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This paper deals with nonlinear free axisymmetric vibrations of functionally graded (FG) thin circular plates whose
properties vary in thickness. The inhomogeneity of the plate is characterized by a power law variation of the
Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed
to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of
admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions
on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of nonlinear
algebraic equations, is solved numerically. The nonlinear to linear frequency ratios are presented for various values
of the volume fraction index n showing a hardening type nonlinearity. The distribution of the radial bending
stresses associated to the nonlinear mode shape is also given for various vibration amplitudes and compared with
those predicted by the linear theory. Then, explicit analytical solutions are presented, based on the semi-analytical
model previously developed by El Kadiri et al. for beams and rectangular plates. This model allows direct and
easy calculation for the first nonlinear axisymmetric mode shape with its associated nonlinear frequencies and
nonlinear bending stresses of FG circular plates, which are expected to be very useful in engineering applications
and in further analytical developments. An excellent agreement is found with the results obtained by the iterative
method.

1. INTRODUCTION

The concept of functionally graded materials (FGMs) was
first introduced in 1984 as ultrahigh-temperature resistant ma-
terials for aircraft, space vehicles, and other engineering ap-
plications.1 FGMs are nonconventional composite materials
that are microscopically inhomogeneous, and their mechanical
properties vary continuously in one or more directions. This
is achieved by gradually varying the volume fraction of the
constituent materials. The continuity of the material properties
reduces the influence of the presence of abrupt interfaces and
avoids high interfacial stresses. Furthermore, FGMs can be tai-
lored to achieve particular desired properties, and the gradation
in properties of materials can optimize the stress distribution.

Many studies have been devoted to FG plate vibrations in the
literature. Allahverdizadeh et al.2 investigated the nonlinear
free and forced vibration of thin circular FG plates. Praveen
and Reddy3 conducted the nonlinear transient thermoelastic
analysis of FG ceramic-metal plates using the finite element
method. Yang and Shen4 examined the dynamic response of
initially stressed FGM rectangular thin plates subjected to im-
pulsive loads. The effects of the volume fraction index, the
foundation stiffness, the plate aspect ratio, the shape and dura-
tion of the applied impulsive load on the dynamic response of
FGM plates have been studied in this work. Also, the vibration
characteristics and the transient response of shear-deformable

FGM plates made of temperature-dependent materials in ther-
mal environments have been examined by Yang and Shen.5

The differential quadrature technique, the Galerkin approach,
and the modal superposition method have been used to deter-
mine the transient response of the plate subjected to lateral
dynamic loads. Huang and Shen6 discussed the nonlinear vi-
bration and dynamic response of FG plates in a thermal en-
vironment by using an improved perturbation technique. The
results reveal that the temperature field and the volume frac-
tion distribution have significant effects on the nonlinear vi-
bration and the dynamic response of simply supported rect-
angular plates with no in-plane displacements. Reddy and
Cheng7 studied the harmonic vibration problem of FG plates
by means of a three-dimensional asymptotic theory formu-
lated in terms of the transfer matrix. Prakash and Ganapathi8

analyzed the asymmetric flexural vibration and thermoelastic
stability of FG circular plates. They used a finite element
method to solve the problem. Efraim and Eisenberger9 stud-
ied the exact vibration analysis of thick annular isotropic and
FGM plates of variable thicknesses. The motion equations that
they obtained by the first order shear deformation theory have
been solved by the exact element method. Dong10 presented
an analysis of three-dimensional free vibration of FG annular
plates via Chebyshev-Ritz method. Malekzadeh et al.11 dis-
cussed the in-plane free vibration of FG circular arches with
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temperature-dependent properties under a thermal environ-
ment. They assumed that the material properties and temper-
atures vary along the thickness direction, the governing equa-
tion and boundary conditions were obtained by the Hamilton
principle. Viswanathan et al.12 studied free vibration of a sym-
metric angle-ply laminated annular circular plate of variable
thickness using the first order shear deformation theory using
spline function approximation. The equations of motion for the
plates are derived using the first order shear deformation the-
ory. The solutions of displacement functions are assumed in a
separable form to obtain a system of coupled differential equa-
tions in terms displacement and rotational functions, and these
functions are approximated by Bickley-type splines of order
three. The vibration of 3- and 5-layered plates, made up of two
types of materials and two types of boundary conditions, are
considered. A generalized eigenvalue problem is obtained and
solved numerically for an eigenfrequency parameter and for
an associated eigenvector of spline coefficients. Ebrahimi13

studied geometrically nonlinear vibration of a piezoelectri-
cally actuated FGM plate with an initial large deformation,
based on Kirchhoff’s-Love hypothesis with Von-Karman-type
geometrical large nonlinear deformation. Recently, Kermani,
Ghayour, and Mirdamad14 reported a free vibration analysis of
multi-directional FG circular and annular plates using a semi
analytical/numerical method called state space-based differen-
tial quadrature method. Viswanathan, Javed, and Aziz15 dis-
cussed the free vibration of laminated antisymmetric angle-ply
annular circular plates with inclusion of the first order shear
deformation theory using a spline function approximation by
applying a point collocation method. The equations of motion
of the plates are derived using first order shear deformation
theory.

