 25 in Eq. 2, one obtains the following:

T̈ + p2kṪ + p2T = 0; (28)
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Figure 1. Variation of time period with thermal gradient of visco-elastic non-
homogeneous orthotropic rectangular plate of linearly varying thickness.

where

k =
η

G
=

η0[1− α4(1−X)]

G0[1− α5(1−X)]
. (29)

Equation 28 is a differential equation of the second order for
time function T . The solution of Eq. 28 will be

T (t) = ea1t[C1 cos b1t+ C2 sin b1t]; (30)

where
a1 = −p2m/2; (31)

b1 = p

√
1− (pm/2)

2
; (32)

andC1 ,C2 are constants, which can be determined easily from
the initial conditions of the plate. This study assumes the initial
conditions as

T = 1 and T = 0 at t = 0. (33)

Using Eq. 33 in Eq. 30, one obtains

C1 = 1 and C2 = −a1/b1. (34)

One has the equation

T (t) = ea1t[cos b1t+ (−a1/b1) sin b1t]; (35)

after using Eq. 34 in Eq. 30. Thus, the deflection of the vibrat-
ing mode w(x, y, t), which is equal to W (x, y)T (t), may be
expressed as

w =[XY (a/b)(1−X)(1− Y a/b)]2

[1 + (−b11/b12)XY (a/b)(1−X)(1− Y a/b)]
×[ea1t{cos b1t+ (−a1/b1) sin b1t}]; (36)

by using Eq. 24 and Eq. 35. The time period of the vibration
of the plate is given by the following:

K = 2π/p; (37)

where p is the frequency given by Eq. 23.

Figure 2. Variation of time period with taper constant of visco-elastic non-
homogeneous orthotropic rectangular plate of linearly varying thickness.

5. NUMERICAL EVALUATIONS

The values of the time period (K) and the deflection (w)
(at two different instants of time) for a clamped visco-elastic
orthotropic non-homogeneous rectangular plate for different
values of the taper constant β, thermal gradients (α, α4, α5),
the non-homogeneity constant α1, and the aspect ratio a/b at
different points for first two modes of vibrations have been cal-
culated.

The following orthotropic material parameters have been
taken as2

• E∗2/E∗1 = 0.32

• E∗/E∗1 = 0.04

• G0/E
∗
1 = 0.09

• η0/G0 = 0.000069

• ρ0 = 3 × 105 (mass density per unit volume of the plate
material)

The thickness of the plate at the centre is taken as h0 =
0.01 meter.

6. RESULTS AND DISCUSSION

The numerical results for a visco-elastic orthotropic non-
homogeneous rectangular plate of parabolically varying thick-
ness have been computed with accuracy by using latest com-
puter technology. Computations have been made for calcu-
lating the time period K and deflection W (at two different
instants of time) for different values of the taper constant β,
thermal constants (α, α4, α5), non-homogeneity constant α1,
and the aspect ratio a/b at different points for first two modes
of vibration. All these results are presented in Figs. 1 – 8. A
comparison is made with the authors previous work3 for a uni-
form plate, and is found to be in very close agreement.
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Figure 3. Variation of time period with non homogeneity constant of visco-
elastic non-homogeneous orthotropic rectangular plate of linearly varying
thickness.

• Figure 1 shows the results of the time period (K) for dif-
ferent values of the thermal gradient (α), and the fixed
taper constant β = 0.0 and aspect ratio a/b = 1.5 for
two values of the non-homogeneity constant (α1); i.e.
α1 = 0.0 and α1 = 0.4 for the first two modes of vi-
bration.

• Figure 2 shows the results of the time period (K) for
different values of the taper constant (β), and the fixed
thermal gradient α1 = 0.0 and aspect ratio a/b = 1.5
for two values of the non-homogeneity constant (α1); i.e.
α1 = 0.0 and α1 = 0.4 for the first two modes of vibra-
tion.

• Figure 3 shows the results of the time period (K) for first
two modes of vibration for different values of the non-
homogeneity constant (α1), aspect ratio (= 1.5), and four
combinations of the taper constant (β) and thermal gradi-
ent (α); i.e.
β = 0.0, α = 0.0
β = 0.0, α = 0.8
β = 0.6, α = 0.0
β = 0.6, α = 0.8
It can be seen that time period (K) increases when the
non-homogeneity constant (α1) increases for first two
modes of vibration.

• Figure 4 shows the results of the time period (K) for dif-
ferent aspect ratios (a/b), and four combinations of the
thermal gradient (α), the taper constant (β), and the non-
homogeneity constant (α1); i.e.
α = 0.8, β = 0.6, α1 = 0.0;
α = 0.8, β = 0.6, α1 = 0.4;
α = 0.0, β = 0.0, α1 = 0.0;
α = 0.8, β = 0.0, α1 = 0.4
It can be seen that time period (K) decreases when aspect
ratio (a/b) increases for first two modes of vibration.

• Figure 5 – 8 show the result of deflection for the first two

Figure 4. Variation of time period with non aspect ratio of visco-elastic non-
homogeneous orthotropic rectangular plate of linearly varying thickness.

Figure 5. Deflection w vs X of visco-elastic non homogeneus orthotropic
rectangular plate of linearly varying thickness at initial time 0.K.

Figure 6. Deflection w vs X of visco-elastic non homogeneus orthotropic
rectangular plate of linearly varying thickness at time 0.K.

modes of vibration for differentX , Y , and fixed aspect ra-
tio a/b = 1.5 for the initial time 0.K and time 5.K for the
following combination of thermal gradients (α, α4, α5),
the taper constant β, and the non-homogeneity constant
α1.

• Figure 5: α = 0.0, β = 0.6, α1 = α4 = α5 = 0.0,
and the time is 0.K.

• Figure 6: α = 0.8, β = 0.6, α1 = α4 = α5 = 0.0,
and the time is 0.K.
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Figure 7. Deflection w vs X of visco-elastic non homogeneus orthotropic
rectangular plate of linearly varying thickness at time 5.K.

Figure 8. Deflection w vs X of visco-elastic non homogeneus orthotropic
rectangular plate of linearly varying thickness at time 5.K.

• Figure 7: α = 0.0, β = 0.0, α1 = 0.0, α4 =
0.3, α5 = 0.2, and the time is 5.K.

• Figure 8: α = 0.8, β = 0.6, α1 = 0.4, α4 =
0.3, α5 = 0.2, and the time is 5.K.
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This paper investigates and characterises the major fault detection signal features and techniques for the diagnostics
of rotating element bearings and air leakage faults in high-speed centrifugal blowers. The investigation is based on
time domain and frequency domain analysis, as well as on process information, vibration, and acoustic emission
fault detection techniques. The results showed that the data analysis method applied in this study is effective, as
it yielded a detection accuracy of 100%. A lookup table was compiled to provide an integrated solution for the
developer of Condition-Based Monitoring (CBM) applications of centrifugal blowers. The major contribution of
this paper is the integration and characterisation of the major fault detection features and techniques.

1. INTRODUCTION

Condition-Based Monitoring (CBM) is a strategy aimed at
extending machine life, lowering maintenance cost, and in-
creasing both productivity and profitability.1 Unlike preven-
tative maintenance, which is based on servicing a machine at
scheduled intervals, CBM relies upon actual machine health
condition to diagnose faults and to determine when the main-
tenance is required. The specific advantage of condition mon-
itoring is that potential degradation or failure can be detected.
This technique enables the user to take maximum advantage
of the useful life of a component, such as a bearing, since the
equipment can be left in service if its operational performance
meets the desired performance standards.2

Centrifugal compressors are widely used in the industry, and
in particular in the oil and gas industries, as they compress the
propane and mixed refrigerants in the liquefaction process. A
15 HP industrial centrifugal blower was employed for the emu-
lation of high-speed centrifugal blowers. Due to the similarity
between centrifugal blowers and centrifugal compressors,3 this
work can be extended to centrifugal compressors and centrifu-
gal equipment.

The global structure of the generally used monitoring sys-
tem can be divided into three main sections: The first phase
is data collection, with data reports gathered in a digital form.
The second phase is acquisition, which entails calculation of
the statistical values and functions in time and frequency do-
main with integrated data reduction by fault and operational

pattern. The more difficult third phase of automatic fault diag-
nostics is still under development and permanently adapted to
the necessities of industrial applications, mainly dependent on
the acting personnel at the monitoring system.4

Machine condition, machine faults, and on-going damage
can be identified in operating machines by fault symptoms and
signatures. Mechanical vibration, acoustic emission (AE), and
process information are the three major fault detection tech-
niques in addition to monitoring changes in process operat-
ing parameters, such as pressure, temperatures, and efficiency.
Thus, this study will provide a characteristics investigation
based on these major techniques, which should be included in
any full capabilities condition-based maintenance system. In-
tegrating these techniques can yield early detection and trend-
ing of numerous equipment faults. Moreover, it could have a
potential to reduce false alarms due to noise and fault interfer-
ence issues.

Vibrations of machines are the results of the dynamic forces
due to moving parts and structures (for example, foundations),
which are interlinked to the machine and its mechanical prop-
erties. All machine components generate specific vibration
signatures which are then transmitted to the machine’s struc-
ture. Vibration analysis detects repetitive motions of a sur-
face on rotating or oscillating machines. The repetitive mo-
tions may be caused by unbalance, misalignment, resonance,
electrical effects, rolling element bearing faults, or many other
problems. The various vibration frequencies in a rotating ma-
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chine are directly related to the geometry and the operating
speed of the machine. By knowing the relationship between
the frequencies and the types of defects, vibration analysts can
determine the cause and severity of faults or problem condi-
tions. The history of the machine and the previous degradation
pattern are important factors in determining the current and fu-
ture operating condition of the machine. Frequency, displace-
ment, velocity acceleration, and phase angle are the major five
characteristics of rotating machine vibration.5

Unlike the mechanical vibration technique, the AE tech-
nique is less affected by noise and detects faults such as friction
in bearing in their early stages. All rotating equipment pro-
duces frictional forces with high frequency ultrasonic signa-
tures, which are often masked by ambient plant noise and low
frequency vibrations.6 As the defect size increased, acoustic
emission, root mean square, maximum amplitude, and kurto-
sis values increased; however, observations of corresponding
parameters from vibration measurements were disappointing.7

For rotating machinery, the most commonly measured AE
parameters for diagnostics are amplitude, RMS, energy, kur-
tosis, crest factor, counts, and events. Observations of the
frequency spectrum, whilst informative for traditional non-
destructive evaluation, were found to have a limited success
in machinery monitoring. This is primarily due to the broad
frequencies associated with the sources of generation of AE in
rotating machinery. For example, the transient impulse associ-
ated with the breakage of contacting surface asperities experi-
encing relative motion will excite a broad frequency range.6

The process parameters such as pressure, temperature, vi-
bration, and flow rate, and material samples such as oil and
air are also used to monitor machine conditions. With these
parameters and samples, condition-based maintenance obtains
indications of system and equipment health, performance, and
integrity, and provides information for scheduling timely cor-
rection.8

Tandon and Nakra investigated AE counts and peak ampli-
tudes for an outer race defect using a resonant type transducer.
It was concluded that AE counts increased with increasing load
and rotational speed. However, it was observed that AE counts
could only be used for defect detection when the defect was
less than 250 µm in diameter, though AE peak amplitude pro-
vided an indication of defects irrespective of the defect size.8

Rogers utilised the AE technique for monitoring slow rotating
anti-friction slew bearings on cranes employed for gas produc-
tion, and obtained encouraging results compared to vibration
monitoring techniques. Rubbing of the crack faces, grinding
of the metal fragments in the bearing, and impacts between the
rolling elements and the damaged parts in the loaded zone were
identified as sources of detectable AE signatures. The author
stated that “because of the slow rotational speed of the crane,
application of conventional vibration analysis (0–20 kHz) was
of limited value for on-line condition monitoring.” AE reso-
nant transducers between 100 kHz and 300 kHz were found to
be informative for online monitoring of bearings using kurto-
sis at different frequency bands.9 Wang and Hu investigated
uncertainties and ambiguities that exist between pump fault
symptoms and the events using a spectral features-based tech-
nique. The research resulted in an effective approach to solve
the problem of fault diagnostics. Fuzzy logic was used to
model the uncertainty and ambiguity relationship among dif-
ferent faults, analyse the fuzzy information that existed in the

Figure 1. Two frequency spectra represent (a) sample fault, (b) second fault
with the same sample fault on the second inlet valve.10

different phases of fault diagnostics and condition monitoring
of the pump, and classify frequency spectra that represented
various pump faults.10 The author concluded that the condi-
tion recognition and fault diagnostics were detected through
the fuzzy comprehensive discrimination according to the de-
fuzzy diagnostic criteria. Two vibration spectra for the faulty
device are shown in Fig. 1. Schultheis, et al. studied different
techniques used in machine heath condition monitoring of mo-
tors. They compared the online versus periodic monitoring and
proven versus effective techniques. The following techniques
were found to be effective: ultrasound vibration, mechanical
vibration, temperature, rod run out, and pressure velocity mea-
surements. For gas leaks, ultrasonic vibration measurement
was preferable to mechanical vibration. The online monitoring
was effective in decreasing the chance of catastrophic failures,
as well as maintenance and shutdown costs.11

Based on the above research, the AE, vibration, and process
information are the most utilised CBM techniques. It can be
also concluded that the acoustic emission technique proved its
effectiveness over other techniques for CBM of rotating equip-
ment. The utilisation of the multi-fault detection technique
maximises the efficiency and accuracy of diagnosing faults.
The fault detection technique must be properly selected based
on the fault type.

This paper is divided into eight sections. The first section
provides an introduction to CBM and fault detection tech-
niques. Section two describes the methodology employed in
this study. Section three illustrates the experimental setup,
while section four shows the design of the experiment. Section
five presents the results of the fault diagnostic using the major
fault detection techniques. Section six presents the developed
lookup table, which summarizes the results of the character-
istics investigation. Section seven discusses the results, and
section eight concludes the results of the study.

2. METHODOLOGY

Three major fault detection techniques, in addition to five
time domain and frequency domain signal features, will be
investigated and compared with respect to their capability of
diagnosing a centrifugal air blower’s faults using a 15 HP in-
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dustrial air blower system, high-speed NI DAQ system, broad
frequency range AE sensor, vibration sensor, and a pressure
sensor.

This paper will utilise a recent Fast Fourier Transform
(FFT)-based segmentation and features selection algorithm in
the selection of best spectral feature sets.12 A “lookup table”
will then be developed to characterise the major fault detection
techniques and signal analysis methods for the condition-based
monitoring of centrifugal blowers. The table will combine in-
formation from several fault detection techniques, including
AE vibration, pressure, crest factor, energy factor, RMS, am-
plitude, and spectral features. This approach is found to have
great potential for the development of CBM systems for typical
centrifugal equipment and improves the accuracy of detection
compared with the use of a single fault detection technique.

3. EXPERIMENTAL SETUP

Experimental tests were conducted in a laboratory environ-
ment hosted by Qatar University using a Paxton AT1200 in-
dustrial single-stage centrifugal air blower system. The blower
has a maximum flow rate of 800 CFM @70” W/C. Figure 2
shows the single-stage centrifugal blower.

The air blower system consists of a 15 HP DC motor, a DC
inverter for motor speed control, a 4” hose, a 4” air flow control
valve, and a centrifugal air blower. Four factory calibrated AE
sensors from Physical Acoustics were utilised to measure the
acoustic signals, along with two low frequency range sensors
with an operating range of 35–100 kHz (Model: R6a) and two
high frequency range sensors with an operating range of 100–
1000 kHz (model: UT1000). The AE sensors were positioned
as close as possible to the bearings, as shown in Figs. 3 and 4.
However, the AE sensor can measure any frequency outside its
operating bandwidth, but with less sensitivity. A 70 g triax-
ial vibration sensor was positioned midway between the shaft
bearings, and a pressure sensor was installed in the outlet pipe
and was positioned 50 cm away from the outlet of the blower.

The schematic of the experimental setup is shown in Fig. 4.
The AE sensors were attached to signal conditioners and pro-
grammable low pass filters with isolated grounds to combat
the problem of aliasing in sampling signals. A cut-off fre-
quency of 200 kHz was set to attenuate high frequency AE
signals. The models of bearings A and B are DKT-7203BMP
and FAG-2203TV, respectively. The data was collected using
an MSeries- PCI 6250 National Instruments data acquisition
board with 16 channels, 16-bit resolution, and a 1.25 MS/s
sampling rate.

4. DESIGN OF EXPERIMENT

Bearing problems account for over 40% of machine break-
downs.8 Thus, this experimental work focuses on bearings
faults in centrifugal blowers, and investigates the issue of fault
interference, as well. Typical causes of bearing faults are ex-
cessive load, overheating, false brinelling, true brinelling, nor-
mal fatigue failure, reverse loading, contaminations, lubricant
failure, corrosion, misalignment, loose fits, and tight fits.13

Two typical bearing failure modes were selected to evaluate
the addressed detection techniques — true brinelling and nor-
mal fatigue failures. Brinelling occurs when loads exceed the

Figure 2. Single stage centrifugal blower.

Figure 3. Positions of AE sensors.

elastic limit of the ring material. Brinell marks show as inden-
tations in the raceways, and these increase bearing vibration
(noise). Severe brinell marks can cause premature fatigue fail-
ure. Fatigue failure, usually referred to as spalling, is the frac-
ture of the running surfaces and subsequent removal of small
discrete particles of material. Spalling can occur on the inner
ring, outer ring, or balls.13

Figure 5 illustrates the faults in bearings A and B. Bear-
ing A has a 2 mm throughout hole in the outer race to em-
ulate a brinelling fault, while bearing B has four notches in
both sides with a maximum notch width of 1.5 mm to em-
ulate a fatigue fault. Five Machine Conditions (MC) were
emulated at an ambient temperature of 22oC as shown in Ta-
ble 1. Several tests were conducted under three different opera-
tional speeds to check the functionality and proper installation
of sensors using the experimental setup shown in Fig. 3. To
control the speed-related risks, the speed was increased from
3,600 to 6,960 RPM, and then to 15,650 RPM. The R6a sen-
sor, which was directly positioned above bearing A, gave the
highest reading at 15,650 RPM. Hence, as the experiment was
designed to have only one AE sensor, the bearing A R6a sensor
was selected for its proper installation and high sensitivity. In
this study, the measured AE frequencies ranged from 2 kHz to
121 kHz.

Five experiments were conducted in a laboratory at the
maximum blower rotational speed of 15,650 RPM (maximum
power). The operating point of the blower was set to maximum
to emulate industrial air blower systems. The first experiment
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Figure 4. The schematic of the experimental setup.

Table 1. Machine health conditions.

Machine Bearing A Bearing B Air leakageCondition
MC 1 Healthy Healthy No
MC 2 Healthy Healthy Yes
MC 3 Outer race defect Healthy No
MC 4 Healthy Outer race defect No
MC 5 Outer race defect Outer race defect No

emulated the healthy condition, the second experiment emu-
lated the air leakage problem, and the remaining experiments
emulated the three bearing fault conditions. Faults emulated
in MC 5 are a combination of MC 3 and MC 4 faults. The
flow control valve was partially closed to maintain an outlet
air pressure of 1.165 BarA. To emulate the air leakage problem
(MC 2), the control valve was set to fully open. The majority
of air leakages occur because of either a crack in blower case,
rapture in hose, or a joint failure. The data were sampled using
the high speed NI DAQ board at a sampling rate of 1 MS/s for
a time period of 187 seconds. For each of the five conditions,
10 data sets were collected at a fixed time interval of 13 second
(one set every 13 second). Each data set had a size of 1×106

samples and a sampling rate of 1 MHz. The first samples for
the five machine conditions were taken 60 seconds after the
blower reached its full rotation speed. Fifty percent of the 50
data set were used for training while the remaining sets were
used for testing.

5. FAULT DIAGNOSTIC USING MAJOR
FAULT DETECTION TECHNIQUES

In this section, the fault detection capabilities of the three
major fault detection techniques14 are investigated and as-
sessed for the diagnostics of typical centrifugal blowers’ faults,
namely Acoustic Emission (AE), vibration, and process infor-
mation techniques.