In the present work, the large axisymmetric free vibration
amplitudes of clamped immovable thin FG circular plates is
analyzed by using and adapting the model previously presented
by Haterbouch and Benamar16, 17 for large vibration ampli-
tudes of isotropic circular plates. By assuming harmonic mo-
tion and expanding the transverse displacement in the form of
the finite series of basic functions—namely the linear free vi-
bration mode shape of the clamped circular plate—obtained
in terms of Bessel’s functions, the discretized expressions for
the total strain energy and kinetic energy have been derived.
In addition to the classical mass and rigidity tensors, a fourth
order tensor appears due to the nonlinearity in these expres-
sions. The application of Hamilton’s principle reduced the
large amplitude free vibration problem to a set of nonlinear al-
gebraic equations, which have been solved numerically in each
case, leading to the first nonlinear axisymmetric mode shape of
clamped circular plates. The relationships between the nonlin-
ear to linear frequency ratio have been obtained, as well as the
mode shape and the non-dimensional maximum vibration am-
plitude for the first nonlinear mode shape of circular plates,
showing hardening type nonlinearity and the dependence of
the first mode shape on the amplitude of vibration.

2. GENERAL FORMULATION

2.1. Problem Definition
As mentioned above, FGMs are nonconventional compos-

ite materials whose mechanical properties vary continuously
due to gradual change in the volume fraction of the constituent

Figure 1. Geometry of FG clamped circular plate.

Table 1. Material properties used in the FG circular plate

Material Property
E (GPa) ρ (kg/m3)

Silicon nitride (Si3N4) 355.2715e9 2370
Stainless steel (SUS304) 207.7877e9 8166

material. In this study, a fully clamped thin circular plate of
a uniform thickness h and a radius a is considered. The co-
ordinate system is chosen so that the middle plane of the plate
coincides with the polar coordinates (r, θ), the origin of the co-
ordinate system being at the centre of the plate with the z-axis
downward, the top surface of the plate is ceramic-rich, whereas
the bottom surface is metal-rich, as depicted in Fig. 1.

2.2. Mechanical Properties of FGCP
FGMs are usually modelled as an inhomogeneous isotropic

linear elastic material. However, here it is assumed that the
material properties of FGM plates vary continuously through
the plate thickness as a function of the volume fraction and the
properties of constituent materials, from full ceramic at the top
surface to full metal at the bottom. A power law distribution
is used for the volume fraction of the constituents (metal and
ceramic) as follows:18

Vm(z) =

(
z

h
+

1

2

)n
; (1)

Vc(z) + Vm(z) = 1; (2)

where subscripts m and c refer to the metal and ceramic con-
stituents, respectively; Vm and Vc denote the volume fraction
of metal and ceramic, respectively; n is called the volume frac-
tion index or material constant; and z is the thickness coordi-
nate (−h/2 ≤ z ≤ h/2). Fully metal and fully ceramic are
represented in Fig. 2, respectively, by zero and infinity val-
ues of the material constant n. Based on the linear role of the
mixture, the effective mechanical properties of FGMs can be
expressed as18

P = PcVc + PmVm; (3)

where Pm and Pc denote the specific properties of metallic and
ceramic constituents, respectively. Therefore, all the mechani-
cal and thermal properties of the FGM plate, such as Young’s
modulus, E, can be written as

E(z) = Ec + (Em − Ec)Vm. (4)

Poisson’s ratio, ν, is assumed to be constant for simplicity and
convenience.

In what follows, a metal, stainless steel (SUS304) and ce-
ramics, silicon nitride (Si3N4) system of FGMs is considered.
These material properties are given in Table 1.
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Figure 2. Volume fraction of metal along the thickness.

2.3. Vibration Analysis
Considering axisymmetric vibrations of the FG circular

plate, the displacements are given in accordance with the clas-
sical plate theory:

ur(r, z, t) = U(r, t)− z
∂W(r,t)

∂r
,

uθ(r, t) = 0, uz(r, t) =W (r, t); (5)

where U and W are the in-plane and out-of-plane displace-
ments of the middle plane point (r, θ, 0) respectively, and ur,
uθ and uz are the displacements along ~er, ~eθ and ~ez directions,
respectively.