5.1. Acoustic Emission Technique
The AE signals were measured using bearing A R6a AE

sensor. Four samples were collected for each machine condi-
tion. Matlab was used to calculate the following time domain
features: RMS, amplitude, crest factor, and energy. The fre-
quency domain was also utilized and the AE spectral features

(a) Bearing A

(b) Bearing B

Figure 5. Notches in the outer races of bearings A and B.

were extracted. Machine conditions were grouped into three
different groups. The first group includes MCs 1 and 2, the
second group includes MCs 3 and 5, and the third group in-
cludes MC 4 only.

Table 2 shows the RMS values of training sets. The RMS
values shown in Table 2 can be used to detect MC 1, MC 2,
MC 4, and group 2. The principal drawback of the AE RMS
feature is that it cannot be utilized for the detection of all ma-
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Table 2. AE RMS Values (V).

1 2 3 4 Min Max
MC 1 0.294 0.310 0.310 0.306 0.294 0.310
MC 2 0.342 0.352 0.325 0.321 0.321 0.352
MC 3 0.575 0.611 0.607 0.603 0.575 0.611
MC 4 2.824 2.834 2.552 2.468 2.468 2.834
MC 5 0.713 0.593 0.470 0.457 0.457 0.713

Table 3. AE maximum amplitude values (V).

1 2 3 4 Min Max
MC 1 1.347 1.445 1.389 1.273 1.273 1.445
MC 2 1.917 2.037 1.564 1.635 1.564 2.037
MC 3 4.622 4.494 4.520 5.015 4.494 5.015
MC 4 10.512 10.555 10.207 9.979 9.979 10.555
MC 5 4.465 3.638 3.521 3.588 3.521 4.465

Table 4. AE crest factors.

1 2 3 4 Min Max
MC 1 4.585 4.662 4.486 4.165 4.165 4.662
MC 2 5.602 5.785 4.816 5.097 4.816 5.785
MC 3 8.044 7.351 7.449 8.319 7.351 8.319
MC 4 3.723 3.724 3.999 4.043 3.723 4.043
MC 5 6.262 6.137 7.493 7.845 6.137 7.845

chine conditions.
Table 3 shows the calculated signal maximum amplitudes

of the training sets. The Maximum amplitude feature can be
used to differentiate between all machine faults. For several
machine conditions, the maximum amplitude values are close
to each other, which will definitely affect the accuracy of de-
tection.

Table 4 presents the calculated crest factors of training sets.
The crest factor is equal to the RMS value divided by the max-
imum amplitude of the same signal. The crest factor feature
can be utilized to differentiate between MC 1, MC 2, MC 4,
and group 2. This time domain feature cannot be utilized for
the detection of all machine faults.

Table 5 displays the AE energy values of training sets. The
energy feature can be utilized to differentiate between MC 1,
MC 2, MC 4, and group 2. As the difference between the en-
ergy values of MC 1 and MC 2 is large, this time series feature
can be better utilized to differentiate between MC 1 and MC 2
which gives the energy feature a benefit over RMS, amplitude
and crest factor features. The main drawback is that the energy
feature cannot be utilized to detect all machine conditions.

Figure 6 illustrates the difference in the values of RMS, crest
factor, amplitude, and energy time domain AE signal features.
Although the energy feature is best in comparison to others,
it cannot be fully utilized to differentiate between condition 3
and 4.

An FFT-based segmentation and features selection algo-
rithm was utilized to check the suitability of AE spectral fea-
tures for the detection of machine conditions. The range of
the measured AE frequency was 2 kHz to 121 kHz. Moreover,
the algorithm investigated the segment sizes (number of divi-
sions) that can be utilized for pattern classification. The selec-

Table 5. AE energy values (J).

1 2 3 4 Min Max
MC 1 86,261 96,088 95,869 93,358 86,261 96,088
MC 2 117,079 124,004 105,439 102,940 102,940 124,004
MC 3 330,158 373,780 368,167 363,459 330,158 373,780
MC 4 7,973,092 8,031,877 6,514,243 6,093,149 6,093,149 8,031,877
MC 5 508,308 351,403 220,829 209,173 209,173 508,308

Figure 6. Graphical presentation for the AE RMS, amplitude, crest factor and
energy values.
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Table 6. Segmented FFT AE spectra.

S MC 1 MC 2 MC 3 MC 4 MC 5
121 kHz 0 1 0 1 0
120 kHz 0 1 0 1 0
119 kHz 1 1 1 1 1
118 kHz 0 0 1 1 1
117 kHz 1 1 0 1 1
116 kHz 1 1 0 1 1
115 kHz 0 1 0 1 1
114 kHz 0 1 1 1 1
113 kHz 0 1 1 1 1
112 kHz 0 1 1 1 1
111 kHz 0 1 1 1 1
110 kHz 0 1 1 1 1
109 kHz 0 1 1 1 1
108 kHz 1 1 1 1 1

107: 2 kHz 1 1 1 1 1
1 kHz 1 1 1 1 1

Table 7. AE crest factors.

1 2 3 4 Min Max
MC 1 1.663 1.655 1.633 1.629 1.629 1.663
MC 2 1.660 1.660 1.662 1.662 1.660 1.662
MC 3 1.872 1.853 1.828 1.823 1.823 1.872
MC 4 1.668 1.653 1.628 1.626 1.626 1.668
MC 5 1.685 1.668 1.636 1.630 1.630 1.685

tion of the most suitable maximum Segment size (S) depends
on the detection accuracy required.12 Table 6 shows the detec-
tion accuracy at different segment sizes where 0 means that the
fault cannot be detected at this maximum segment size, while 1
means that the fault can be detected. All machines conditions
were detected at a maximum segment size of 108 kHz and a
confidence level of 3. At this segment size, the AE frequency
spectrum was divided into two divisions; the first frequency
division ranged from 2 kHz to 108 kHz, while the second di-
vision ranged from 108 kHz to the maximum measured fre-
quency, 121 kHz. At a segment size of 1 kHz, all machine
conditions were successfully detected with a confidence level
of 93. At this segment size, the AE frequency spectrum was
divided into 119 equal divisions of 1 kHz each.

The confidence level is defined as the difference between
the highest number of matching features between the signal
features and the corresponding fault benchmark features, and
between the second highest number of matching features be-
tween the same signal features and another fault benchmark
features. The larger the value of the difference, the better con-
fidence level.12

5.2. Vibration Technique
Due to the high stiffness of the blower structure in the ver-

tical and horizontal directions, the vertical and horizontal vi-
bration signals were weak, and peak amplitudes were close to
each other. Hence, the axial vibration signals were found to be
more informative. The axial RMS vibration values of the train-
ing sets shown in Table 7 can be used only for the detection of
MC 3. All other machine conditions have very close RMS val-
ues, which prevents the use of this feature for the detection of
fault conditions of a centrifugal blower.

The maximum amplitudes of all vibration signals are almost
equal, and the maximum amplitude feature cannot be utilized
for the detection of faults. The vibration crest factors of the
four training sets can be utilized only for the detection of MC 3
(see Table 8). All other machine conditions have very close
crest factors, which prevents the use of this feature for the de-

Table 8. AE crest factors.

1 2 3 4 Min Max
MC 1 2.999 3.018 3.056 3.068 2.999 3.068
MC 2 3.003 2.999 3.008 2.992 2.992 3.008
MC 3 2.671 2.696 2.733 2.740 2.671 2.740
MC 4 2.994 3.023 3.066 3.073 2.994 3.073
MC 5 2.962 2.997 3.051 3.052 2.962 3.052

Table 9. AE crest factors.

1 2 3 4 Min Max
MC 1 922,397 913,554 889,123 884,541 884,541 922,397
MC 2 918,251 918,949 920,443 920,779 918,251 920,779
MC 3 1,167,622 1,144,503 1,114,004 1,107,512 1,107,512 1,167,622
MC 4 927,033 911,303 883,697 881,439 881,439 927,033
MC 5 946,480 927,465 892,592 885,805 885,805 946,480

Table 10. Segmented FFT vibration spectra.

S MC 1 MC 2 MC 3 MC 4 MC 5
10 Hz 1 1 1 1 1
110 Hz 1 1 1 1 1
210 Hz 1 1 1 1 1
310 Hz 1 0 1 1 1
410 Hz 1 0 1 1 1
510 Hz 1 0 1 0 1
610 Hz 1 1 1 1 0
710 Hz 0 0 1 0 0
810 Hz 1 1 1 1 1
910 Hz 1 1 1 1 0

1010 Hz 0 1 1 1 0
1110 Hz 0 1 1 1 0
1210 Hz 0 1 1 1 0
1310 Hz 0 0 1 1 0
1410 Hz 0 0 1 1 0
1510 Hz 0 0 1 0 0
1610 Hz 0 0 1 0 0
1710 Hz 0 0 1 0 1
1810 Hz 0 1 1 1 1
1910 Hz 0 1 1 1 1

tection of fault conditions of a centrifugal blower.
The calculated energy values of the training sets shown in

Table 9 can be utilized only for the classification of MC 3.
All other machine conditions have intersected values, which
prevents the use of this feature for the detection of machine
faults.

Figure 7 illustrates the difference in the values of RMS,
crest factor, and energy time domain vibration signal features.
Based on the values shown in Fig. 7, the vibration time do-
main features can be effectively utilized to detect MC 3. The
features of other machine faults interfered, however, and can-
not be utilized for detecting other machine faults such as MC 1,
MC 2, MC 4 and MC 5.

Table 10 shows the detectability of all machine conditions
at different segment sizes.12 All machine conditions were de-
tected at a Segment size (S) of 210 Hz and a confidence level
of 4. At segment sizes of 10 and 110 Hz, all machine condi-
tions were successfully detected. The confidence levels were
46 and 7, respectively.

5.3. Process Information Technique
The average pressure information was selected to be inves-

tigated as a major process information for centrifugal blow-
ers. A pressure sensor was installed in the air outlet tube to
record the operating pressure. The average pressure shown in
Table 11 was calculated based on four consecutive reading for
each machine condition. The analysis showed that this feature
can only be utilized for the classification of MC 2.
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Figure 7. Graphical presentation for the vibration RMS, crest factor and en-
ergy features.

6. RESULTS AND DISCUSSION

A multi-fault detection technique was utilised for the
condition-based monitoring of centrifugal blowers. Eleven
features were extracted for each machine condition. The
lookup table shown in Table 12 was built based on the
results of benchmark thresholds and verification samples.
“Weak” means that the minimum difference between bench-
mark threshold of this machine condition and the benchmark
thresholds of other machine conditions (or the value confi-
dence level) is less than or equal to 10 percent; “Good” means
that the minimum difference is greater than 10 percent and less
than 20 percent; “Strong” means that means that the minimum
difference is greater than 20 percent but less than 30 percent;
and “Very Strong” means that the minimum difference is equal
to or greater than 30 percent. A tailor-made classification pro-

Table 11. Segmented FFT vibration spectra.

Average pressure ( BarA ) Average pressure ( BarG )
MC 1 1.165 0.165
MC 2 1.067 0.067
MC 3 1.161 0.161
MC 4 1.157 0.157
MC 5 1.150 0.150

gram was developed using MATLAB, based on the illustrated
lookup table, and it yielded a detection accuracy of 100 per-
cent. The use of multi-detection and multi-feature techniques
significantly minimised the potential of fault interference and
provided a better detection scheme.

Samples were collected from all machine conditions — 50
AE samples, 55 vibration samples, and 50 pressure samples.
Of all the samples, 44 percent were utilised to identify the
benchmark thresholds, and 56 percent were utilised for the
evaluation of detection accuracy. RMS and energy features of
AE signals proved their efficiency in detecting MC 1, MC 2,
MC 4, and group 2 with a detection accuracy of 100 per-
cent. The crest factor and amplitude features detected MC 4,
group 1, and group 2 with a detection accuracy of 100 percent.
The main drawback of the AE time domain features is that
MC 3 and MC 5 are always undetectable. The AE spectral fea-
tures proved their effectiveness over time domain features, as
they successfully detected all faults at any segment size smaller
than or equal to 108 kHz with a detection accuracy of 100 per-
cent.

RMS, amplitude, crest factor, and energy features of vibra-
tion signals demonstrated their efficiency in detecting MC 3
with a detection accuracy of 100 percent. The main draw-
back of the vibration time domain features is that MC 1, MC 2,
MC 4, and MC 5 are undetectable. The vibration spectral fea-
tures failed to detect all machine conditions at segment sizes of
200 and 300 Hz. However, the vibration spectral features tech-
nique proved its greater effectiveness over time domain fea-
tures, as it successfully detected all machine conditions at a
segment size of 100 Hz with a detection accuracy of 100 per-
cent. The failure in detecting faults at 110 and 210 Hz was
expected due to the small confidence level values at those seg-
ment sizes. The confidence level values at 10, 110, and 210 Hz
are 46, 7, and 4, respectively.12

The pressure information proved its efficiency in detecting
MC 2 with an accuracy of 100 percent. The main drawback of
this technique is that the pressure information did not provide
enough information for the detection of other machine condi-
tions. It can be observed that fault interference occurred in
MC 5, as the faults of MC 3 and MC 4 interacted together and
produced a new fault signature. This study is limited to similar
high-speed industrial centrifugal blowers, and was carried out
at a specific ambient temperature and operation time. Due to
the similarity between blowers and compressor, the results of
this study can be extended to centrifugal compressors.

7. CONCLUSION

The presented work investigated bearing and air leakage
faults of centrifugal blowers using three major fault detection
techniques — namely acoustics, vibration, and pressure infor-
mation. The proposed “lookup” table provides an integrated
solution for the fault diagnostics of typical centrifugal equip-
ment to maximise the accuracy of detection and to avoid false
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Table 12. A lookup table for the classification of centrifugal blower faults.

MC 1 MC 2 MC 3 MC 4 MC 5 Group 1 Group 2
AE

RMS Weak Weak Very Strong X X Strong
Amplitude X X Very Strong X Strong Strong

CF X X Weak X Weak Weak
Energy Weak Weak Very Strong X X Very Strong

FFT @S<90 kHz Very Strong Very Strong Very Strong Very Strong Very Strong X X
Vibration

RMS X X Good X X X X
Amplitude X X X X X X X

CF X X Weak X X X X
Energy X X Good X X X X

FFT@ S=10 Hz Good Good Good Good Good X X
Pressure

Average (BarG) X Very strong X X X X X

alarms. An accurate assessment of the three major condition-
based monitoring techniques was given in this article using five
time domain and frequency domain features, with a total num-
ber of 11 different feature sets for each machine condition.

AE and vibration time domain features failed to detect the 5
addressed machine conditions, while the AE and vibration fre-
quency domain features managed to detect all of the addressed
faults with a detection accuracy of 100 percent. The pressure
information was only useful in detecting the air leakage prob-
lem (MC 2). The AE technique proved its greater effectiveness
over vibration and pressure information techniques, except in
the case of leakage, where the pressure information technique
was competitive. In comparison to time domain features, the
FFT spectral (frequency domain) features were best for the de-
tection of high-speed centrifugal air blower faults. The fault
interference occurred during experimentation. Two faults sig-
nals, MC 3 and MC 4, interacted with each other in an unex-
pected way, which resulted in new fault signatures. Fault inter-
ference usually results in a new fault signature, or in masking
one or more of the existing failures. A full capacity CBM sys-
tem that collectively use the best features and fault detection
techniques can be developed based on the results of this study.
The collective utilization of the major signal features and fault
detection techniques could have the potential to reduce false
alarms due to noise and fault interference issues.

Future research could investigate other blower faults in
addition to the utilisation of different faults detection tech-
niques, such as temperature measurements, thermal imaging,
and wavelet analysis. Moreover, further experimentation could
be carried out to apply the result of this study to similar indus-
trial centrifugal blowers and compressors at different condi-
tions or to different types of blowers. The issue of fault inter-
ference exists, and needs further investigation.
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This study investigates the design of experimental work to be executed for establishing an approximate generalized
empirical model for the noise of a ceiling fan on the basis of experimental data and the methodology of engineering
experimentation. It includes the design of an experimental setup, the formulation of a generalized empirical data-
based model, that model’s sensitivity analysis, and reliability and optimization for the analysis of ceiling fan noise.
The formulation and analysis of the noise model are completely covered in this paper to analyse the impact of
various input parameters on the output parameter, i.e. the noise of a ceiling fan.

NOMENCLATURE

Nomenclature is given in Table 1.

Table 1. List of input and output variable with their nomenclature.

Independent Variable Notation
Number of blades Nbl

Blade Thickness Tbl
Blade Width Wbl

Blade parameters Blade Sweep SWbl

(Π1) Blade Length Lbl

Blade root twist angle θbltw
Blade tip lift angle θbllf

Modulus of Elasticity Ebl

of Blade material
Bearing Bore Diameter BDbe1

Bearing Outer Diameter ODbe1

Bearing Width Wbe1

Bearing Radius Rbe1

Basic Dynamic Load Rating Cbe1

Basic Static Load Rating CObe1

Bearing Number of Balls NOBbe1

No. 1 Ball Size BSbe1

Maximum runout speed-Grease GRbe1

Maximum runout speed-Oil ORbe1

Bearing weight Wtbe1
Modulus of Elasticity Ebe1

of Bearing material
Bearing Number of bearings Nbe1

parameters Bearing Number BNbe1

(Π2) Bearing Bore Diameter BDbe2

Bearing Outer Diameter ODbe2

Bearing Width Wbe2

Bearing Radius Rbe2

Basic Dynamic Load Rating Cbe2

Basic Static Load Rating CObe2

Bearing Number of Balls NOBbe2

No. 2 Ball Size BSbe2

Maximum run out speed-Grease GRbe2

Maximum run out speed-Oil ORbe2

Bearing weight Wtbe2
Modulus of Elasticity Ebe2

of Bearing material
Number of bearings Nbe2

Bearing Number BNbe2

Table 1. List of input and output variable with their nomenclature (continued).

Clamp Length Lc

Clamp Clamp Thickness Tc
Parameters Number of Holes on Clamp Nh

(Π3) Modulus of Elasticity Ec

of Clamp material
Fasteners and Number of nut and bolts Nnb

Shaft Number of Screws Nsc

(Π4) Number of washers Nw

Room length Lr

Room height Hr

Room width Wr

Room Area Ar

Volume of room Vr
Field Parameters Acceleration due to gravity g

(Π5) Area of structural member As

Volume of structural member Vs
Distance between ceiling L

and plane of rotation
Atmospheric humidity φ

Atmospheric Temperature T

Air Delivery Va
Power P

Motor Parameters Current I

(Π6) Voltage V

Fan speed in RPM N

Capacitor C

Dependent Variable Notation
Output Parameter Noise NOI

(ΠD1)

1. INTRODUCTION

Fans are used in homes, industries, hospitals, offices,
schools, and colleges. Ceiling fans can provide years of com-
fort and beauty. The first ceiling fans appeared in the early
1860s and 1870s, in the United States, and were designed by
Duchess Melissa Rinaldi during her stay in the Rocky Moun-
tains. At that time, they were powered by a stream of running
water, in conjunction with a turbine to drive the system. The
electrically powered ceiling fan was invented in 1882 by Philip
Diehl. Each fan had its own self-contained motor unit, with no
need for belt drive.1 By the 1920s, ceiling fans had become
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commonplace all over the world, and they had become very
popular in rural areas, particularly those with hot climates. Se-
lectiing a fan that coordinates to our style is very difficult due
to colour, finish, blade design, size, accessories, noise, air de-
livery, power consumption, room size, down rod length, speed,
lighting, style, and comfort. The basic requirement for human
comfort is noiseless ceiling fan in homes, schools, hospitals,
and offices with adequate performance.5 At present, different
types of ceiling fans are available that produce noise during
the running condition, which gives discomfort and increases
energy consumption; therefore, it was decided to analyse the
noise of a ceiling fan. For the measurement and estimation of
noise, it was necessary to construct a specially-designed setup.
Therefore, measuring instruments were selected according to
what the desired output required. The instruments measure
speed, humidity, temperature, air delivery, noise and energy.
After that, the experimentation plan was formed, and a Gener-
alized Empirical data-based model and analysis were done.