The non-vanishing components of the strain tensor in the
case of large displacements are given by Von-Karman relation-
ships:

{ε} =
{
ε0
}
+ z{K}+

{
λ0
}
; (6)

in which
{
ε0
}

, {K} and
{
λ0
}

are given by

{
ε0
}
=

[
ε0r
ε0θ

]
=

[
∂U
∂r
U
r

]
; (7)

{K} =
[
Kr

Kθ

]
=

[
−∂

2W
∂r2

− 1
r
∂W
∂r

]
; (8)

{
λ0
}
=

[
λr
λθ

]
=

[
1
2

(
∂W
∂r

)2
0

]
; (9)

For the FGM circular plate shown in Fig. 1, the stress can be
expressed as:

{σ} = [Q]{ε} (10)

in which {σ} = [σr σθ]
T and the terms of the matrix [Q] can

be obtained by the relationships given, for example, in Timo-
shenko, Weinsowsky-Krieger, and Jones.19 The force and mo-
ment resultants are defined by

(Nr, Nθ) =

∫ h/2

−h/2
(σr, σθ) dz; (11)

(Mr,Mθ) =

∫ h/2

−h/2
(σr, σθ) z dz. (12)

The in-plane forces and bending moments in the plate are given
by [

N
M

]
=

[
A B
B D

] [{
ε0
}
+
{
λ0
}

{K}

]
. (13)

A,B, andD are the symmetric matrices given by the following
equation:

(Aij , Bij , Dij) =

∫ h/2

−h/2
Qij

(
1, z, z2

)
dz. (14)

Here, the Qij’s are the reduced stiffness coefficients of the
plate. The expression for the bending strain energy Vb, the
membrane strain energy Vm, the coupling strain energy Vc and
the kinetic energy T are given by

Vb = π

∫ a

0

D11

[(
∂2W

∂r2

)2

+
1

r2

(
∂W

∂r

)2

+

2
ν

r

∂W

∂r

∂2W

∂r2

]
r dr; (15)

Vm = π

∫ a

0

A11

[(
∂U

∂r

)2

+
∂U

∂r

(
∂W

∂r

)2

+
1

4

(
∂W

∂r

)4

+

U2

r2
+

2νU

r

∂U

∂r
+ ν

U

r

(
∂W

∂r

)2
]
r dr; (16)

Vc = π

∫ a

0

−B11

[
∂2W

∂r2

(
∂W

∂r

)2

+
ν

r

∂W

∂r

(
∂W

∂r

)2
]
r dr;

(17)

and

T = πI0

∫ a

0

(
∂W

∂r

)2

r dr; (18)

where I0 is the inertial term given by

I0 =

∫ h/2

−h/2
ρ(z) dz. (19)

An approximation has been adopted in the present work con-
sisting of neglecting the contribution of the in-plane displace-
ment U in the membrane strain energy expression. Such an
assumption has been made when calculating the first two non-
linear mode shapes of circular plates and fully clamped rect-
angular plates.16, 20, 21, 23 For the first nonlinear mode shape,
the range of validity of this assumption has been discussed in
the light of the experimental and numerical results obtained for
the nonlinear frequency-amplitude dependence and the nonlin-
ear bending stress estimates obtained at large vibration ampli-
tude.20, 22 In order to examine the effects of large vibration am-
plitudes on the membrane stress patterns for clamped circular
plates, the contribution of the in-plane displacement U should
be taken into account in the membrane strain expression. The
assumption introduced above leads to

Vm =
πA11

4

∫ a

0

(
∂W

∂r

)4

r dr. (20)
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The total strain energy, V , is then given by

V = π

∫ a

0

A11

4

(
∂W

∂r

)4

−B11

[
∂2W

∂r2

(
∂W

∂r

)2

+

ν

r

∂W

∂r

(
∂W

∂r

)2
]
+D11

[(
∂2W

∂r2

)2

+

1

r2

(
∂W

∂r

)2

+ 2
ν

r

∂W

∂r

∂2W

∂r2

]
r dr. (21)

2.3.1. Discretization of the Total Strain and Kinetic
Energy Expressions

If the space and time functions are supposed to be separable
and harmonic motion is assumed, the transverse displacement
W can be written as

W (r, t) = w(r) sin(ωt). (22)