2. CEILING FAN

In summer, it is best to use the ceiling fan in the counter-
clockwise direction. The airflow produced by the ceiling fan
creates a wind-chill effect, making you ”feel” cooler. In winter,
it is beneficial to reverse the motor and operate the ceiling fan
at a low speed in the clockwise direction. This produces a gen-
tle updraft, which forces warm air near the ceiling down into
the occupied space. Unlike air conditioners, fans only move
air; they do not directly change its temperature.6 The breeze
created by a ceiling fan speeds the evaporation of perspiration
on human skin, which makes the body’s natural cooling mech-
anism much more efficient since the fan works directly on the
body, rather than by changing the temperature of the air, which
helps to improve comfort, but produces noise.

3. EXPERIMENTAL SETUP

The experimental setup and the variety of ceiling fans used
for experimentation are shown in Figs. 1 and 2. The objec-
tive of the experiment was to gather information through ex-
perimentation for the formulation of a Generalized Empirical
data-based model for noise of a ceiling fan. During the running
condition of a ceiling fan, noise, current, voltage, power con-
sumption, air delivery, humidity, and temperature were mea-
sured for all input variables. The input variables were ceil-
ing fans, room size, down rod length, regulator knob position,
ceiling fan blade parameters, bearing parameters, clamp pa-
rameters, field parameters, motor parameters, and the output
variable taken was noise.

4. MEASUREMENT OF NOISE

For the measurement of noise in ceiling fans, an FFT Anal-
yser SVANTEK 958 with 4 channels7 was used, as shown in
Fig. 3. During experimentation, all input parameters - namely
fan, having different numbers of blades, different room vol-
umes, different down rod lengths, different knob positions of
regulators, and different values of fan blade parameters, bear-
ing parameters, clamp parameters, field parameters, and mo-

Figure 1. Experimental Setup.

Figure 2. Ceiling fans used for experimentation.

tor parameters were varied, and measured the output variable
noise.

5. APPLICATION OF METHODOLOGY OF
EXPERIMENTATION TO THE PROPOSED
SYSTEM

5.1. Design of Experimentation
A number of experiments were conducted to study the ef-

fects of various parameters on the noise of ceiling fans.7 These
studies have been undertaken to investigate the effects of var-
ious sizes of fan blades, room volume, down rod lengths, and
regulator knob position at different values of fan blade param-
eters, bearing parameters, clamp parameters, field parameters,
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Table 2. Experimental Plan

For F1 Reading
for 1 room

X X X 1
N1 Y N1 Y N1 Y 2

Z Z Z 3
X X X 4

L1 N2 Y L1 N2 Y L1 N2 Y 5
Z Z Z 6
X X X 7

N3 Y N3 Y N3 Y 8
Z Z Z 9
X X X 10

N1 Y N1 Y N1 Y 11
Z Z Z 12
X X X 13

R1 L2 N2 Y R2 L2 N2 Y R3 L2 N2 Y 14
Z Z Z 15
X X X 16

N3 Y N3 Y N3 Y 17
Z Z Z 18
X X X 19

N1 Y N1 Y N1 Y 20
Z Z Z 21
X X X 22

L3 N2 Y L3 N2 Y L3 N2 Y 23
Z Z Z 24
X X X 25

N3 Y N3 Y N3 Y 26
Z Z Z 27

Fan F1 F2 F3 F4 F5 F6 F7 F8 F9
Room R1 R2 R3

Downrod Length L1 L2 L3
Speed N1 N2 N3

Direction X Y Z

Fan 9
Room 3

Downrod Length 3
Speed 3

Direction 3

Total Number of reading
= Fan × Room × Downrod × Speed × Direction
= 9 × 3 × 3 × 3 × 3
= 729

and motor parameters on Noise during the running condition
of ceiling fans.15 The output noise was measured and stored
in a personal computer for further analysis of experimentation.
The experimental plan is shown in Table 2.

5.2. Experimental Approach
A theoretical approach can be adopted in a case if known

logic can be applied that correlaes the various independent and
dependent parameters, i.e. the input and output parameters of
the system. Though qualitatively, the relationships between the
dependent and independent parameters are known, based on
the available literature, the generalized quantitative relation-
ships are not known sometimes. Hence, formulating the quan-
titative relationship based on the logic was not possible in the
case of complex phenomenon. Because there was no possibil-
ity of the formulation of a theoretical model (logic-based), one
was left with the only alternative of formulating an experimen-
tal data-based model. A field data-base model for the assembly
of an electric motor was developed by Tatwawadi.12 There-
fore, it was proposed to formulate such a model in the present
investigation. The approach adopted for formulating a gener-

alized experimental model was suggested by Hilbert Schenck,
Jr.2, 12, 13 This is detailed step-wise below:

• Identification of independent, dependent variables

• Reduction of independent variables adopting dimensional
analysis

• Test planning comprising of determination of test enve-
lope, test points, test sequence and experimentation plan

• Physical design of an experimental set up

• Execution of experimentation

• Purification of experimentation data

• Formulation of the model

• Model optimization

• Reliability of the model
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Figure 3. FFT Analyzer.

The first six steps mentioned above constitute the design of
experimentation. The seventh step constitutes of model for-
mulation, whereas the eighth and ninth steps are respectively
the optimization and reliability of the model.

5.3. Identification of Variables
The term ’variables’ is used in a very general sense to apply

to any physical quantity that undergoes change. If a physi-
cal quantity can be changed independent of the other quanti-
ties, then it is an ’independent’ variable. If a physical quantity
changes in response to the variation of one or more indepen-
dent variables, then it is referred to as a ’dependent’ or ’re-
sponse’ variable. If a physical quantity that affects our test
is changing in a random and uncontrolled manner, then it is
called an ’extraneous’ variable.2 The variables affecting the ef-
fectiveness of the phenomenon under consideration are shown
in Table 1. The dependent or the response variables in the case
of the ceiling fan was noise.

5.4. Reduction of Independent Variables /
Dimensional Analysis

Deducing the dimensional equation for a phenomenon re-
duced the number of independent variables in the experiments.
The exact mathematical form of this dimensional equation was
the targeted model. This was achieved by applying Bucking-
ham’s π theorem.3, 16 When we apply this theorem to a system
involving n independent variables (n minus the number of pri-
mary dimensions, namely L, M, T, etc.) i.e. (n−3), numbers of
π terms were formed. When n is large, even by applying this
theorem, the number of π terms will not be reduced more sig-
nificantly than the number of all independent variables. Thus,
much reduction in the number of variables was not achieved.
It is evident that if we take the product of the dimensionless
terms, it will also be dimensionless number. This property was
used to achieve further reduction of the number of independent

Table 3. Sensitivity analysis of Response variables.

Pi Terms Sensitivity
Π1-% Change 0.816564976
Π2-% Change -4.66543575
Π3-% Change -20.6502875
Π4-% Change 6.019966094
Π5-% Change 0.168556289
Π6-% Change 2.767424285

π terms, as shown below:

Π1 =
Nbl.Tbl.SWbl.θbltw
Wbl.Lbl.θbllf

; (1)

(See Eq. (2) on top of the next page.)

Π3 =
Lc.Nh.Ebl

Tc.Ec
; (3)

Π4 =
Nnb.Nw

Nsc
; (4)

Π5 =
Lr.Wr.Ar.Vs.g.L.Φ.

Hr.Vr.Va2.As.Ds.T.
; (5)

Π6 =
P.V.N.C

I
. (6)

5.5. Test Planning

This stage comprises deciding on a test envelope, test points,
a test sequence, and an experimentation plan for a deduced set
of dimensional equations.

5.6. Model Formulation

It was necessary to quantitatively correlate various indepen-
dent and dependent terms involved in this very complex phe-
nomenon.3 This correlation is nothing but a Generalized Em-
pirical data-based model as a design tool for such a situation.
The Generalized Empirical data-based model for noise is given
in Eq. (7) (see the next page).

6. SENSITIVITY ANALYSIS

The influence of the various independent π terms was stud-
ied by analysing the indices of the various π terms in the mod-
els as shown in Figs. 4 and 5. Through the technique of sensi-
tivity analysis, the change in the value of a dependent π term
due to an introduced change in the value of the individual π
term was evaluated.4 In this case, a change of ± 10% was in-
troduced in the individual independent π term independently
(one at a time). Thus, the total range of the introduced change
was ± 20%. The effect of this introduced change on the change
in the value of the dependent π term was evaluated. The aver-
age values of the change in the dependent π term were due to
the introduced change of π 10% in each independent π term.
This defines sensitivity. The total percentage of change in out-
put for ± 10% change in input is shown in Table 3, and indices
are shown in Table 4.
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Π2 =
Wbe1.Cbe1.NOBbe1.BSbe1.GRbe1.ORbe1.Wtbe1.Wbe2.Cbe2.NOBbe2.BSbe2.GRbe2.ORbe2.Wtbe2
BDbe1.ODbe1.Rbe1.Cobe1.Ebe1.Nbe1.BNbe1.BDbe2.ODbe2.Wbe2.Rbe2.Cobe2.Ebe2.Nbe2.BNbe2

; (2)

ΠD1 = 1.002002.Π
(0.0407)
1 .Π

(−0.0966)
2 .Π

(−1.022)
3 .Π

(0.2654)
4 .Π

(0.0084)
5 .Π

(0.138)
6 ; (7)

Table 4. Indices of model.

Pi Terms Indices
Π1 0.0407
Π2 -0.0966
Π3 -1.022
Π4 0.2654
Π5 0.0084
Π6 0.138

Figure 4. Sensitivity Analysis.

Figure 5. Indices of Model.

7. ESTIMATION OF LIMITING VALUES OF
RESPONSE VARIABLES

The final intention of this work was not simply develop-
ing the models but to find out the best set of variables, which
will result in the maximization or minimization of the response
variables. In this section, an attempt was made to find out the
limiting values of the response variables. To achieve this, lim-
iting values of the independent π terms, namely Π1, Π2, Π3,
Π4, Π5, and Π6 were put in the respective models. In the pro-
cess of maximization, the maximum value of the independent
π term was substituted in the model if the index of the term
was positive, and the minimum value was put in if the index
of the term was negative. In the process of minimization, the
minimum value of the independent π term was put in the model
if the index of the term was positive, and the maximum value
was put in if the index of the term was negative. The limiting

Table 5. Limiting values of response variables (noise).

Max. & Min. of Response Pi Terms Noise
Π2 1.9737
Π3 0.4672
Π6 0.138

values of these response variables were computed for noise, as
shown in Table 5.

8. RELIABILITY OF MODEL

The reliability of the model was established using the re-
lation Reliability = 100 - % mean error, and mean error =∑

xi.fi∑
xi ; where xi is percentage of error, and fi is the fre-

quency of occurrence.8 System Reliability (Rp) is given by
the relation = Πn

i=1(1 − Ri) = 1 − [(1 − R1)], where Ri is
the reliability of the individual model. Therefore, the total reli-
ability of noise is equal to 1-[(1-0.96303105)] = 0.96303105 =
96.303105 %.

9. MODEL OPTIMIZATION

The ultimate objective was the maximization or minimiza-
tion of the objective functions.9 The model corresponded to
the noise of the ceiling fan. The objective functions for noise
needed to be minimized. The model had nonlinear form; there-
fore, it needed to be converted into a linear form for the pur-
pose of optimization. This was achieved by taking the log of
both the sides of the model. The linear programming technique
was applied, which is detailed as below for noise.

Taking the log of both the sides of Eq. (7), we get

log[ΠD1] = log[1.002002] + log[Π(0.0407)
1 ]

+log[Π(-0.0966)
2 ] + log[Π(-1.022)

3 ] + log[Π(0.2654)
4 ]

+log[Π(0.0084)
5 ] + log[Π(0.138)

6 ]; (8)

log[ΠD1] = log[1.002002] + (0.0407).log[Π1]

+(-0.0966).log[Π2] + (-1.022).log[Π3]+

(0.32654).log[Π4] + (0.0084).log[Π5]

+(0.138).log[Π6]; (9)

Z(Noise : ΠD1min) = K + a.X1

+b.X2 + c.X3 + d.X4 + e.X5 + f.X6. (10)

Subject to the constraints presented in Eq. (11) (see the top of
the next page).

On solving the above problem by using MS solver, we got
values of X1, X2, X3, X4, X5, X6, and Z. Thus, ΠD1 min =

Antilog of Z, and corresponding to this value of the ΠD1 min,
the values of the independent π terms were obtained by taking
the antilog of X1, X2, X3, X4, X5, X6, and Z. Thus, we
optimized the model, and the optimized values of ΠD1 min,
are shown in Table 6.
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1 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≤ -0.38058

1 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≥ -1.18682

0 ×X1 + 1 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≤ -0.989601644

0 ×X1 + 1 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≥ -0.989601644

0 ×X1 + 0 ×X2 + 1 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≤ 0.18988

0 ×X1 + 0 ×X2 + 1 ×X3 + 0 ×X4 + 0 ×X5 + 0 ×X6 ≥ -0.30103

0 ×X1 + 0 ×X2 + 0 ×X3 + 1 ×X4 + 0 ×X5 + 0 ×X6 ≤ -0.52288

0 ×X1 + 0 ×X2 + 0 ×X3 + 1 ×X4 + 0 ×X5 + 0 ×X6 ≥ -0.52288

0 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 1 ×X5 + 0 ×X6 ≤ 0.601653

0 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 1 ×X5 + 0 ×X6 ≥ -1.78297

0 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 1 ×X6 ≤ 0.687115

0 ×X1 + 0 ×X2 + 0 ×X3 + 0 ×X4 + 0 ×X5 + 1 ×X6 ≥ -0.30665 (11)

Table 7. Sequence of influence of independent π terms on dependent π terms.

Dependent Pi terms Sequence of independent pi terms according to intensity of influence
Noise: ΠD1 Π4 Π6 Π1 Π5 Π2 Π3

Table 6. Optimized values of response variables for noise of the ceiling fan.

Noise: ΠD1

Z 0.6591694 1.933186013
X1 -1.18682 0.305190228
X2 -0.9896 0.371725351
X3 0.18988 1.209104496
X4 -0.52288 0.592810792
X5 -1.78297 0.168138035
X6 -0.30665 0.735908124

10. RESULTS AND DISCUSSION

The indices of the model are indicates of how the phe-
nomenon is affected because of the interaction of various in-
dependent terms in the models. The sequence of influence of
the indices of the various independent terms on dependent term
is shown in Table 6. The following primary conclusions appear
to be justified from the above model:

• The absolute index 0.2654 of Π4 is the highest index of
ΠD1. The factor Π4 is related to the number of nuts and
bolts, the number of washers, and the number of screws,
and it is the most influential term in this model. The value
of this index is positive, indicating the involvement of the
number of nuts and bolts, the number of washers and the
number of screws has a strong impact on ΠD1.

• The absolute index 0.0084 of Π5 is the lowest positive in-
dex of ΠD1. The factor Π5 is related to field parameters,
and is the least influential term in this model. The low
value of the absolute index indicates that the factor field
parameter need improvement.

• The indices of the dependent terms are shown in Table 3.
The negative indices indicate the need for improvement.
The negative indices of Π2 (bearing parameters) and Π3

(clamp parameters) are inversely varying with respect to
ΠD1.

• The constant (K) represents the effect of extraneous (un-

Figure 6. Comparison between Experimental and developed model outputs.

controllable) variables on the phenomenon under investi-
gation, i.e. the effect on ceiling fan noise.

• The sensitivity of the input parameters with respective to
the noise of the ceiling fan are shown in Table 1.

It is observed that the phenomenon of noise in ceiling fans
was very complex because of the variation in the number of
variables affecting the phenomenon. The noise responses of
the experimental results and DA model results are plotted in
the MATLAB, as shown in Fig 6. Both the results overlap each
other, which shows that the results obtained by experiment are
in close agreement with the results obtained by DA models.
The correlation coefficient, root mean square, and reliability
are calculated as 0.990176%, 0.07942%, and 95.6978964 %.

Hence, it is clear that the generalized empirical experimen-
tal data-based model developed for the noise of a ceiling fan
completely represents the phenomenon under investigation. It
indicates the validity of the developed model.
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11. CONCLUSION

In the present investigation all independent parameters were
worked out for the analysis of the noise in ceiling fans. From
the analysis, it seems that the developed model can be success-
fully used for the computation of dependent terms for a given
set of independent terms. Indian industries can use the data
for the calculation of noise in ceiling fans. From this study, it
can be observed that there is a need for modification in the ex-
isting experimental setup. The authors proposed the modified
ceiling fan setup by using the piezoelectric technique to reduce
the noise.
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Turbulent Coanda wall jets are present in a multitude of applications.1 Their obvious advantages for flow deflec-
tion are often outweighed by disadvantages related to the increased noise levels associated with such jets. Better
predictions of Coanda jet noise would allow the Coanda effect to be more widely applied, and its potential to be
fully realized. This paper applies the method of characteristics to a steady two-dimensional axisymmetric super-
sonic flow in order to determine the location of the first shock cell downstream of the nozzle. This phenomenon
has previously been found to be particularly important in determining both the OASPL and peak frequency of the
broadband high-frequency Shock-Associated Noise (BBSAN) emitted by a given jet configuration.10, 20 The cur-
rent work has also illuminated the relationship between cell location and flow characteristics, and thus the effect
of jet operating conditions on BBSAN can now be determined.11 The relationship between cell location and jet
breakaway is also under investigation. Predictions are compared with experimental results obtained using flow
visualization techniques. This work is in the process of being extended so that the Rankine-Hugoniot conditions
can be used to predict the shock cell structure (and thus the BBSAN) along the entire jet.22

NOMENCLATURE

C+ Characteristic moving towards Coanda surface
C− Characteristic moving away from Coanda surface
a Speed of sound (m/s)
(x, y) Cartesian coordinates of point of interest
(u, v) Velocity components at point of interest (x, y)

along the x and y-axes respectively (m/s)
θ Angle streamline makes with x-axis
α Mach angle
λ+ Slope of characteristic moving towards Coanda

surface
λ− Slope of characteristic moving away from Coanda

surface
δ Dirac delta function. δ = 1: axisymmetric flow,

δ = 0: planar 2D flow
γ Ratio of specific heat capacities
Rc Radius of circular part of flare (m)
Rf Radius of interior stem of flare (m)
h Exit slot (mm)
y0 y-value assigned at lip (m)
pe Nozzle exit pressure (psig)
pa Ambient (atmospheric) pressure (psig)
po Reservoir pressure (psig)
Me Exit Mach number
Ujx Jet exit velocity (m/s)

1. INTRODUCTION

1.1. The Coanda Effect

The Coanda effect, discovered early in the twentieth century
by Romanian mathematician and scientist Henri Coanda, is the
phenomenon whereby ‘. . . when a jet is passed over a curved
surface it bends to follow the surface, entraining large amounts
of air as it does so. . . ’.1–3 Consider a fluid element exiting a
nozzle adjacent to a curved surface. The radial equilibrium of
the element leads to the development of a pressure field which
forces the fluid against the surface, and this effect is reinforced
by the slightly enhanced viscous drag which is experienced by
the jet on its wall side as it exits the nozzle, and which also
tends to deflect it towards the wall. Subsequently, this pressure
field will continue to force the jet towards the surface. An ad-
ditional viscous effect, namely the entrainment of the ambient
fluid between the jet and the surface, may also help to move
the jet towards the wall. The effect breaks down under certain
operating conditions, at which point jet breakaway occurs. A
hysteresis effect is subsequently observed. The Coanda effect
is noticed in the natural world (with both positive and negative
consequences) and is frequently invoked in aeronautics, mar-
itime technology and industrial engineering.1 The substantial
flow deflection offered by the Coanda principle is generally
accompanied by enhanced levels of turbulence and increased
entrainment. A direct consequence of these effects is often
a significant escalation in the associated noise levels, and it
is posited that this disadvantage has prevented its application
from becoming more widespread in recent years.4 Clearly, bet-
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ter understanding of the noise emission characteristics of tur-
bulent Coanda jets will facilitate improvements in prediction
and attenuation of such noise.

1.2. Principal Noise Sources Associated
with Turbulent Coanda Wall Jets

The jet under consideration here is assumed to issue at high
velocity (200–500 m/s) from an annular exit slot. Immediately
upon exit it is adjacent to a solid three-dimensional Coanda
surface. More detailed information concerning the geometry
of interest is shown in Fig. 1. Although this representation is
that of a Coanda flare of the type used in the petroleum indus-
try5, 6 (an example of which is shown in operation in Fig. 2),
the experimental methods and models developed herein can
easily be applied to other types of three-dimensional Coanda
jet flows.

Although Coanda jets emit both low- and high-frequency
noise, it is the latter that is generally the most destructive, irri-
tating and also the easiest to attenuate. Both broadband noise
and discrete tones are emitted, although the appearance of the
tones is rather sporadic. Thus, the focus of the current work
is on the broadband high-frequency noise. There are two prin-
cipal sources of such noise in Coanda jets; turbulent mixing
noise (TMN) and shock-associated noise (SAN). A compre-
hensive investigation of TMN associated with these jets has al-
ready been undertaken.7–9 The other principal high frequency
acoustic source commonly observed in such flows is SAN,
and this paper presents the results of a preliminary investiga-
tion into the SAN generated by the mixing layer of a three-
dimensional turbulent jet flowing adjacent to a solid Coanda
surface.

As mentioned previously, configurations such as that shown
in Fig. 1 emit both low- and high-frequency noise. It is the lat-
ter that is of greatest interest, since it is both the most annoying
to the human ear, and the easiest to attenuate. This paper will
focus on SAN.

1.3. Shock Associated Noise (SAN)

It is well known that, in contrast to subsonic jets, condi-
tions at a downstream point in a supersonic jet cannot affect
those upstream.10 In this way, discontinuities in flow proper-
ties can arise. Depending upon the relative pressure difference
between the nozzle exit pressure (pe) and the ambient pressure
(pa) a shock cell structure is formed in the jet plume close to
the jet exit slot. The interaction between this structure and the
large-scale coherent turbulence in the jet shear layer generates
the high-frequency sound known as SAN. This phenomenon
has been studied in great detail for free jets.11–15 It has previ-
ously been noted that turbulent Coanda wall jets display at least
some similar characteristics to their two-dimensional counter-
parts, and thus in order to facilitate a preliminary investigation
into the nature and behavior of SAN in Coanda flows, this sim-
plifying assumption will be made.7 However, when the flow
is three-dimensional, complicating factors such as radial ex-
pansion and streamline curvature are present, and should be
accounted for in future models.

Figure 1. The flow field and combustion zone of a Coanda flare.

2. SHOCK WAVES IN COANDA FLOWS

The flow under consideration in the current work is that as-
sociated with a turbulent Coanda flare of the type shown in
Fig. 1. Green has shown that one-dimensional flow theory can
be used to describe the flow through a convergent-divergent
nozzle of the kind present in the Coanda flare.10 Thus, the jet
emerging from the exit slot is supersonic for almost all operat-
ing pressures, and shock waves are formed in the vicinity of the
nozzle exit. The exact location of these shock waves depends
upon the relative magnitudes of the pressure in the reservoir
supplying the nozzle, p0, and the pressure of the medium into
which the jet flows, known as the ambient or back pressure,
pa. Assuming that flow in the divergence is isentropic, the jet
pressure at exit, pe, is given by

pe = p0

[
1 +

(
γ − 1

2

)
M2

e )

] −γ
γ−1

; (1)

where p0 is the pressure in the reservoir supplying the nozzle, γ
is the ratio of specific heats and Me is the exit Mach number.10

If the pressure at the nozzle exit, pe, equals the ambient pres-
sure, i.e. pe = pa, then the jet is said to be correctly expanded.
In this case, the jet is parallel-sided with a uniform Mach num-
ber throughout, and is free of shock waves. In general, Coanda
flare jets are rarely perfectly-expanded in practice, but are typ-
ically either under- or over-expanded, and an adjustment of
the exit pressure via compression (condensation) or expansion
(rarefaction) waves will occur. This leads to the formation of
a shock cell structure within the mixing layer region of the jet.
See Fig. 1.

Consider, for example, an under-expanded jet. In this case,
pe > pa and a fan of expansion waves (waves such that the
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Figure 2. An operating Coanda flare.

pressure and density of a base flow decrease on crossing them)
will be generated at the lip of the nozzle exit slot. On inter-
acting with a free jet boundary, the expansion waves cause the
boundary to be displaced outwards, and this effect can be seen
in Fig. 3. The expansion waves will reflect as either expan-
sion or compression waves as they interact with a boundary. In
order to preserve constant pressure at the jet boundary, the in-
cident and reflected waves will be of opposite kinds and so an
expansion wave reflects as a compression wave (pressure and
density increase on crossing it) and vice versa. However, when
a wave reflects from a solid surface such as the flare-tip, zero
normal velocity must be preserved at the wall, and so an expan-
sion wavefront will be reflected as an expansion wavefront, for
example.

The coalescence of several compression waves forms a
shock wave, which reflects as a shock wave from the solid
flare tip surface and then reflects at the jet boundary as an
expansion wave. The pattern of expansion waves, compres-
sion waves, and shock waves repeats itself periodically and
the quasi-periodic constituents of this pattern, known as shock
cells, are shown schematically in Fig. 1. Typically a series of
6–10 shock cells will form in the jet exhaust. Figure 3 shows
the flow structure typically observed in the mixing layer region
of the jet. Shock cells are clearly seen as light and dark lines
in the figure. Turbulent eddies convected downstream within
the mixing layer region of the jet cause these shocks to be de-
formed. This distortion of the shock front propagates away
as the broadband, but strongly peaked sound waves known as
SAN. This acoustic phenomenon has several interesting as-
pects. Firstly, there is a strong directivity associated with the
SAN emitted by moving sound waves. It has been observed

Figure 3. Typical flow structure in Coanda flare mixing layer. Slot width,
h = 3.05 mm, operating pressure = 45 psig.

that a turbulent eddy can successively interact with several
shock waves, generating multiple sound sources (one resulting
from each interaction).11 Additionally, a feedback cycle is of-
ten present, leading to the generation of discrete, harmonically
related tones known as screech tones.

The Coanda flare being studied is convergent-divergent and
supersonic under most operating conditions. It is well known
that the flow just downstream of the jet exit slot is responsi-
ble for most of the flare noise generation and that most of the
SAN is produced in this region.10 Thus in order to fully com-
prehend this high-frequency acoustic emission, it is very im-
portant to understand the behaviour of the flow in the initial
region near the nozzle exit. Green has previously shown that
one-dimensional flow theory and the method of characteristics
can be used to describe flow through this nozzle, at least until
the first shock is formed.7, 10, 17, 18 The method of characteris-
tics has previously been applied19, 20 to the inviscid core of a
supersonic jet (following the method of Dash et al.21 whereby
the outer shear layer and surface boundary layer are ignored).
In this case, the aim of modelling the jet structure (particularly,
first shock cell location) was so that jet breakaway could be
better predicted.19, 20 Indeed, comparison of predictions with
experimental results for the location of the first shock cell (at
low blowing pressures and before any shock waves occur) is
good. Specifically, according to Gilchrist and Gregory-Smith,
‘The method of characteristics is shown to be adequate for cal-
culating the [shock cell structure in the] inviscid core of the
underexpanded [flat] jet’.20 In the current work, it is the loca-
tion of the first shock cell that is of interest, since ‘for high
speed jets, the shock cell structure close to the slot is very
important’.20 Note that in a curved jet, the rapid growth of
the outer shear layer (caused by streamline curvature) means
that the shock cell structure is shorter than in equivalent plane
jets.20

3. MATHEMATICAL DETERMINATION OF
INITIAL SHOCK CELL LOCATION

3.1. Theory: Method of Characteristics
For a steady two-dimensional irrotational flow, the govern-

ing equations are the speed of sound relationship, an equa-
tion expressing irrotationality and the Gas Dynamic equation.
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These form a system of two coupled quasi-linear nonhomoge-
neous partial differential equations (PDEs) of the first-order in
two independent variables, x and y. (Note that in this con-
text, ‘quasi-linear . . . of the first-order’ means that a PDE is
nonlinear in the dependent variables (u and v, the flow ve-
locity components) but linear in the first partial derivatives,
(ux, uy, vx, vy) of these dependent variables). These equations
govern both subsonic and supersonic flow. However, the coef-
ficients of the various derivatives are such that the mathemati-
cal type of the PDEs changes from elliptic when M < 1 (i.e.
subsonic flow) to hyperbolic for supersonic flow (M > 1).
For the two-dimensional supersonic turbulent Coanda flow un-
der consideration, these hyperbolic PDEs can be solved using
the Method of Characteristics (MOC). Such equations have
the property that they can be reduced to ordinary differential
equations (ODEs) known as compatibility equations, which
are valid along specific, related curves known as characteris-
tics. Physically, characteristics represent the path of propaga-
tion of a physical disturbance.

For a steady two-dimensional irrotational flow, it is well
known16 that the governing equations yield compatibility
equations(

u2± − a2±
)
du± +

[
2u±v± −

(
u2± − a2±

)
λ±
]
dv± −

a2±v±

y±
dx± = 0; (2)

which are valid along the C+ (where + denotes the direction
towards the flare tip surface) and C− (away from the flare tip)
characteristics described by

dy

dx±
= λ± = tan (θ± ∓ α±) ; (3)

where θ± is the angle that the flow streamline makes with the
x-axis, and α± is the Mach angle. Note the unusual sign con-
vention used in Eq. (5). This follows that used by Green in
which the x-axis is vertical and the y-axis is horizontal.10 In
the case of a supersonic flow, the characteristics are the Mach
lines of the flow. Since Eqs. (2) and (3) are non-linear, they
must be discretized and solved by numerical means. In the
present work, following Green, the Euler predictor-corrector
method is used.10

3.2. Numerical Solution: Euler Predictor-
Corrector Method

Numerical determination of the location of the shock cells
in a Coanda flare jet is based on a modified Euler predictor-
corrector finite difference method. This is an iterative algo-
rithm that proceeds in two steps. The prediction step calculates
a rough approximation of the desired quantities and the correc-
tor step then refines this initial approximation. At each point
(x, y) along the characteristics, the velocity components (u, v)
associated with that location (x, y) must be determined. In or-
der to do so, the region of interest must be divided into three
separate areas: interior points (which have both C+ and C−
characteristics), wall points (which have only C+ characteris-
tics) and jet boundary points (with only C− characteristics).

3.2.1. Interior Points

Equation (3) defines two characteristics passing through a
typical interior point, (x, y), in the flow field, and Eq. (2) spec-

Figure 4. Solution at an interior point by the Method of Characteristics.

ifies one relationship between the velocity components u and v
on each of the characteristics. In order to be able to find u and
v at a given point, (x, y), it is necessary to obtain two indepen-
dent relationships between u and v at that point. This can be
achieved by construction of a network such that two character-
istics intersect at a common point. For example, consider the
case shown in Fig. 4, where the velocity components (u, v) are
known at every point (x, y) along the curve, Γ. The locations
of points 1 and 2 are known, as are the velocity components
there. The solution at a new point, 4, is found by extending
the C+ characteristic from point 1 and the C− characteristic
from point 2. The location of point 4, (x4, y4) and the solu-
tion there, (u4, v4), are found by simultaneously solving the
characteristic and compatibility equations, respectively.

From Eq. (3), the characteristic equations can be rewritten
in terms of first-order finite difference equations as

y4 − y1 = λ+(x4 − x1); (4)

and
y4 − y2 = λ−(x4 − x2). (5)

λ+ and λ− are given by Eq. (3). Equations (4) and (5) can
thus be solved for the two unknowns to yield the new loca-
tion (x4, y4). Recall that the compatibility equation, Eq. (2), is
actually two equations. One is(

u2+ − a2+
)
du+ +

[
2u+v+ −

(
u2+ − a2+

)
λ+
]
dv+ −

a2+v+

y+
dx+ = 0; (6)

which is valid along the C+ characteristic, (moving towards
the flare surface) and the other comes from Fig. 4, which has 2
known initial values

u+ = u1, v+ = v1, y+ = y1. (7)

Substituting Eq. (7) into Eq. (6), together with the first order
finite difference approximation

dx+ = x4 − x1, du+ = u4 − u1, dv+ = v4 − v1; (8)

then Eq. (6) becomes a function of only two unknowns, u4 and
v4. Similarly for the C− characteristic (moving away from the
flare surface). Solving these two equations yields predicted
approximations to the location and velocity at a new point, 4,

202 International Journal of Acoustics and Vibration, Vol. 21, No. 2, 2016



C. P. Lubert, et al.: AN INVESTIGATION OF INITIAL SHOCK CELL FORMATION IN TURBULENT COANDA WALL JETS

Figure 5. Notation used in MOC for wall points.

namely x4, y4, u4 and v4. These predictor values are then com-
bined with the initial values to obtain average values of the flow
properties using

y+ =
y1 + y4

2
, u+ =

u1 + u4
2

, v+ =
v1 + v4

2
; (9)

and

y− =
y2 + y4

2
, u− =

u2 + u4
2

, v− =
v2 + v4

2
. (10)

Note that x is not needed, since it is absent in the compatibility
equations. Average values of θ±, V±, a±, M±, α± and λ±
are then determined by substituting u± and v± from Eqs. (9)
and (10) into the previous equations. Substitution of the values
thus obtained into the characteristic Eqs. (4) and (5) yields the
corrected values, x4 and y4. Insertion of these average values,
together with the newly obtained corrected values (x4, y4) and
the first order finite difference approximations into the com-
patibility equations yields corrected values u4 and v4.

These correctors are then used with the initial values to re-
calculate the average values. Insertion of the new averages
yields new corrector values. For a given point (e.g. point 4)
the predictor-corrector method should be iterated in this way
until the required degree of convergence is reached. This is
typically when the difference between two successive sets of
corrector values is below a pre-specified tolerance level. Once
the flow characteristics for a given interior point are calculated,
the entire process is repeated for the next point along the same
characteristic in the direction from the nozzle lip to the flare
surface (C+ characteristics).

Once this entire characteristic is formed, the method returns
to the nozzle lip and the next C+ characteristic (fanning away
from the lip) and repeats the process. On completion of this
fan of characteristics, the method locates the points where each
of these characteristics meets the flare surface and, beginning
with the left-most point, moves away from that point down a
characteristic until it meets the jet boundary. The process is
repeated for all these C− characteristics until that fan is com-
pleted. The method then works from the ends of these C−
characteristics (located at the jet boundary) back towards the
flare surface, and continues in this way until the first shock
wave forms.

3.2.2. Wall Points

In the case of the flare boundary, there are no C− character-
istics since they would lie inside the flare surface (see Fig. 5),
and thus the characteristic equations are replaced by a single
equation

λ+ = tan(θ+ − α+). (11)

Figure 6. Notation used in MOC for jet boundary points.

Since θ+ and α+are known, λ+ can be determined from
Eq. (11).

The first order finite difference approximation given by
Eq. (4) can be combined with the equation of the Coanda sur-
face, for a given R, d and y0, namely

y4 =

√
R2 − (x4 −R− d)

2
+ y0; (12)

and solved to obtain x4 and y4. Along the wall, interest is in
u+ and v+ at the (now) known point (x4, y4). Since dy

dx

∣∣
wall

represents the slope of the Coanda surface at the known point
(x4, y4), then it is a known constant, k. Assuming that the flow
has to remain attached to the wall—that is, the velocity follows
the tangent to the wall—then

v4
u4

=
dy

dx

∣∣∣
wall

= k; (13)

or
v4 = k u4. (14)

Substitution into the relevant compatibility equation yields
the first approximation to the predictors (x4, y4) and (u4, v4).
The predictor-corrector method is then iterated as described
previously until the desired stopping criteria is reached.

3.2.3. Jet Boundary Points

For the jet boundary, there are no C+ characteristics (see
Fig. 6), so we have only

λ− = tan (θ− + α−) . (15)

Again, since θ− and α− are known, λ− can be determined
from Eq. (15). Now along the jet boundary

dy

dx

∣∣∣
jet

= λjet =
v0
u0

; (16)

where λjet is approximated numerically by the (constant) slope
of the secant line from the previous (known) point on the jet
boundary, 0, to the new point, 4, namely

λjet =
y4 − y0
x4 − x0

. (17)

Thus Eq. (17) relates the two unknowns x4 and y4. Also recall
from before that the first order finite difference approximation
at the jet boundary is given by Eq. (5), which can be rewritten
as

λ− =
y4 − y2
x4 − x2

. (18)

Equations (17) and (18) are two equations with two unknowns
(x4 and y4) and can be solved to find x4 and y4. Work is cur-
rently underway to determine the jet boundary empirically as a
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function of slot width, h, and operating pressure, p0. Once this
is known, instead of using Eq. (17) to approximate λjet numer-
ically using the slope of the secant line between points 0 and
4, the slope can be found analytically (as for the wall point).

Along a free pressure boundary, the total velocity is a func-
tion of the pressure, and since the pressure is atmospheric, the
total velocity, Vtotal is known.16 Thus

u4 = (V 2
total − v24)1/2 (19)

can be used together with the compatibility equation to deter-
mine u4 and v4. As previously, the predictor-corrector method
is repeated until the desired stopping criteria is reached.

The method is initialized at the nozzle exit with the number
of waves in the expansion fan, Ne, and the number of char-
acteristics in the exit plane, Nc. Wherever they intersect, the
location (x, y) of these Nc points and the velocity (u, v) at
each point is found. The method proceeds along the expansion
line towards the flare surface (or jet boundary, depending on
whether we are on a C+ or C− characteristic) to find the next
point. Once the flare surface is reached, the process is repeated
for the next expansion line. As soon as the pre-specified num-
ber of lines in the expansion fan (Ne) is reached, the method
proceeds along their reflections from the flare to the jet bound-
ary and repeats the process. Shock waves are formed where
these lines coalesce. The method is based on the assumption
that the flow in the expansion region is a simple wave. Fig-
ure 7 shows the shock cell structure predicted by the method
described above under the operating conditions p = 60 psig,
Ujx = 418 m/s, and h = 3.05 mm.

Note the free-jet boundary displacement in Fig. 7. This
agrees with the observed behaviour shown in Fig. 3 and de-
scribed in Section 2. Work is currently underway to use exper-
imental data to determine the equation of the flow boundary
as a function of jet operating conditions. Input of this more
accurate free-jet boundary (rather than the current assumption
of a constant jet width, which is clearly highly unrealistic) will
lead to an improved MOC model. Other methods of solving
the MOC numerically are currently being investigated, and the
associated results compared with those of the Euler predictor-
corrector method.

4. COMPARISON WITH EXPERIMENTAL
RESULTS

Experiments were conducted in a 5 m × 2.5 m × 2.5 m
anechoic chamber. The Coanda surface had the following di-
mensions: Rc = 18.056 mm, Rf = 9 mm. The jet exit veloci-
ties (Ujx) were between 200 m/s and 500 m/s, and the exit slot
(h) varied from 1.14 mm to 3.23 mm. All experiments were
carried out at ambient (room) temperature and pressure. Fig-
ure 3 shows the flow structure typically observed in the mixing
layer region of the jet. Shock cells are clearly seen in the figure,
and the interaction of large-scale coherent structures with these
shock cells produces both broadband (BBSAN) and discrete-
tone SAN, as shown in Fig. 8.

Figure 9 shows the predicted shock cell pattern superim-
posed on the previously described experimental results, for
Ujx = 467 m/s, and h = 3.05 mm. Other predictions ex-
hibit similar features. The arrows represent the (u, v) vectors
at each point predicted by the intersections of characteristics,

Figure 7. Predicted shock cell structure, p = 60 psig, Ujx = 418 m/s,
h = 3.05 mm.

Figure 8. Flare Spectrum (54 mm diameter, 2.39 mm slot width, operating
pressure 35 psig).

starting with the flow in the exit plane as well as the initial
expansion fan. Shock waves are formed at the coalescence of
these vectors, and both the dark regions on the flow visualiza-
tion figures, and the higher concentration of vectors (shown in
white) correspond to regions of higher pressure.