The spatial function w(r) is expanded in the form of a finite
series of n basic functions wi(r) as follows:

w(r) = aiwi(r); (23)

in which the usual summation convention for the repeated in-
dex i is used over the range [1, n]. The transverse displacement
W (r, t) is then given by:

W (r, t) = aiwi(r) sin(ωt). (24)

The discretization of the total strain and kinetic energy ex-
pressions is made by substituting the expression for W (r, t)
given in Eq. (24) into Eqs. (18)–(21) and rearranging. This
leads to the following expressions:

V =
1

2
aiajkij sin

2(ωt) +
1

2
aiajakcijk sin

3(ωt) +

1

2
aiajakalbijkl sin

4(ωt); (25)

T =
1

2
ω2aiajmij cos

2(ωt); (26)

in which mij , kij , bijkl and cijk are the mass tensor, the linear
rigidity tensor, the fourth order nonlinear rigidity tensor and
the third order nonlinear coupling tensor, respectively. The ex-
pressions for these tensors are

mij = 2πI0

∫ a

0

wiwjr dr; (27a)

kij = 2πD11

∫ a

0

(
d2wi
dr2

d2wj
dr2

+
1

r2
dwi
dr

dwj
dr

+

2
ν

r

dwi
dr

d2wj
dr2

)
r dr; (27b)

cijk = −2πB11

∫ a

0

(
d2wi
dr2

dwj
dr

dwk
dr

+
ν

r

dwi
dr

dwj
dr

dwk
dr

)
r dr;

(27c)

bijkl =
πA11

2

∫ a

0

(
dwi
dr

dwj
dr

dwk
dr

dwl
dr

)
r dr. (27d)

2.3.2. Formulations of the Governing Equations

The dynamic behavior of the structure is governed by
Hamilton’s principle, which is symbolically written as

δ

∫ π/2ω

0

(V − T )dt = δ∅ = 0. (28)

Replacing T and V by their discretized expressions given
by Eqs. (25) and (26) in the energy condition Eq. (28), inte-
grating the time functions in the range

[
0, π2ω

]
and calculating

the derivatives with respect to the ai’s leads to the following
equation:

3π

32ω
ajakalbrjkl +

3π

32ω
aiakalbirkl +

3π

32ω
aiajalbijrl +

3π

32ω
aiajakbijkr −

( π
8ω
ajmrjω

2 +
π

8ω
aimirω

2
)
+(π

8
ajkrj +

π

8
aikir

)
+
( 2

6ω
ajakcrjk +

2

6ω
aiakcirk +

2

6ω
aiajcijr

)
= 0. (29)

The precedent equation can be rewritten as:( π
4ω
aikir

)
+

(
3π

8ω
aiajakbijkr

)
+

(
1

ω
aiajc

s
ijr

)
−( π

4ω
aimirω

2
)
= 0. (30)

It appears from Eqs. (27a)–(27b) and (27d) that the tensors
mij and kij are symmetric, and that the fourth order tensor
bijkl is such that

bijkl = bklij = bjilk = bikjl. (31)

On the other hand, a third order tensor csijk is defined by
Eq. (29) such that

csijk =
1

3
(ckij + cikj + cjik) . (32)

Consequently, Eq. (28) reduces to the following set of non-
linear algebraic equations:

aikir +
3

2
aiajakbijkr +

4

π
aiajc

s
ijr − ω2aimir = 0; (33)

for r = 1, . . . , n. This can be written in a matrix form as

{A}T [K]{A}+ 3

2
{A}T [B(A)]{A}+ 4

π
{A}T [C(A)]{A} −

ω2{A}T [M ]{A} = 0. (34)

Pre-multiplying Eq. (30) by the vector (A)T = [a1 a2 . . . an]
leads to the following expression for ω2:

ω2 =
aiajkij +

3
2aiajakalbijkl +

4
πaiajakc

s
ijk

aiajmij
. (35)

To simplify the analysis and the numerical treatment of the set
of nonlinear algebraic equations, a non-dimensional formula-
tion has been considered by putting the spatial displacement
function as

wi(r) = hw∗
i (r

∗); (36)
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where r∗ = r/a, the non-dimensional radial coordinate, and
Eq. (30) may be rewritten in non-dimensional form as

2aik
∗
ir + 3aiajakb

∗
ijkr +

8

π
aiajc

s∗
ijr − 2ω∗2aim

∗
ir = 0. (37)

The m∗
ij , k

∗
ij , c

∗
ijk and b∗ijkl terms are non-dimensional tensors

related to the dimensional ones by the following relationships:

mij = 2πI0h
2a2m∗

ij ; (38a)

kij =
2πD11h

2

a2
k∗ij ; (38b)

cijk =
−2πB11h

3

a2
c∗ijk; (38c)

bijkl =
πA11h

4

2a2
b∗ijkl. (38d)