Comparison indicates that the preliminary model of SAN is
relatively accurate at predicting the location of the first shock
cell formation.24 Cells further from the exit slot are less well
predicted, and future work will focus on modifying this pre-
liminary model to include radial expansion and streamline cur-
vature, which is anticipated to improve these predictions.

For reasons described previously, a key characteristic of in-
terest is the location of the first shock cell and its dependence
on flow characteristics.10, 20, 24 BBSAN has previously been
shown to be independent of jet temperature.11 Figure 10 shows
how the location of the first shock appears relatively unaffected
by jet exit velocity, Ujx. Note that one of the reasons that it
is extremely difficult to discern a clear relationship between
shock cell behaviour and jet operating characteristics is the
presence of occasional, but highly disruptive, discrete tones in

204 International Journal of Acoustics and Vibration, Vol. 21, No. 2, 2016



C. P. Lubert, et al.: AN INVESTIGATION OF INITIAL SHOCK CELL FORMATION IN TURBULENT COANDA WALL JETS

(a)

(b)

Figure 9. Comparison of experimental and theoretical results. (a) h =
2.82 mm; 30 psig (b) h = 3.23 mm; 35 psig.

Figure 10. Variation in location of first shock cell with Ujx.

some of the experimental data.11, 23–25 From Fig. 11 it appears
that the location of the first shock cell is invariant with slot
width. However, since the data are sparse, more experiments
are needed to confirm this assertion, especially since Powell24

asserts that the location of the first shock cell is proportional
to h.

As mentioned previously, typically 6–10 shock cells are
formed in the exhaust of the turbulent Coanda flare jet, with
shock cell spacing decreasing as we move away from the exit
nozzle. Since the spacings do not vary too much, typically an
average shock cell spacing, L, is used. Preliminary data on
the variation of shock cell length from cell-to-cell (for the first

Figure 11. Variation in location of first shock cell with h.

five shocks) indicates that there is no clear pattern with respect
to Ujx or p from shock to shock. Initial results indicate that
the shock cell length is approximately equal to the slot width
h,23 whereas Powell24 observed in the 2D case that L is pro-
portional to both p and h. Harper-Bourne and Fisher11 suggest
a possible relationship of the form

L = 1.1βh; (20)

where β is the shock strength, which is a function of the local
jet Mach number.

Breakaway is the phenomenon that is often observed in
Coanda flows when a lip shock is formed at the lower edge of
the exit slot. This lip shock generates a separation bubble on
the Coanda surface that grows in size with operating pressure
and ultimately causes the flow to separate from the Coanda sur-
face to which it was formerly attached.7 When parameters such
as operating pressure, nozzle exit slot width, and curvature are
increased, the location of this separation bubble retreats around
the Coanda surface back towards the nozzle exit, and, at some
critical point, the flow breaks completely away from the sur-
face.19 See Fig. 12 for details.

At high speeds, the separation process is usually further
complicated by shock wave/boundary layer interaction.7 The
breakaway process is shown in more detail by the set of
Schlieren photos in Figs. 13(a)–13(d). In the present experi-
mental work, for a given slot width, the operating pressure was
continuously increased until breakaway was observed via the
Schlieren flow visualisation system. The observed breakaway
slot width-operating pressure (or exit velocity) combinations,
are shown in Fig. 14. It should be noted that, for high speed
Coanda flows, when the stagnation pressure is increased until
breakaway occurs, and then decreased to make the flow reat-
tach, it is found that the pressure has to be reduced to a consid-
erably lower level than the breakaway pressure before reattach-
ment occurs. This hysteresis effect occurs over a substantial
range of operating pressures.7 Figure 15 shows how the SPL is
affected by breakaway. As soon as breakaway occurs, a steep
drop in SPL is observed, as the flow is redirected away from
the horizontal. One of the motivations for the current interest
in shock cell location (especially the location of the first shock
cell, before the shock waves occur) is the potential for better
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Figure 12. Schematic of key features of the flow field for a Coanda flow.7

(Reproduced with permission of reference [7]).

prediction of jet breakaway.20

Figure 16 shows the frequency spectra for h = 1.9 mm
and a horizontal observer. For this slot width, breakaway oc-
curs at 23 psig, and this is exhibited in Fig. 15 by the re-
duced SPL spectrum for 25 psig, compared to 20 psig. This
is also exhibited in Fig. 16 by the lower SPL levels observed
at 30 psig and 40 psig compared to 20 psig. The relationship
between breakaway and location of the first shock cell is cur-
rently being investigated. As discussed previously, because of
its complex nature, the flare jet is almost always imperfectly
expanded.8 Indeed, the flow near the nozzle exit (especially for
a stepped flare) is found to be supersonic and underexpanded
at most operating pressures,10 leading to the formation of a se-
ries of shock cells.8 The interaction of the jet turbulence with
these shock waves produces two noise components; screech
(discrete) tones and BBSAN.11 Although BBSAN is generally
present, the screech tones (which are thought to be produced
by a feedback loop mechanism24) require sound waves of suf-
ficient intensity to reach the jet nozzle exit region, or the loop
cannot be sustained. Since such waves are not always present;8

the focus here is on BBSAN. Harper-Bourne and Fisher devel-
oped the first prediction method for BBSAN.11 In their model,
the noise generation depends on a nearly coherent interaction
between the turbulence in the jet shear layer and the jet shock
cell structure. This interaction is modelled by a series of corre-
lated point sources that radiate either constructively or destruc-
tively. It is well known that most of the SAN is produced in the
region just downstream of the nozzle exit.10 Thus the location
of the shock cells is of primary importance in determining both
the BB shock cell noise spectrum and the peak frequency of
the BBSAN emitted by a given jet configuration.11, 22 For ex-
ample, Harper-Bourne and Fisher11 have shown that the SAN
peak frequency, fp, is related to the (average) shock cell spac-
ing, L, by

fp =
Uc

L(1 −Mc cos(θ))
; (21)

where Uc is the eddy convection velocity and (1 −Mc cos(θ))

(a)

(b)

(c)

(d)

Figure 13. Schlieren photographs showing breakaway, 2.82 mm slot width
(a) 45 psig (b) Before breakaway (c) During breakaway (d) After breakaway.
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Figure 14. Variation in breakaway pressure with slot width.

Figure 15. Effect of breakaway on SPL.

is a Doppler factor incorporating the variation in retarded time
and source phasing. This agrees with the assertion of Pow-
ell24 for both a 2D nozzle and a round nozzle that the acoustic
wavelength is inversely proportional to L.24

The current work is part of an effort to illuminate the re-
lationship between cell location and flow characteristics such
as operating pressure and slot width. Following the work of
Tam et al.,22 once a computational model has been developed
to predict the shock cell structure in the jet, the Fourier modes
of the shock cell structure can be calculated. Thus the inter-
action of the large scale turbulent structures with the shock
cells (the source of BBSAN) can be thought of as the inter-
action of these structures with the different Fourier modes. In-
teraction with a particular mode generates a unique ‘peak’ in
the shock cell noise spectrum, with the dominant peak usu-
ally generated by the first (fundamental) mode.22 The sound
intensity and directionality can also be determined from the
geometry of the sound field.24 Tam et al.22 obtained good
agreement with experimental data by applying these methods
to dual stream jets, although they note (as do the current au-
thors) that clearly ‘. . . the computation of the shock cell struc-
ture is but the first step in the development of a shock cell

Figure 16. Effect of breakaway on frequency spectra, 1.9 mm slot width.

noise prediction methodology/theory’. Thus the current work
is part of an ongoing research programme to combine the pre-
vious approaches11, 20, 24 to Coanda jets, and in this way (via
the determination of the effect of jet operating conditions on
shock cell structure), determine the effect of jet operating con-
ditions on BBSAN. It should be noted that alternative models
of BBSAN show reasonable agreement with the proposed ap-
proach.12, 13, 22

5. SUMMARY AND CONCLUSIONS

A theoretical method of predicting the shock cell structure
associated with a three-dimensional turbulent Coanda wall jet
is presented, and compared with experimental data. The gov-
erning coupled quasi-linear partial differential equations are
solved numerically using the MOC with the Euler predictor-
corrector method. In addition to being a useful model in its
own right, it has been noted10 that the MOC is useful in help-
ing to interpret Schlieren photos. In this way, the location of
the shock cells is determined. The qualitative displacement
of the free-jet boundary is accurately modeled by the current
method (Fig. 7), as are general features such as the relative
invariance of shock cell location with p and h (Figs. 10 and
11). The relatively constant shock cell spacing is also ob-
served in Fig. 7. The presence of discrete tones in the data
disrupt observed trends, and means that the data are relatively
sparse. Separation of the flow or breakaway is achieved across
the entire range of operating conditions (p = 10 − 60 psig,
h = 1.14 − 3.23 mm) at certain pressure/slot width combi-
nations. It occurs at higher pressures for larger slot widths.
The relationship between breakaway and the observed shock
waves is currently being investigated in more detail by us-
ing the Schlieren images (see Fig. 13) in conjunction with the
acoustical measurements. Sudden drops in SPL (see Fig. 15)
denote that breakaway has occurred, and this is being corre-
lated with the associated operating conditions in an attempt to
determine whether such a relationship exists.

Clearly, the above work needs to be extended to better model
three-dimensional turbulent Coanda wall jet flows. For exam-
ple, three-dimensional jets require the inclusion of radial flow
and longitudinal vortices. Indeed, such vortices have previ-
ously been utilised in Coanda flows to disrupt the coherent
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structures in a flow, thereby weakening the shock cell structure
and reducing the OASPL.25 Curved 3D jets differ from plane
3D jets because they exhibit radial expansion and streamline
curvature. Indeed, in a curved jet, the rapid growth of the outer
shear layer (caused by streamline curvature) means that the
shock cell structure is shorter than in equivalent plane jets.20

These features also tend to promote enhanced turbulence lev-
els, and thus Coanda wall jet flows are even more complex than
curved free jets, since they contain solid surface/shock wave
and shock wave/boundary layer interactions. It is intended that
future modelling work will incorporate many of these features.
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This paper deals with nonlinear free axisymmetric vibrations of functionally graded (FG) thin circular plates whose
properties vary in thickness. The inhomogeneity of the plate is characterized by a power law variation of the
Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed
to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of
admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions
on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of nonlinear
algebraic equations, is solved numerically. The nonlinear to linear frequency ratios are presented for various values
of the volume fraction index n showing a hardening type nonlinearity. The distribution of the radial bending
stresses associated to the nonlinear mode shape is also given for various vibration amplitudes and compared with
those predicted by the linear theory. Then, explicit analytical solutions are presented, based on the semi-analytical
model previously developed by El Kadiri et al. for beams and rectangular plates. This model allows direct and
easy calculation for the first nonlinear axisymmetric mode shape with its associated nonlinear frequencies and
nonlinear bending stresses of FG circular plates, which are expected to be very useful in engineering applications
and in further analytical developments. An excellent agreement is found with the results obtained by the iterative
method.

1. INTRODUCTION

The concept of functionally graded materials (FGMs) was
first introduced in 1984 as ultrahigh-temperature resistant ma-
terials for aircraft, space vehicles, and other engineering ap-
plications.1 FGMs are nonconventional composite materials
that are microscopically inhomogeneous, and their mechanical
properties vary continuously in one or more directions. This
is achieved by gradually varying the volume fraction of the
constituent materials. The continuity of the material properties
reduces the influence of the presence of abrupt interfaces and
avoids high interfacial stresses. Furthermore, FGMs can be tai-
lored to achieve particular desired properties, and the gradation
in properties of materials can optimize the stress distribution.

Many studies have been devoted to FG plate vibrations in the
literature. Allahverdizadeh et al.2 investigated the nonlinear
free and forced vibration of thin circular FG plates. Praveen
and Reddy3 conducted the nonlinear transient thermoelastic
analysis of FG ceramic-metal plates using the finite element
method. Yang and Shen4 examined the dynamic response of
initially stressed FGM rectangular thin plates subjected to im-
pulsive loads. The effects of the volume fraction index, the
foundation stiffness, the plate aspect ratio, the shape and dura-
tion of the applied impulsive load on the dynamic response of
FGM plates have been studied in this work. Also, the vibration
characteristics and the transient response of shear-deformable

FGM plates made of temperature-dependent materials in ther-
mal environments have been examined by Yang and Shen.5

The differential quadrature technique, the Galerkin approach,
and the modal superposition method have been used to deter-
mine the transient response of the plate subjected to lateral
dynamic loads. Huang and Shen6 discussed the nonlinear vi-
bration and dynamic response of FG plates in a thermal en-
vironment by using an improved perturbation technique. The
results reveal that the temperature field and the volume frac-
tion distribution have significant effects on the nonlinear vi-
bration and the dynamic response of simply supported rect-
angular plates with no in-plane displacements. Reddy and
Cheng7 studied the harmonic vibration problem of FG plates
by means of a three-dimensional asymptotic theory formu-
lated in terms of the transfer matrix. Prakash and Ganapathi8

analyzed the asymmetric flexural vibration and thermoelastic
stability of FG circular plates. They used a finite element
method to solve the problem. Efraim and Eisenberger9 stud-
ied the exact vibration analysis of thick annular isotropic and
FGM plates of variable thicknesses. The motion equations that
they obtained by the first order shear deformation theory have
been solved by the exact element method. Dong10 presented
an analysis of three-dimensional free vibration of FG annular
plates via Chebyshev-Ritz method. Malekzadeh et al.11 dis-
cussed the in-plane free vibration of FG circular arches with
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temperature-dependent properties under a thermal environ-
ment. They assumed that the material properties and temper-
atures vary along the thickness direction, the governing equa-
tion and boundary conditions were obtained by the Hamilton
principle. Viswanathan et al.12 studied free vibration of a sym-
metric angle-ply laminated annular circular plate of variable
thickness using the first order shear deformation theory using
spline function approximation. The equations of motion for the
plates are derived using the first order shear deformation the-
ory. The solutions of displacement functions are assumed in a
separable form to obtain a system of coupled differential equa-
tions in terms displacement and rotational functions, and these
functions are approximated by Bickley-type splines of order
three. The vibration of 3- and 5-layered plates, made up of two
types of materials and two types of boundary conditions, are
considered. A generalized eigenvalue problem is obtained and
solved numerically for an eigenfrequency parameter and for
an associated eigenvector of spline coefficients. Ebrahimi13

studied geometrically nonlinear vibration of a piezoelectri-
cally actuated FGM plate with an initial large deformation,
based on Kirchhoff’s-Love hypothesis with Von-Karman-type
geometrical large nonlinear deformation. Recently, Kermani,
Ghayour, and Mirdamad14 reported a free vibration analysis of
multi-directional FG circular and annular plates using a semi
analytical/numerical method called state space-based differen-
tial quadrature method. Viswanathan, Javed, and Aziz15 dis-
cussed the free vibration of laminated antisymmetric angle-ply
annular circular plates with inclusion of the first order shear
deformation theory using a spline function approximation by
applying a point collocation method. The equations of motion
of the plates are derived using first order shear deformation
theory.

In the present work, the large axisymmetric free vibration
amplitudes of clamped immovable thin FG circular plates is
analyzed by using and adapting the model previously presented
by Haterbouch and Benamar16, 17 for large vibration ampli-
tudes of isotropic circular plates. By assuming harmonic mo-
tion and expanding the transverse displacement in the form of
the finite series of basic functions—namely the linear free vi-
bration mode shape of the clamped circular plate—obtained
in terms of Bessel’s functions, the discretized expressions for
the total strain energy and kinetic energy have been derived.
In addition to the classical mass and rigidity tensors, a fourth
order tensor appears due to the nonlinearity in these expres-
sions. The application of Hamilton’s principle reduced the
large amplitude free vibration problem to a set of nonlinear al-
gebraic equations, which have been solved numerically in each
case, leading to the first nonlinear axisymmetric mode shape of
clamped circular plates. The relationships between the nonlin-
ear to linear frequency ratio have been obtained, as well as the
mode shape and the non-dimensional maximum vibration am-
plitude for the first nonlinear mode shape of circular plates,
showing hardening type nonlinearity and the dependence of
the first mode shape on the amplitude of vibration.

2. GENERAL FORMULATION

2.1. Problem Definition
As mentioned above, FGMs are nonconventional compos-

ite materials whose mechanical properties vary continuously
due to gradual change in the volume fraction of the constituent

Figure 1. Geometry of FG clamped circular plate.

Table 1. Material properties used in the FG circular plate

Material Property
E (GPa) ρ (kg/m3)

Silicon nitride (Si3N4) 355.2715e9 2370
Stainless steel (SUS304) 207.7877e9 8166

material. In this study, a fully clamped thin circular plate of
a uniform thickness h and a radius a is considered. The co-
ordinate system is chosen so that the middle plane of the plate
coincides with the polar coordinates (r, θ), the origin of the co-
ordinate system being at the centre of the plate with the z-axis
downward, the top surface of the plate is ceramic-rich, whereas
the bottom surface is metal-rich, as depicted in Fig. 1.

2.2. Mechanical Properties of FGCP
FGMs are usually modelled as an inhomogeneous isotropic

linear elastic material. However, here it is assumed that the
material properties of FGM plates vary continuously through
the plate thickness as a function of the volume fraction and the
properties of constituent materials, from full ceramic at the top
surface to full metal at the bottom. A power law distribution
is used for the volume fraction of the constituents (metal and
ceramic) as follows:18

Vm(z) =

(
z

h
+

1

2

)n
; (1)

Vc(z) + Vm(z) = 1; (2)

where subscripts m and c refer to the metal and ceramic con-
stituents, respectively; Vm and Vc denote the volume fraction
of metal and ceramic, respectively; n is called the volume frac-
tion index or material constant; and z is the thickness coordi-
nate (−h/2 ≤ z ≤ h/2). Fully metal and fully ceramic are
represented in Fig. 2, respectively, by zero and infinity val-
ues of the material constant n. Based on the linear role of the
mixture, the effective mechanical properties of FGMs can be
expressed as18

P = PcVc + PmVm; (3)

where Pm and Pc denote the specific properties of metallic and
ceramic constituents, respectively. Therefore, all the mechani-
cal and thermal properties of the FGM plate, such as Young’s
modulus, E, can be written as

E(z) = Ec + (Em − Ec)Vm. (4)

Poisson’s ratio, ν, is assumed to be constant for simplicity and
convenience.

In what follows, a metal, stainless steel (SUS304) and ce-
ramics, silicon nitride (Si3N4) system of FGMs is considered.
These material properties are given in Table 1.
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Figure 2. Volume fraction of metal along the thickness.

2.3. Vibration Analysis
Considering axisymmetric vibrations of the FG circular

plate, the displacements are given in accordance with the clas-
sical plate theory:

ur(r, z, t) = U(r, t)− z
∂W(r,t)

∂r
,

uθ(r, t) = 0, uz(r, t) =W (r, t); (5)

where U and W are the in-plane and out-of-plane displace-
ments of the middle plane point (r, θ, 0) respectively, and ur,
uθ and uz are the displacements along ~er, ~eθ and ~ez directions,
respectively.

The non-vanishing components of the strain tensor in the
case of large displacements are given by Von-Karman relation-
ships:

{ε} =
{
ε0
}
+ z{K}+

{
λ0
}
; (6)

in which
{
ε0
}

, {K} and
{
λ0
}

are given by

{
ε0
}
=

[
ε0r
ε0θ

]
=

[
∂U
∂r
U
r

]
; (7)

{K} =
[
Kr

Kθ

]
=

[
−∂

2W
∂r2

− 1
r
∂W
∂r

]
; (8)

{
λ0
}
=

[
λr
λθ

]
=

[
1
2

(
∂W
∂r

)2
0

]
; (9)

For the FGM circular plate shown in Fig. 1, the stress can be
expressed as:

{σ} = [Q]{ε} (10)

in which {σ} = [σr σθ]
T and the terms of the matrix [Q] can

be obtained by the relationships given, for example, in Timo-
shenko, Weinsowsky-Krieger, and Jones.19 The force and mo-
ment resultants are defined by

(Nr, Nθ) =

∫ h/2

−h/2
(σr, σθ) dz; (11)

(Mr,Mθ) =

∫ h/2

−h/2
(σr, σθ) z dz. (12)

The in-plane forces and bending moments in the plate are given
by [

N
M

]
=

[
A B
B D

] [{
ε0
}
+
{
λ0
}

{K}

]
. (13)

A,B, andD are the symmetric matrices given by the following
equation:

(Aij , Bij , Dij) =

∫ h/2

−h/2
Qij

(
1, z, z2

)
dz. (14)

Here, the Qij’s are the reduced stiffness coefficients of the
plate. The expression for the bending strain energy Vb, the
membrane strain energy Vm, the coupling strain energy Vc and
the kinetic energy T are given by

Vb = π

∫ a

0

D11

[(
∂2W

∂r2

)2

+
1

r2

(
∂W

∂r

)2

+

2
ν

r

∂W

∂r

∂2W

∂r2

]
r dr; (15)

Vm = π

∫ a

0

A11

[(
∂U

∂r

)2

+
∂U

∂r

(
∂W

∂r

)2

+
1

4

(
∂W

∂r

)4

+

U2

r2
+

2νU

r

∂U

∂r
+ ν

U

r

(
∂W

∂r

)2
]
r dr; (16)

Vc = π

∫ a

0

−B11

[
∂2W

∂r2

(
∂W

∂r

)2

+
ν

r

∂W

∂r

(
∂W

∂r

)2
]
r dr;

(17)

and

T = πI0

∫ a

0

(
∂W

∂r

)2

r dr; (18)

where I0 is the inertial term given by

I0 =

∫ h/2

−h/2
ρ(z) dz. (19)

An approximation has been adopted in the present work con-
sisting of neglecting the contribution of the in-plane displace-
ment U in the membrane strain energy expression. Such an
assumption has been made when calculating the first two non-
linear mode shapes of circular plates and fully clamped rect-
angular plates.16, 20, 21, 23 For the first nonlinear mode shape,
the range of validity of this assumption has been discussed in
the light of the experimental and numerical results obtained for
the nonlinear frequency-amplitude dependence and the nonlin-
ear bending stress estimates obtained at large vibration ampli-
tude.20, 22 In order to examine the effects of large vibration am-
plitudes on the membrane stress patterns for clamped circular
plates, the contribution of the in-plane displacement U should
be taken into account in the membrane strain expression. The
assumption introduced above leads to

Vm =
πA11

4

∫ a

0

(
∂W

∂r

)4

r dr. (20)
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The total strain energy, V , is then given by

V = π

∫ a

0

A11

4

(
∂W

∂r

)4

−B11

[
∂2W

∂r2

(
∂W

∂r

)2

+

ν

r

∂W

∂r

(
∂W

∂r

)2
]
+D11

[(
∂2W

∂r2

)2

+

1

r2

(
∂W

∂r

)2

+ 2
ν

r

∂W

∂r

∂2W

∂r2

]
r dr. (21)

2.3.1. Discretization of the Total Strain and Kinetic
Energy Expressions

If the space and time functions are supposed to be separable
and harmonic motion is assumed, the transverse displacement
W can be written as

W (r, t) = w(r) sin(ωt). (22)

The spatial function w(r) is expanded in the form of a finite
series of n basic functions wi(r) as follows:

w(r) = aiwi(r); (23)

in which the usual summation convention for the repeated in-
dex i is used over the range [1, n]. The transverse displacement
W (r, t) is then given by:

W (r, t) = aiwi(r) sin(ωt). (24)

The discretization of the total strain and kinetic energy ex-
pressions is made by substituting the expression for W (r, t)
given in Eq. (24) into Eqs. (18)–(21) and rearranging. This
leads to the following expressions:

V =
1

2
aiajkij sin

2(ωt) +
1

2
aiajakcijk sin

3(ωt) +

1

2
aiajakalbijkl sin

4(ωt); (25)

T =
1

2
ω2aiajmij cos

2(ωt); (26)

in which mij , kij , bijkl and cijk are the mass tensor, the linear
rigidity tensor, the fourth order nonlinear rigidity tensor and
the third order nonlinear coupling tensor, respectively. The ex-
pressions for these tensors are

mij = 2πI0

∫ a

0

wiwjr dr; (27a)

kij = 2πD11

∫ a

0

(
d2wi
dr2

d2wj
dr2

+
1

r2
dwi
dr

dwj
dr

+

2
ν

r

dwi
dr

d2wj
dr2

)
r dr; (27b)

cijk = −2πB11

∫ a

0

(
d2wi
dr2

dwj
dr

dwk
dr

+
ν

r

dwi
dr

dwj
dr

dwk
dr

)
r dr;

(27c)

bijkl =
πA11

2

∫ a

0

(
dwi
dr

dwj
dr

dwk
dr

dwl
dr

)
r dr. (27d)

2.3.2. Formulations of the Governing Equations

The dynamic behavior of the structure is governed by
Hamilton’s principle, which is symbolically written as

δ

∫ π/2ω

0

(V − T )dt = δ∅ = 0. (28)

Replacing T and V by their discretized expressions given
by Eqs. (25) and (26) in the energy condition Eq. (28), inte-
grating the time functions in the range

[
0, π2ω

]
and calculating

the derivatives with respect to the ai’s leads to the following
equation:

3π

32ω
ajakalbrjkl +

3π

32ω
aiakalbirkl +

3π

32ω
aiajalbijrl +

3π

32ω
aiajakbijkr −

( π
8ω
ajmrjω

2 +
π

8ω
aimirω

2
)
+(π

8
ajkrj +

π

8
aikir

)
+
( 2

6ω
ajakcrjk +

2

6ω
aiakcirk +

2

6ω
aiajcijr

)
= 0. (29)

The precedent equation can be rewritten as:( π
4ω
aikir

)
+

(
3π

8ω
aiajakbijkr

)
+

(
1

ω
aiajc

s
ijr

)
−( π

4ω
aimirω

2
)
= 0. (30)

It appears from Eqs. (27a)–(27b) and (27d) that the tensors
mij and kij are symmetric, and that the fourth order tensor
bijkl is such that

bijkl = bklij = bjilk = bikjl. (31)

On the other hand, a third order tensor csijk is defined by
Eq. (29) such that

csijk =
1

3
(ckij + cikj + cjik) . (32)

Consequently, Eq. (28) reduces to the following set of non-
linear algebraic equations:

aikir +
3

2
aiajakbijkr +

4

π
aiajc

s
ijr − ω2aimir = 0; (33)

for r = 1, . . . , n. This can be written in a matrix form as

{A}T [K]{A}+ 3

2
{A}T [B(A)]{A}+ 4

π
{A}T [C(A)]{A} −

ω2{A}T [M ]{A} = 0. (34)

Pre-multiplying Eq. (30) by the vector (A)T = [a1 a2 . . . an]
leads to the following expression for ω2:

ω2 =
aiajkij +

3
2aiajakalbijkl +

4
πaiajakc

s
ijk

aiajmij
. (35)

To simplify the analysis and the numerical treatment of the set
of nonlinear algebraic equations, a non-dimensional formula-
tion has been considered by putting the spatial displacement
function as

wi(r) = hw∗
i (r

∗); (36)
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where r∗ = r/a, the non-dimensional radial coordinate, and
Eq. (30) may be rewritten in non-dimensional form as

2aik
∗
ir + 3aiajakb

∗
ijkr +

8

π
aiajc

s∗
ijr − 2ω∗2aim

∗
ir = 0. (37)

The m∗
ij , k

∗
ij , c

∗
ijk and b∗ijkl terms are non-dimensional tensors

related to the dimensional ones by the following relationships:

mij = 2πI0h
2a2m∗

ij ; (38a)

kij =
2πD11h

2

a2
k∗ij ; (38b)

cijk =
−2πB11h

3

a2
c∗ijk; (38c)

bijkl =
πA11h

4

2a2
b∗ijkl. (38d)

These non-dimensional tensors are defined by

m∗
ij =

∫ a

0

w∗
iw

∗
j r

∗dr∗; (39a)

k∗ij =

∫ a

0

(
d2w∗

i

dr∗2
d2w∗

j

dr∗2
+

1

r∗2
dw∗

i

dr∗
dw∗

j

dr∗
+

2
ν

r∗
dw∗

i

dr∗
d2w∗

j

dr∗2

)
r∗dr∗; (39b)

c∗ijk = β

∫ a

0

(
d2w∗

i

dr∗2
dw∗

j

dr∗
dw∗

k

dr∗
+

ν

r∗
dw∗

i

dr∗
dw∗

j

dr∗
dw∗

k

dr∗

)
r∗dr∗;

(39c)

b∗ijkl = α

∫ a

0

(
dw∗

i

dr∗
dw∗

j

dr∗
dw∗

k

dr∗
dw∗

l

dr∗

)
r∗dr∗; (39d)

where ω∗ is the non-dimensional nonlinear frequency parame-
ter defined by

ω∗2 = γω2; (40)

in which ω∗2 is given by the following expression:

ω∗2 =
aiajk

∗
ir +

3
2aiajakalb

∗
ijkr +

4
πaiajakc

s∗
ijk

ω∗2aiajm∗
ir

. (41)

The parameters α, β, and γ are given by

α =
A11h

2

4D11
; (42a)

β =
−B11h

D11
; (42b)

γ =
I0a

4

D11
. (42c)

2.4. Bending Stress Expressions
The bending strains εbr and εbθ are given by

εbr(z) = −z
(
d2w

dr2

)
; (43a)

εbθ(z) = −z
(
1

r

dw

dr

)
. (43b)

By using the classical thin plate assumption of plane stress
and Hooke’s law, the radial and circumferential bending

Table 2. Non-dimensional linear frequencies, associated with the axisymmet-
ric modes of a clamped FG circular plate for i = 1, . . . , 6.

i 1 2 3 4 5 6
(ω∗

l )i 10.21 39.77 89.10 158.18 247.00 355.56

stresses are given by

σbr = −
zE(z)

(1− ν2)

[(
d2w

dr2

)
+ ν

(
1

r

dw

dr

)]
; (44)

σbθ = −
zE(z)

(1− ν2)

[(
1

r

dw

dr

)
+ ν

(
d2w

dr2

)]
. (45)

In terms of the non-dimensional parameters defined in
the previous section, the radial and circumferential bending
stresses σbr and σbθ can be defined by

σbr = −
z∗E(z∗)h2

(1− ν2)a2

[(
d2w∗

dr∗2

)
+ ν

(
1

r∗
dw∗

dr∗

)]
; (46)

σbθ = −
z∗E(z∗)h2

(1− ν2)a2

[(
1

r∗
dw∗

dr∗

)
+ ν

(
d2w∗

dr∗2

)]
. (47)

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Numerical Details
The basic functions w∗

i to be used in the expansion series
of w in Eq. (23) must satisfy the theoretical clamped boundary
conditions (i.e., zero displacement and zero slopes along the
circular edge). Since the linear problem of free axisymmetric
flexural vibration of a clamped circular plate has an exact an-
alytical solution, the chosen basic functions w∗

i were taken as
the linear free oscillation mode shapes of fully clamped circu-
lar plates given by24

w∗
i (r

∗) = Ai

[
J0(βir

∗)− J0(βi)

I0(βi)
I0(βir

∗)

]
. (48)

where βi is the ith real positive root of the transcendental equa-
tion

J1(β)I0(β) + J0(β)I1(β) = 0; (49)

in which Jn and In are, respectively, the Bessel and the mod-
ified Bessel functions of the first kind and of order n. The
parameter βi is related to the ith non-dimensional linear fre-
quency parameter (ω∗

l )i of the plate by

β2
i = (ω∗

l )i. (50)

Leissa’s study25 features examples of numerical values of
(ω∗
l )i, and the first six values are given here in Table 2. Ai

is chosen such that ∫ 1

0

w∗2
i r

∗dr∗ = 1. (51)

Therefore, a set of orthonormal functions, and the mass tensor
associated with the chosen transverse displacement is given by

m∗
ij =

∫ 1

0

w∗
iw

∗
j r

∗dr∗ = δij ; (52)

where δij is the Kronecker delta symbol. The first six basic
functions w∗

i , i = 1, . . . , 6 are plotted in Fig. 3.
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Figure 3. Axisymmetric out-of plane natural modes of vibration for a clamped
circular plate W ∗

i for i = 1, . . . , 6.

3.2. Iterative Method of Solutions and Anal-
ysis of Numerical Results

3.2.1. Iterative Method of Solutions

The set of nonlinear algebraic Eqs. (37) has been solved nu-
merically by using the Harwell library routine NS01A, based
on a hybrid iterative method combining the steepest descent
and Newton’s methods to obtain the numerical results pre-
sented for the first nonlinear mode shape of a thin FG circular
plate. This method does not require a very good initial esti-
mate of the solution or a step procedure, similar to other meth-
ods described for beams and rectangular plates.20–23 It was
adopted here to ensure rapid convergence when varying the
amplitude, which allowed solutions to be obtained with a quite
reasonable number of iterations. The fundamental nonlinear
mode shape was calculated in the neighborhood of the linear
solution corresponding to a small numerical value of the coef-
ficient ar0(r0 = 1) of the basic function w∗

r0. The resulting
solution was then used as an initial estimate for the following
step corresponding to higher values of ar0(r0 = 1).

3.2.2. Numerical Results and Discussion

The first six linear axisymmetric eigenfunctions of the
model presented above were used, respectively, to obtain the
first nonlinear axisymmetric mode shape. The results obtained
numerically from iterative solutions of the nonlinear algebraic
system Eq. (37) are summarized in Table 3. The computed val-
ues of a2, a3, . . . , a6 obtained for assigned values of a1 vary-
ing from 0.005 to 0.75 correspond to maximum dimension-
less vibration amplitudes varying from 0.0165 to 2.386 and are
given in Table 3. In each table, ai represents the contribution
of the ith basic function w∗

i . The variable w∗
max is the max-

imum non-dimensional amplitude, and (ω∗
nl/ω

∗
l ) is the ratio

of the non-dimensional nonlinear frequency parameter defined
in Eq. (41) to the corresponding non-dimensional linear fre-
quency parameter given in Table 3. It can be seen from this ta-
ble that the non-dimensional nonlinear frequencies calculated
here from the nonlinear analysis for low amplitudes of up to
0.04 (very small values of a1 and a2) coincide exactly with the
corresponding linear ones. Also, near to the linear frequency
of a given mode, only the corresponding basic function has

Table 4. Effect of large vibration amplitudes on the frequencies of the first
non-linear axisymmetric mode shape of a clamped FG circular plate (n =
0.5).

Non-linear frequency ratio
W ∗

max n Present work From graph2

0.2

0.5

1.0076 1.0074
0.4 1.0300 1.0259
1.0 1.1752 1.1629
1.5 1.3626 1.3370

Table 5. Frequency ratio (ω∗
nl/ω

∗
l ) of a clamped isotropic circular plate (n =

0.0).

W ∗
max 20082 200316 196126 196227 Present analysis

0.2 1.0075 1.0072 1.0070 1.0079 1.0108
0.4 1.0296 1.0284 1.0278 1.0313 1.0421
0.8 1.1135 1.1073 1.1065 1.1194 1.1560
1.0 1.1724 1.1615 1.1617 1.1808 1.2318
1.5 1.3567 1.3255 1.3343 1.3711 1.4542

a significant contribution. At large vibration amplitudes, the
mode contributions and the resonance frequency increase with
the amplitude of vibration. The corresponding rate of increase
decreases with the order of the mode considered and becomes
negligible for the higher modes.

3.2.3. Amplitude Frequency Dependence

The dependence of the nonlinear frequency on the non-
dimensional vibration amplitude is listed in Table 4 for the
first nonlinear axisymmetric mode shape of the FG circular
plate for n = 0.5. From this table, it is observed that the
nonlinear frequency increases with increasing vibration ampli-
tudes. It can be also observed that the results calculated via the
present model exhibit a higher increase of the frequency com-
pared with those obtained by Haterbouch and Benamar2 with a
discrepancy of 6.22% for a value of the non-dimensional am-
plitude w∗

max = 1.0 and 0.41% for a non-dimensional vibration
amplitude w∗

max = 0.2. This may be attributed to the negli-
gence of in-plane displacements in the present theory. Table 5
shows the comparison of the nonlinear frequency ratio of the
first mode shape of the isotropic circular plates (case of n = 0)
with those obtained for some isotropic circular plates in the
literature.

Figure 4 shows the dependence of the frequency ratio of the
clamped FG circular plate on the amplitude of vibration for
various values of the power law index n. As may be seen in
this figure, by increasing the values of the power law index
in the range [0, 2], the frequency increases. For values higher
than n = 2.0, the frequency decreases when n increases. This
may be expected, since when the power law index n = 0.0
or n = 1000.0, the material is pure metallic or pure ceramic,
respectively, and the non-dimensional frequency corresponds
to the isotropic material case.

3.2.4. Amplitude Dependence of the First Nonlin-
ear Axisymmetric Mode Shape of FG Circular
Plates

Previous studies20–23 have shown that the nonlinear mode
shapes of beam- and plate-like structures are amplitude depen-
dent. This effect is illustrated in the present case in Fig. 5 in
which the normalized nonlinear mode shapes of the first ax-
isymmetric mode of the clamped FG circular plate are plotted
for various values of the maximum non-dimensional ampli-
tudes. All curves show the amplitude dependence of the first
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Table 3. Contribution coefficients to the first non-linear axisymmetric mode shape of the clamped FG circular plate, obtained numerically from iterative solution
of the non-linear system in Eq. (37).

w∗
max ω∗

nl/ω
∗
l a1 a2 a3 a4 a5 a6

0.0165 1.0000 0.005 -5.0666 E-008 9.3961 E-009 -2.5725 E-009 8.0453 E-011 -3.8763 E-013
0.0330 1.0003 0.01 -3.2327 E-007 1.0681 E-007 -3.7776 E-009 8.9118 E-010 -3.1623 E-010
0.0661 1.0012 0.02 -2.6017 E-006 8.6160 E-007 -2.5008 E-008 3.1887 E-009 -5.8694 E-010
0.1322 1.0048 0.04 -1.0800 E-008 7.3254 E-009 -5.5800 E-009 5.9800 E-009 -1.0800 E-010
0.2641 1.0190 0.08 -1.6245 E-004 5.4556 E-005 -1.8763 E-006 2.8340 E-007 -4.5036 E-008
0.3299 1.0294 0.10 -3.1274 E-004 1.0588 E-004 -3.9480 E-006 6.4564 E-007 -9.7508 E-008
0.4934 1.0643 0.15 -1.0059 E-003 3.4978 E-004 -1.6334 E-005 3.2094 E-006 -4.5234 E-007
0.8165 1.1646 0.25 -4.0663 E-003 1.5171 E-003 -1.0883 E-004 2.7996 E-005 -4.2409 E-006
1.1347 1.2924 0.35 -9.4441 E-003 3.8097 E-003 -3.8014 E-004 1.1767 E-004 -2.1055 E-005
1.4495 1.4366 0.45 -1.6788 E-002 7.2922 E-003 -9.2628 E-004 3.2968 E-004 -6.9137 E-005
1.7625 1.5906 0.55 -2.5619 E-002 1.1875 E-002 -1.8036 E-003 7.1673 E-004 -1.7152 E-004
2.0746 1.7507 0.65 -3.5523 E-002 1.7397 E-002 -3.0261 E-003 1.3140 E-003 -3.5021 E-004
2.3862 1.9151 0.75 -4.6185 E-002 2.3678 E-002 -4.5770 E-003 2.1363 E-003 -6.2198 E-004

Figure 4. Effect of the power law index n on the variation of the non-linear fre-
quency ratios (ω∗

nl/ω
∗
l ) of the clamped FG circular plate with the amplitude

of vibration.

axisymmetric nonlinear mode shape with an increase of curva-
tures near to the clamped edges, which may lead one to expect
that the bending stress near to the edges of the plate increases
nonlinearly with the increase of the vibration amplitude. This
is examined in the next subsection.

3.2.5. Analysis of the Bending Stress Distribution As-
sociated with the First Nonlinear Axisymmetric
Mode Shape of FG Circular Plates

As mentioned above, the present multimodal model al-
lows not only determination of the amplitude-frequency de-
pendence, but also the deformation of the mode shape due to
the geometrical nonlinearity. From this last result, it was ex-
pected that the effect of the amplitude of vibration on the dis-
tribution of the associated bending stress would be of a great
significance since the bending stress is related to the deriva-
tives of the amplitude dependent transverse mode shape.

The radial bending stress distributions associated with
the first axisymmetric nonlinear mode shape with non-
dimensional radius are plotted in Fig. 6. It can also be seen
in Fig. 7 that the nonlinear radial bending stresses exhibit a
higher increase near to the clamped edge compared with that
expected in linear theory. The rate of increase in the radial
bending stress is about 1.52, the rate of increase expected in
linear theory for the first mode.

Figures 8–9 present the effect of the volume fraction index
on the bending stress at the clamped edge and the plate center

Figure 5. Normalized first non-linear axisymmetric mode shape of FG circular
plate at various non-dimensional amplitudes and the power index n = 0.5.

Figure 6. Non-dimensional radial bending stress associated to the first non-
linear axisymmetric mode shape of a clamped FG circular plate for n = 0.5
and various non-dimensional vibration amplitudes.

through the plate thickness. It is obvious that by increasing the
gradient index (n), the variation of Young’s modulus becomes
increasingly abrupt through the thickness and, consequently,
the stress varies accordingly. It is observed that the stress vari-
ation through the plate thickness is linear for the completely
ceramic-rich and metal-rich plates corresponding, respectively,
to n = 0.0 and n = ∞, while the behavior is nonlinear and
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Figure 7. Effects of large vibration amplitudes on the non-dimensional radial
bending stress at the edge of the FG circular plate.

Figure 8. Effect of the volume fraction index n on the radial bending stress
through the thickness at the clamped center of the FG circular plate.

is governed by the variation of the properties in the thickness
direction for the FGCP. Figure 10 depicts the variation related
to the bending stress of a clamped FG circular plate at differ-
ent levels of the plate cross-section for the power law index
n = 0.5 and the vibration amplitude W ∗

max = 1.5.

3.2.6. Explicit Analytical Solution

The purpose here is to replace the iterative method of the so-
lution of the set of the nonlinear algebraic equation, Eq. (37),
necessary to obtain the clamped FG circular plate nonlinear ax-
isymmetric mode shape and associated nonlinear resonant fre-
quencies at large vibration amplitudes by an explicit solution,
which may be appropriate for engineering purposes or for fur-
ther analytical investigations. This explicit solution is obtained
by applying and adapting the so-called first formulation devel-
oped for many beams and plates cases studied by El Kadiri,
Benamar, and White28 and El Kadiri and Benamar.29 A com-
parison is then made between the two solutions—numerical it-
erative and analytical—in order to determine exactly the range
of validity of the last approximate approach. To illustrate the
method, the fundamental nonlinear mode shape is considered

Figure 9. Effect of the volume fraction index n on the radial bending stress
through the thickness at the clamped Edge of the FG circular plate.

Figure 10. Variation of the radial bending stress at different levels of FG
circular plate for n = 0.5.

Table 6. Numerical values of the modal parameters k∗ii and b∗111i.

i k∗ii b∗111i
1 104.363105549862 421.176182024113
2 1581.74423079117 320.895319824783
3 7939.54845205673 -562.906703667013
4 25022.2457661498 51.9601847057999
5 61012.1806626721 -15.6321082304476
6 126429.530992020 6.09018059687781

here by taking r0 = 1. The analysis for the higher nonlinear
modes would proceed similarly. A less constraining assump-
tion, compared to the single mode approach, is made by ne-
glecting in the expression aiajakb∗ijkr, appearing in Eq. (37),
which leads to a simple formulation, leading to explicit expres-
sion for the amplitude dependence first nonlinear mode of the
FG circular plates.

3.2.7. Explicit Expression for the Amplitude Depen-
dence First Nonlinear Mode of FG Circular
Plate

The first formulation is based on an approximation, which
consists in neglecting in the expression aiajakb∗ijkr of Eq. (37)
when the first FG circular plate nonlinear mode is examined,
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Figure 11. Comparison between the values of the modal contributions of the first non-linear mode shape of the FG circular plate.

the first, second and third order terms with respect to εi, i.e.
the terms of the type a21εkb

∗
11kr, a1εjεkb

∗
1jkr, or εiεjεkb∗ijkr,

so that the only remaining term is a31b
∗
111r. Thus, Eq. (37)

becomes (
k∗ir − ω∗2

nl1m
∗
ir

)
εi +

3

2
a31b

∗
111r = 0; (53)

for r = 2, . . . , 6, in which the repeated index i is summed over
the range [1, 6]. Since the use of linear FG circular plate mode
shapes as basic functions leads to diagonal mass and rigidity
matrices, the above system permits one to obtain explicitly

the basic function contributions ε2, . . . , ε6 of the second and
higher functions corresponding to a given value of the assigned
first basic function contribution a1, as follows:

εr = −
3

2

a31b
∗
111r

(k∗rr − ω∗2
nl1m

∗
rr)

; (54)

where r = 2, . . . , 6.
The εr’s, (r 6= 1), depend on the known parameter m∗

rr,
k∗rr, b

∗
111r; the assigned value a1, and the nonlinear frequency

parameter ω∗
nl1. To express simply ω∗2

nl1 with an acceptable
accuracy, the single-function formula obtained from Eq. (41),
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Figure 12. Comparison between the normalized radial section of the first non-
linear axisymmetric mode shape of a clamped FG circular plate for the power
law index n = 0.5 and various non-dimensional amplitudes. (—): Iterative
method of solution. (- - -): Explicit analytical solution.

in which all of the ai’s, except a1, are taken equal to zero, and
is used as follows:

ω∗2
nl1 =

k∗11
m∗

11

+
3b∗1111
2m∗

11

a21. (55)

In the case considered here, the mass matrix is identical
to the identity matrix m∗

11 = m∗
rr = 1, and by substituting

Figure 13. Comparison of frequencies parameter (ω∗
nl/ω

∗
l ) for the first non-

linear clamped FG circular plate. (—): Iterative method of solution. (- - -):
Explicit analytical solution.

Table 7. Comparison between values of frequency parameter (ω∗
nl/ω

∗
l ) as-

sociated with the first non-linear axisymmetric mode shape of a clamped FG
circular plate, obtained by iterative and explicit analytical solution at various
values of the maximum non-dimensional amplitude w∗

max.

Non-linear frequency ratio (ω∗
nl/ω

∗
l )

w∗
max Iterative solution Explicit solution Deviation (%)

0.5 1.0662 1.0678 0.1500
0.6 1.0939 1.0971 0.2925
0.7 1.1252 1.1308 0.4976
0.8 1.1603 1.1692 0.7670
0.9 1.1984 1.2118 1.1181
1.0 1.2393 1.2583 1.5331
1.1 1.2831 1.3088 2.0029
1.2 1.3291 1.3628 2.5355
1.5 1.4610 1.5217 4.1546

Eq. (55) into Eq. (54) leads to

εr =
3a31b

∗
111r

2
(
k∗11 +

3
2a

2
1b

∗
1111 − k∗rr

) ; (56)

where r = 2, . . . , 6.
Equation (56) is an explicit simple formula, allowing di-

rect calculation of the higher mode contributions to the first
nonlinear mode shape of the FG circular plate as functions
of the assigned first mode contribution a1 and the known pa-
rameters k∗rr and b∗111r (given in Table 6). Then, defines the
first nonlinear amplitude-dependent FG circular plate mode
shape w∗

nl1(r
∗, a1) is given as a series involving the circular

plate modal parameters depending on the first six axisymmet-
ric functions w∗

1(r
∗), w∗

2(r
∗), . . . , w∗

6(r
∗):

w∗
nl1(r

∗, a1) = a1w
∗
1(r

∗) +

6∑
r=2

3a31b
∗
111r

2
(
k∗11 +

3
2a

2
1b

∗
1111 − k∗rr

)w∗
r(r

∗); (57)

in which the predominant term, proportional to the first linear
mode shape, is a1w∗

1(r
∗), and the other terms, proportional

to the higher linear mode shapes ε2w∗
2(r

∗), . . . , ε6w
∗
6(r

∗), are
the corrections due to the nonlinearity.

It may be seen in Figs. 11(a)–11(e) in which the higher mode
contributions obtained by the explicit approximate solution are
plotted against the maximum non-dimensional vibration am-
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Figure 14. Comparison between dimensionless radial bending stresses distribution along the thickness, at the clamped Center (a) and the clamped Edge (b) of
the FG circular plate for various non-dimensional vibration amplitudes. (—): Iterative method of solution. (- - -): Explicit analytical solution.

plitude and compared with that obtained by the iterative solu-
tion.

3.2.8. Validity Domain of the Analytical Solutions

The explicit analytical method of solution applied here to
the first nonlinear mode shape of a clamped FG circular plate
appears to be very appropriate for the analysis of geometri-
cally nonlinear free vibration problems. Since it is based on
an assumption concerning the order of magnitude of the basic

function contribution coefficients, its domain of validity has to
be delimited.

To have an accurate conclusion concerning this domain of
validity, especially in engineering applications, a criterion was
adopted based on the effect of the assumptions made on the
mode shape, the nonlinear frequencies, and the radial bend-
ing stress obtained at the clamped edge and center of the FG
circular plate are examined.

The normalized first nonlinear axisymmetric mode shape,
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obtained by numerical iterative solution and explicit analyti-
cal solution, is plotted in Figs. 12(a)–12(c) for various values
of the maximum dimensionless vibration amplitude. It can be
observed that the nonlinear effect increases with increasing the
amplitude of vibration, and it may be seen from these figures
that the first normalized nonlinear mode shape obtained by ex-
plicit approximate solution is in excellent agreement with that
obtained by the iterative method of solution for maximum di-
mensionless vibration amplitude up to 1 and 0.5, respectively.

In Fig. 13, the nonlinear frequency estimates, calculated us-
ing the single-function formula in Eq. (55) and the complete
formula in Eq. (41), are plotted against the maximum dimen-
sionless vibration amplitude, for the axisymmetric mode shape
and the numerical results thus obtained for various values of
the maximum non-dimensional amplitude are listed in Table 7.
Table 7 and Fig. 13 show that the single-mode approach gives
a good estimate of nonlinear frequency parameter (ω∗

nl/ω
∗
l )

with a percentage error induced by the explicit approach so-
lution that does not exceed 4.20% for the first axisymmetric
mode shape at w∗

max = 1.5 compared with the one given by
Eq. (41).

The dimensionless radial bending stress distribution along
the thickness is associated with the first nonlinear axisymmet-
ric mode shape obtained by the iterative method and that ob-
tained by the analytical method and are plotted in Figs. 14(a)
and 14(b) for various maximum dimensionless vibration am-
plitude. It may be seen from these figures that the radial
bending stress obtained by the two approaches are in excel-
lent agreement for maximum dimensionless vibration ampli-
tude up to 1 and 0.5 for the first nonlinear axisymmetric FG
circular plate mode shape. As may be seen in the correspond-
ing figures, the error increases with increasing the vibration
amplitude. For example, the error induced by the first formu-
lation in the bending stress, corresponding to the first nonlinear
mode, at the clamped edge of the FG circular plate, is 0.10 for
a dimensionless amplitude of vibration equal to 0.5 times the
plate thickness and does not exceed 6.0% for a dimensionless
amplitude of vibration equal to 1.5. It can then be concluded
that the explicit analytical method gives acceptable results with
respect to the nonlinear bending stress estimates for vibration
amplitudes up to once the plate thickness for the first nonlinear
mode shape.

4. CONCLUSIONS

The nonlinear free vibrations of FG circular plates have been
examined using a theoretical model for geometrically nonlin-
ear free vibrations. The model based on Hamilton’s principle
reduces the nonlinear free vibration problem to solution of a
set of nonlinear algebraic equations. The amplitude depen-
dence of the first nonlinear mode shape of clamped FG cir-
cular plates and the associated nonlinear parameters has been
obtained via iterative solution of a set of nonlinear algebraic
equations, involving a fourth order tensor due to the geometri-
cal nonlinearity.

Considering the results obtained, numerical data corre-
sponding to various values of the volume fraction index n are
plotted and discussed. Also, the results show that the nonlinear
frequency increases with increasing vibration amplitudes, and
all curves show the amplitude dependence of the stress distri-
bution and a higher increase of the bending stress near to the

clamps compared with the rate of increase obtained in the lin-
ear theory.

In order to obtain explicit analytical solutions for the first
nonlinear axisymmetric mode shape of the FG circular plates,
which are expected to be very useful in engineering applica-
tions and in further analytical developments, the improved ver-
sion of the semi-analytical model developed by El Kadiri, Be-
namar, and White28 and El Kadiri and Benamar29 for beams
and rectangular plates has been developed and adapted for the
FG circular plate, which are shown to be in a good agreement
with the iterative method.

Further investigations are needed to determine the mem-
brane stress distribution at large vibration amplitudes by tak-
ing into account in the theory the effects of the in-plane dis-
placements. It is also necessary to carry out a parametric study
concerning the effect of the graded material properties such as
Young’s modulus E and the mass density ρ on the nonlinear
vibration behavior of the plate.
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The present work is devoted to a study of the induced temperature and stress fields in an elastic infinite medium
with cylindrical cavity under the purview of two-temperature thermoelasticity. The medium is considered to be an
isotropic homogeneous thermoelastic material. The bounding plane surface of the cavity is loaded thermally by
time exponentially decaying laser pulse. An exact solution of the problem is obtained in Laplace transform space,
and the inversion of Laplace transforms have been carried numerically. The derived expressions are computed
numerically for copper, and the results are presented in graphical form.

1. INTRODUCTION

In-depth research has been conducted on generalized ther-
moelasticity theories in solving thermoelastic problems in
place of the classical uncoupled/coupled theory of thermoelas-
ticity. The absence of any elasticity term in the heat conduction
equation for uncoupled thermoelasticity appears to be unreal-
istic, since the produced strain causes variation in the tempera-
ture field due to the mechanical loading of an elastic body. The
parabolic type of heat conduction equation results in an infinite
velocity of thermal wave propagation, which also contradicts
the actual physical phenomena. By introducing the strain-rate
term in the uncoupled heat conduction equation, the analysis
to incorporate coupled thermoelasticity has been extended by
Biot.1 Although the first paradox was over, the parabolic type
partial differential equation of heat conduction remains, which
leads to the paradox of infinite velocity of the thermal wave.
To eliminate this paradox, generalized thermoelasticity the-
ory was developed subsequently. Due to the advancement of
pulsed lasers, fast burst nuclear reactors, and particle acceler-
ators, which can supply heat pulses with a very fast time-rise,
Bargmann.2 and Boley3 generalized thermoelasticity theory is
receiving serious attention. Chandrasekharaiah reviewed the
development of the second sound effect.4 Recently, mainly
two different models of generalized thermoelasticity are being
extensively used: one proposed by Lord and Shulman and the
other proposed by Green and Lindsay.5, 6 Lord and Shulman
theory (L-S) suggests one relaxation time, and according to
this theory, only Fourier’s heat conduction equation is modi-
fied; however, Green and Lindsay theory (G-L) suggests two
relaxation times, and both the energy equation and the equation
of motion are modified.

The so-called ultra-short lasers are those with pulse duration
ranging from nanoseconds to femtoseconds in general. In the
case of ultra-short-pulsed laser heating, the high-intensity en-
ergy flux and ultra-short duration laser beam, have introduced
situations where very large thermal gradients or an ultra-high
heating speed may exist on the boundaries, according to Sun

et al.7 In such cases, as pointed out by many investigators, the
classical Fourier model, which leads to an infinite propagation
speed of the thermal energy, is no longer valid for Tzou.8, 9 The
non-Fourier effect of heat conduction takes into account the
effect of mean free time (thermal relaxation time) in the en-
ergy carrier’s collision process, which can eliminate this con-
tradiction. Wang and Xu have studied the stress wave induced
by nanoseconds, picoseconds, and femtoseconds laser pulses
in a semi-infinite solid.10 The solution takes into account the
non-Fourier effect in heat conduction and the coupling effect
between temperature and strain rate. It is known that charac-
teristic elastic waveforms are generated when a pulsed laser
irradiates a metal surface.

The two-temperatures theory of thermoelasticity was intro-
duced by Gurtin and Williams,11 Chen and Gurtin,12 and Chen
et al.,13, 14 in which the classical Clausius-Duhem inequality
was replaced by another one depending on two temperatures;
the conductive temperature ϕ and the thermodynamic tempera-
ture T , the first is due to the thermal processes, and the second
is due to the mechanical processes inherent between the par-
ticles and the layers of elastic material, this theory was also
investigated by Iean.15 Abbas solved many problems that dis-
cussed the two-temperature theory of thermoelasticity and also
the thermoelastic medium with cylindrical cavity.16–20

Only in the last decade has the theory of two-temperature
thermoelasticity been noticed, developed in many works, and
found its applications mainly in the problems in which the
discontinuities of stresses have no physical interpretations.
Among the authors who contribute to this theory, Quintanilla
studied existence, structural stability, convergence, and spatial
behavior for this theory.21 Youssef introduced the generalized
Fourier law to the field equations of the two-temperature theory
of thermoelasticity and proved the uniqueness of solution for
homogeneous isotropic material.22, 23 Puri and Jordan recently
studied the propagation of harmonic plane waves,23 and Ma-
gaa and Quintanilla24 have studied the uniqueness and growth
solutions for the model proposed by Youssef.25

The present work is devoted to a study of the induced tem-
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perature and stress fields in an elastic infinite medium with
cylindrical cavity under the purview of two-temperature ther-
moelasticity. The medium is considered to be an isotropic ho-
mogeneous thermoelastic material. The bounding plane sur-
face of the cavity is loaded thermally by non-Gaussian laser
beam with pulse duration of 2 ps. An exact solution of the
problem is obtained in Laplace transform space, and the inver-
sion of Laplace transforms have been carried numerically. The
derived expressions are computed numerically for copper, and
the results are presented in graphical form.

2. THE GOVERNING EQUATIONS

Consider a perfectly conducting elastic infinite body with
cylindrical cavity occupies the region R ≤ r < ∞ of an
isotropic homogeneous medium whose state can be expressed
in terms of the space variable r and the time variable t such
that all of the field functions vanish at infinity.

We can use the cylindrical system of coordinates (r, ψ, z)

with the z-axis lying along the axis of the cylinder. Due to
symmetry, the problem is one-dimensional with all the func-
tions considered depending on the radial distance r and the
time t. It is assumed that there is no external forces act on the
medium.

Thus the field equations in cylindrical one dimensional case
can be put as in:25

(λ+ 2µ)
∂ e

∂ r
− γ ∂ T

∂ r
= ρ

∂2u

∂ t2
; (1)

∇2ϕ =
ρCE
K

(
∂

∂t
+ τo

∂2

∂t2

)
θ

+
Toγ

K

(
∂

∂t
+ τo

∂2

∂t2

)
e− ρ

K

(
1 + τo

∂

∂t

)
Q; (2)

ϕ− T = a∇2ϕ; (3)

σrr = 2µ
∂ u

∂ r
+ λe− γ (T − To) ; (4)

σψ ψ = 2µ
u

r
+ λ e− γ (T − To) ; (5)

σzz = λe− γ (T − To) ; (6)

σz r = σψ r = σz ψ = 0; (7)

e =
1

r

∂ (r u)

∂ r
; (8)

where ∇2 = ∂ 2

∂ r2 + 1
r
∂
∂ r , λ, µ, Lames constants, ρ den-

sity, CE specific heat at constant strain, αT coefficient of
linear thermal expansion, λ = (3λ + 2µ)αT , t is the
time, T is the temperature, T0 is the reference temperature,
θ = (T − To) is the thermo-dynamical temperature increment
such that |θ|To

<< 1, ϕ is the heat conductive temperature,
σij , i, j = r, ψ, z are the components of stress tensor, e is the
cubic dilatation, u is the displacement, K is the thermal con-
ductivity, τo is the relaxation time, a is non-negative parameter
(two-temperature parameter), and Q is the heat source per unit
mass.

2.1. The Mathematical Modeling

The Fourier heat transfer equation due to time exponentially
decaying laser pulse for a one dimensional body can be written
as:7

∇2ϕ =
ρCE
K

(
∂

∂t
+ τo

∂2

∂t2

)
θ +

γTo
K

(
∂

∂t
+ τo

∂2

∂t2

)
e

− ρI1δ

K

(
1 + τo

∂

∂t

)[
e−υt−δr

]
; (9)

where I1 = (1 − rf )I0 is the power intensity after surface
reflection; I0 is laser peak power intensity; rf is reflection co-
efficient; υ is laser pulse parameter; and δ is absorption coeffi-
cient.

2.2. Dimensionless of the Governing
Equations

For convenience, we shall use the following non-
dimensional variables:25

(r′, u′, R′, R0) = coη (r, u,R′, R′0) ,

(t′, τ ′o) = c2oη (t, τo) ,

θ′ =
T − To
To

,

ϕ′ =
ϕ− To
To

,

σ′ =
σ

µ
; (10)

where c20 = λ+2µ
ρ and η = ρCE

K .
Hence, we obtain (where the primes are suppressed for sim-
plicity)

∇2e− b∇2θ =
∂2e

∂ t2
; (11)

∇2ϕ =

(
∂

∂t
+ τo

∂2

∂t2

)
θ+

ε1

(
∂

∂ t
+ τo

∂ 2

∂ t2

)
e− ε2

(
1 + τo

∂

∂ t

)[
e−υt−δr

]
; (12)

ϕ− θ = ω∇2ϕ; (13)

σrr = β2 ∂ u

∂ r
+
(
β2 − 2

) u
r
− α θ; (14)

σψψ =
(
β2 − 2

) ∂ u
∂ r

+ β2u

r
− α θ; (15)

σzz =
(
β2 − 2

)
e− α θ; (16)

where, co =
√

λ+2µ
ρ is longitudinal wave speed; η = ρCE

K

is the thermal viscosity; ε1 = γ
ρCE

is the dimensionless me-
chanical coupling constant; α = γTo

µ is the dimensionless ther-
moelastic coupling constant; and ω = a c2oη

2 is the dimension-
less two-temperature parameter, β = (λ+2µ

µ )1/2, b = α
β2 and

ε2 = I1δ
CEToc2oη

.
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2.3. The Solution in the Laplace Transform
Domain

We use the Laplace transform of both sides of the last equa-
tions defined as:

f̄ (s) =

∞∫
0

f (t) e−srdt. (17)

Hence, we obtain

∇2ē = s2ē+ b∇2θ̄; (18)

∇2ϕ̄ = h θ̄ + ε1 h ē− F (s, r) ; (19)

θ̄ = ϕ̄− ω∇2ϕ̄; (20)

σ̄rr = β2ē+ 2
ū

r
− α θ̄; (21)

σ̄ψψ =
(
β2 − 2

)
ē+ 2

ū

r
− α θ̄; (22)

σ̄zz =
(
β2 − 2

)
ē− α θ̄; (23)

ē =
1

r

∂ (r ū)

∂ r
=
ū

r
+
∂ ū

∂ r
; (24)

where F (s, r) = ε3e
−δr, ε3 = ε2(1+τos)

(s+υ) and h =
(
s+ τos

2
)
.

All the state functions in Eqs. (18)–(24) have zero initial value.
An over bar symbol denotes its Laplace transform, and s de-
notes the Laplace transform parameter.

To simplify the solution of the above differential equations,
we will consider the special case of R = r.

Thus, we have

F (s,R) = ε3e
−δR,∇2F (s,R) = ∇4F (s,R) = 0; (25)

By using Eqs. (19) and (20), we get

θ̄ = (1− ω α1) ϕ̄− ω α2 ē+
ωα1

h
F (s,R) ; (26)

where α1 = h
1+ωh and α2 = ε1α1.

By substituting Eq. (26) into Eqs. (18) and (19), we obtain(
∇2 − α1

)
ϕ̄ = α2ē−

α1

h
F (s,R) ; (27)

and (
∇2 − α3

)
ē = α4 ϕ̄−

α4

h
F (s,R) ; (28)

where α3 = s2+α2b(1−ωα1)
1+ωα2b

, α4 = α1b(1−ωα1)
1+ωα2b

.
Eliminating ē from Eqs. (27) and (28), we get[
∇4 − (α1 + α3)∇2 + (α1α3 − α2α4)

]
ϕ̄ = α5F (s,R) ;

(29)
where α5 = (α1α3−α2α4)

h .
In a similar manner, we can show that ē satisfies the equation[

∇ 4 − (α1 + α3) ∇ 2 + (α1α3 − α2α4)
]
ē = 0. (30)

For finite solutions, the solutions of Eqs. (28) and (29) take the
form

ϕ̄ =
F (s,R0)

h
+

2∑
i=1

Ai K0 (pir) ; (31)

and

ē =

2∑
i=1

BiK0 (pir) (32)

where K0() is the modified Bessel function of the second kind
of order zero. A1, A2, B1, and B2 are all parameters depend-
ing on the parameter s of the Laplace transform.
p21 and p22 are the roots of the characteristic equation

p4 − (α1 + α3) p 2 + (α1α3 − α2α4) = 0 (33)

Using Eq. (29), we obtain

Bi = α4Ai, i = 1, 2. (34)

Substituting Eq. (34) into Eq. (32), we get

ē = α4

2∑
i=1

Ai K0 (pir) . (35)

Substituting Eq. (35) into Eq. (24), we obtain

ū = −α4

2∑
i=1

Ai
pi
K1 (pir) (36)

where K1() is the modified Bessel function of the second kind
of order one.
In deriving Eq. (36), we have used the following well-known
relation of the Bessel function:∫

z K0 (z) d z = −z K1 (z) ;

Using Eqs. (31) and (35) in Eq. (26), we obtain

θ̄ =
F (s,R0)

h
+

2∑
i=1

θiAiK0 (pir); (37)

where

θi = (1− ωα1)
(
p2i − α3

)
− ωα2α4 i = 1, 2.

Finally, substituting Eqs. (35), (36), and (37) into Eqs. (21)–
(23), we obtain the stress components in the form

σ̄r r = −αF (s,R)

h

+

2∑
i=1

Ai

[(
β2 α4 − αθi

)
K0 (pir) +

2α4

r pi
K1 (pir)

]
; (38)

σ̄ψψ = −αF (s,R)

h

+

2∑
i=1

Ai

[((
β2 − 2

)
α4 − αθi

)
K0 (pir)−

2α2

r pi
K1 (pir)

]
;

(39)

σzz = −αF (s,R)

h
+

2∑
i=1

[(
β2 − 2

)
α4 − αθi

]
AiK0 (pir) .

(40)
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To complete the solution in the Laplace transform space, we
will consider the medium described above as quiescent and the
bounding plane of the cavity (r = R) traction free, with no
thermal loading accept the laser beam:

ϕ (R, t) = 0. (41)

After using Laplace transform, we have

ϕ̄ (R, s) = 0. (42)

Also, we have
σrr (R, t) = 0. (43)

After using Laplace transform, we get

σ̄rr (R, s) = 0. (44)

Applying the last two conditions gives

2∑
i=1

Ai
(
p2i − α3

)
K0 (piR) = −F (s,R)

h
; (45)

and

2∑
i=1

Ai

[(
β2 α4 − αθi

)
K0 (piR) +

2α4

Rpi
K1 (piR)

]
=
αF (s,R)

h
. (46)

Solving the last system of equations gives[
A1

A2

]
=

[
l11 l12
l21 l22

]−1 [ −1

α

]
F (s,R)

h
(47)

hence A1 = F (s,R)(αl12−l22)
h(l11l22−l12l21) and A2 = F (s,R)(l21−αl11)

h(l11l22−l12l21) ,
where

l11 =
(
p21 − α3

)
K0 (p1r) ;

l12 =
(
p22 − α3

)
K0 (p2r) ;

l21 =
(
β2 α4 − αθ1

)
K0 (p1R) +

2α4

Rp1
K1 (p1R) ;

and

l22 =
(
β2 α4 − αθ2

)
K0 (p2R) +

2α4

Rp2
K1 (p2R) .

Finally, we obtain the solutions in the Laplace transform do-
main as in Eqs. (48)–(52) (top of the next page).

3. NUMERICAL INVERSION OF LAPLACE
TRANSFORM

In order to determine the conductive and thermal tempera-
ture, displacement, and stress distributions in the time domain,
the Riemann-sum approximation method is used to obtain the
numerical results. In this method, any function in Laplace do-
main can be inverted to the time domain as

f(t) =
eκt

t

[
1

2
f̄ (κ) +Re

N∑
n=1

(−1)
n
f̄

(
κ+

i nπ

t

)]
; (53)

where Re is the real part and i is imaginary number unit.
For faster convergence, multiple numerical experiments have
shown that the value of κ satisfies the relation κt ≈ 4.7.8

Figure 1. The conductive temperature with different value two-temperature
parameter.

3.1. Numerical Results and Discussion
With a view to illustrating the analytical procedure presented

earlier, we now consider a numerical example for which com-
putational results are given. For this purpose, copper is taken
as the thermoelastic material for which we take the following
values of the different physical constants:25

K = 386 kg m K−1s−3 αT = 1.78 (10)
−5

K−1;

ρ = 8954 kg m−3; CE = 383.1 m2 K−1 s−2;

To = 293 K; µ = 3.86 (10)
10

kg m−1 s−2;

λ = 7.76 (10)
10

kg m−1 s−2; β2 = 4;

R = 1.0; τo = 0.02;

t = 0.1.

From the above values, we get the non-dimensional values
of the problem as:

b = 0.01041, α = 0.0417232, ε1 = 1.618, ε2 = 102.

Figures 1–5 represent the distributions of the conductive
temperature, the dynamic-temperature, the stress, the displace-
ment and the strain respectively when υ = 0.1, δ = 0.1

and with different value of two-temperature parameter ω =

0.0, 0.01 to stand on the effect of this parameter on all the stud-
ied filed. This group of figures shows that, the two-temperature
parameter has significant effects on all the state of functions of
the thermoelastic materials. The two-temperature parameter
makes the sharp points in the stress, the strain and the displace-
ment distribution disappeared.

Figures 6–10 represent the distributions of the conductive
temperature, the thermo-dynamic temperature, the stress, the
displacement and the strain respectively when ω = 0.01, υ =

0.1 and with different value of absorption coefficient parameter
δ = 0.1, 0.05 to stand on the effect of this parameter on all the
studied filed. This group of figures shows that, the absorption
coefficient parameter has significant effects on all the states
of functions of the thermoelastic materials. When the value
of the absorption coefficient parameter increases, all the state
functions of the material decrease.

Figures 11–15 represent the distributions of the conductive
temperature, thermo-dynamic temperature, stress, displace-
ment, and strain, respectively, when ω = 0.01, δ = 0.1 and
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ϕ̄ =
F (s,R)

h

[
1 +

1

(l11l22 − l12l21)

[
(αl12 − l22)

(
p21 − α3

)
K0 (p1r) + (l21 − αl11)

(
p22 − α3

)
K0 (p2r)

]]
; (48)

θ̄ =
F (s,R)

h (l11l22 − l12l21)[
1 +

(
(1− ωα1)

(
p21 − α3

)
− ωα2α4

)
(αl12 − l22) K0 (p1r) +

(
(1− ωα1)

(
p22 − α3

)
− ωα2α4

)
(l21 − αl11)K0 (p2r)

]
;

(49)

σ̄r r =
F (s,R)

h

[
−α+

(αl12−l22)

(l11l22−l12l21)

[(
β2α4−αθ1

)
K0 (p1r)+

2α4

rp1
K1 (p1r)

]
+

(l21−αl11)

(l11l22−l12l21)

[(
β2α4−αθ2

)
K0 (p2r)+

2α4

rp2
K1 (p2r)

]]
; (50)

ē =
α4F (s,R)

h (l11l22 − l12l21)
[(αl12 − l22)K0 (p1r) + (l21 − αl11)K0 (p2r)] ; (51)

ū = − α4F (s,R)

h p1p2 (l11l22 − l12l21)
[p2 (αl12 − l22)K1 (p1r) + p1 (l21 − αl11)K1 (p2r)] (52)

Figure 2. The thermo-dynamic temperature with different value two-
temperature parameter.

Figure 3. The stress with different value two-temperature parameter.

Figure 4. The displacement with different value two-temperature parameter.

Figure 5. The strain with different value two-temperature parameter.
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Figure 6. The conductive temperature with different value of absorption
coefficient.

Figure 7. The thermo-dynamic temperature with different value of absorption
coefficient.

Figure 8. The stress with different value of absorption coefficient parameter.

Figure 9. The displacement with different value of absorption coefficient.

Figure 10. The strain with different value of absorption coefficient.

with different value of laser pulse parameter υ = 0.1, 0.05 to
stand on the effect of this parameter on all the studied filed.
This group of figures shows that the laser pulse parameter has
significant effects on the distributions of the conductive tem-
perature, the thermo-dynamic temperature and the stress, while
it has weak effects on the distribution of the displacement and
the strain. When the value of laser pulse parameter increases,
all the state functions of the material decrease.

4. CONCLUSION

In this work, a studying of the induced temperature and
stress fields in an elastic infinite medium with cylindrical cav-
ity under the purview of two-temperature thermoelasticity has
been done. The medium has been considered to be an isotropic
homogeneous thermoelastic material. The bounding plane sur-
face of the cavity is loaded thermally by time exponentially
decaying laser pulse and we found the following:

1. The two-temperature parameter has a significant effect on
all the studied fields.

2. The absorption coefficient parameter has a significant ef-
fect on all the studied fields.

3. When the value of the absorption coefficient parameter
increases, all the state functions of the material decrease.
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Figure 11. The conductive temperature with different value of laser pulse
parameter.

Figure 12. The thermo-dynamic temperature with different value of laser
pulse parameter.

Figure 13. The stress with different value of laser pulse parameter.

Figure 14. The displacement with different value of laser pulse parameter.

Figure 15. The strain with different value of laser pulse parameter.

4. The laser pulse parameter has significant effects on the
distributions of the conductive temperature, the thermo-
dynamic temperature, and the stress, while it has weak ef-
fects on the distribution of the displacement and the strain.

5. When the value of laser pulse parameter increases, all the
state functions of the material decrease.
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IIAV Fellows and Senior Member

The following seven members: Barry Gibbs, UK; Bela
Buna, Hungary; Lars Håkansson, Sweden; Eric Herrera, USA;
Jian Kang, UK; Marek Pawelczyk, Poland; and Jun Yang,
China have been admitted to the grade of Fellow by the In-
ternational Institute of Acoustics and Vibration (IIAV).
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field fluctuations. He was also involved in developing novel
composite material for the Sealaunch launch vehicle, now
being used on Boeing Aircraft. He also participated in the
inaugural launch of the Sealaunch vehicle from a floating
platform at sea. This required developing new predictive tools
for unique dynamic loads and environments. Eric received
numerous patent awards for new materials and technology,
such as optimized fiberglass structures with inherent damping,
composite polymers, vibration controlling devices. He partic-
ipated in the inaugural launch of the NASA/ATK Ares 1-X
launch vehicle and designed isolation devices for components
that were on this maiden flight.

Jian Kang
Jian Kang is the Professor of

Acoustics at the University of
Sheffield School of Architecture.
Prof Kang obtained his first de-
gree and MSc from Tsinghua Uni-
versity in China, and PhD in
acoustics from the University of
Cambridge. He worked at the
University of Cambridge and the
Fraunhofer Institute of Building
Physics in Germany. He is a fel-
low of the UK Institute of Acous-
tics, a fellow of the Acoustical So-

ciety of America, an EPSRC College member, and the Editor
in Environmental Noise for Acta Acustica united with Acus-
tica. His publications include three books, over 100 papers
in refereed journals, and more than 300 conference papers
and technical reports. He has been the principal investiga-
tor for over 50 research projects supported by funding bodies
including EPSRC, EU, British Academy and Royal Society,
and a consultant for more than 50 acoustics and noise con-
trol projects internationally. Prof. Kang is the coordinator of
the WUN (Worldwide Universities Network) Environmental
Acoustics Network; chair of the EU funded COST Network
on Soundscape of European Cities and Landscapes, with 40+
international partners in various disciplines and sectors; and
co-chair of the EPSRC funded Noise Futures network, with
30 members from various sectors including researchers, policy
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Marek Pawelczyk
Marek Pawelczyk obtained his

M.Sc. in 1995, Ph.D. in 1999,
D.Sc. (habilitation) in 2005, and
attained the scientific title of pro-
fessor in 2014. He is currently a
full titular professor at the Sile-
sian University of Technology,
and holds the positions of vice-
director of the Institute of Auto-
matic Control, and Head of Mea-
surements and Control Systems
Division. He also gained profes-
sional experience at a number of
universities in Germany, UK, and

Denmark. He is an author of three books on active control,
about 150 journal and proceedings papers, and five patent ap-
plications. He has been a frequent reviewer for several interna-
tional journals, book publishers, international conferences, and
Ph.D. theses in several countries. He has served on many sci-
entific committees and organising committees of international
conferences. He cooperates closely with industrial companies.

He is a co-author of several projects including: ultrasonic mon-
itoring of petroleum fractions; safety monitoring in mines; ac-
tive personal hearing protections systems; active noise control
in industrial halls; active control of machinery; noise reduction
in large-scale HVAC systems; active noise control in headrests;
and semi-active control of vehicle suspension. He has received
many prizes from domestic and international organizations. He
has been involved in the IIAV for many years. Since 2008
he has been the Managing Editor of the International Journal
of Acoustics and Vibration. In 2007-2011 he was the Vice-
President for Communications, and in 2012-2014 President of
the IIAV. He was the General Chair of the 16th ICSV held in
Krakow, Poland, in 2009.

Jun Yang

Jun Yang is a Distinguished Professor of Chinese Academy
of Sciences and is now the Executive director of the Acoustical
Society of China. He chaired the Local Organizing Commit-
tee for the 21st International Congress on Sound and Vibration
(ICSV21) and contributed significantly to acoustics research
and education. Prof. Yang has been engaged in the research
and development of acoustics and signal processing for nearly
30 years. His research interests include noise and vibration
control, active control system, communication acoustics, 3D
audio system, acoustic signal processing, and nonlinear acous-
tics. He has completed over 30 research projects for industries
and the government, and received over 100 million RMB in re-
search and development funds. Prof. Yang has published more
than 150 refereed papers in journals and book chapters, over
200 papers in conferences. He has been granted 40 domestic
and international patents.

Thomas Lorenzen, USA, has been admitted to the grade of
Senior Member by the International Institute of Acoustics and
Vibration (IIAV.)

Thomas Lorenzen
Thomas Lorenzen started work at

dBA Inc (an acoustical engineering
firm) in 1989 after graduating from
Georgia Tech. He has worked in the
electronics and/or building industry
for all of his adult life. After complet-
ing several semesters of college credit
in architectural design, he changed
his course of study to electronics en-
gineering due to his interest in this
rapidly evolving field. After receiv-
ing degrees in engineering (ASEET,

BSEE), Mr. Lorenzen worked for several manufacturers and
contractors in related areas while pursuing post-graduate stud-
ies in architectural acoustics (MS – architectural acoustics).
Thomas Lorenzen has background and experience in projects
dealing with acoustics, communication systems, and noise
control. He has the following certifications and professional
affiliations: Acoustical Society of America (ASA), Audio En-
gineering Society (AES), Institute of Noise Control Engineer-
ing (INCE), Institute of Electrical and Electronics Engineers
(IEEE), National Society of Professional Engineers (NSPE),
Music Educators National Conference (MENC), ”Syn-Aud-
Con”, International Communications Industries Association
(ICIA) Design Council. Mr. Lorenzen has been the principal
acoustician for dBA Acoustics inc., for over 26 years.
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