These non-dimensional tensors are defined by

m∗
ij =

∫ a

0

w∗
iw

∗
j r

∗dr∗; (39a)

k∗ij =

∫ a

0

(
d2w∗

i

dr∗2
d2w∗

j

dr∗2
+

1

r∗2
dw∗

i

dr∗
dw∗

j

dr∗
+

2
ν

r∗
dw∗

i

dr∗
d2w∗

j

dr∗2

)
r∗dr∗; (39b)

c∗ijk = β

∫ a

0

(
d2w∗

i

dr∗2
dw∗

j

dr∗
dw∗

k

dr∗
+

ν

r∗
dw∗

i

dr∗
dw∗

j

dr∗
dw∗

k

dr∗

)
r∗dr∗;

(39c)

b∗ijkl = α

∫ a

0

(
dw∗

i

dr∗
dw∗

j

dr∗
dw∗

k

dr∗
dw∗

l

dr∗

)
r∗dr∗; (39d)

where ω∗ is the non-dimensional nonlinear frequency parame-
ter defined by

ω∗2 = γω2; (40)

in which ω∗2 is given by the following expression:

ω∗2 =
aiajk

∗
ir +

3
2aiajakalb

∗
ijkr +

4
πaiajakc

s∗
ijk

ω∗2aiajm∗
ir

. (41)

The parameters α, β, and γ are given by

α =
A11h

2

4D11
; (42a)

β =
−B11h

D11
; (42b)

γ =
I0a

4

D11
. (42c)

2.4. Bending Stress Expressions
The bending strains εbr and εbθ are given by

εbr(z) = −z
(
d2w

dr2

)
; (43a)

εbθ(z) = −z
(
1

r

dw

dr

)
. (43b)

By using the classical thin plate assumption of plane stress
and Hooke’s law, the radial and circumferential bending

Table 2. Non-dimensional linear frequencies, associated with the axisymmet-
ric modes of a clamped FG circular plate for i = 1, . . . , 6.

i 1 2 3 4 5 6
(ω∗

l )i 10.21 39.77 89.10 158.18 247.00 355.56

stresses are given by

σbr = −
zE(z)

(1− ν2)

[(
d2w

dr2

)
+ ν

(
1

r

dw

dr

)]
; (44)

σbθ = −
zE(z)

(1− ν2)

[(
1

r

dw

dr

)
+ ν

(
d2w

dr2

)]
. (45)

In terms of the non-dimensional parameters defined in
the previous section, the radial and circumferential bending
stresses σbr and σbθ can be defined by

σbr = −
z∗E(z∗)h2

(1− ν2)a2

[(
d2w∗

dr∗2

)
+ ν

(
1

r∗
dw∗

dr∗

)]
; (46)

σbθ = −
z∗E(z∗)h2

(1− ν2)a2

[(
1

r∗
dw∗

dr∗

)
+ ν

(
d2w∗

dr∗2

)]
. (47)

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Numerical Details
The basic functions w∗

i to be used in the expansion series
of w in Eq. (23) must satisfy the theoretical clamped boundary
conditions (i.e., zero displacement and zero slopes along the
circular edge). Since the linear problem of free axisymmetric
flexural vibration of a clamped circular plate has an exact an-
alytical solution, the chosen basic functions w∗

i were taken as
the linear free oscillation mode shapes of fully clamped circu-
lar plates given by24

w∗
i (r

∗) = Ai

[
J0(βir

∗)− J0(βi)

I0(βi)
I0(βir

∗)

]
. (48)

where βi is the ith real positive root of the transcendental equa-
tion

J1(β)I0(β) + J0(β)I1(β) = 0; (49)

in which Jn and In are, respectively, the Bessel and the mod-
ified Bessel functions of the first kind and of order n. The
parameter βi is related to the ith non-dimensional linear fre-
quency parameter (ω∗

l )i of the plate by

β2
i = (ω∗

l )i. (50)

Leissa’s study25 features examples of numerical values of
(ω∗
l )i, and the first six values are given here in Table 2. Ai

is chosen such that ∫ 1

0

w∗2
i r

∗dr∗ = 1. (51)

Therefore, a set of orthonormal functions, and the mass tensor
associated with the chosen transverse displacement is given by

m∗
ij =

∫ 1

0

w∗
iw

∗
j r

∗dr∗ = δij ; (52)

where δij is the Kronecker delta symbol. The first six basic
functions w∗

i , i = 1, . . . , 6 are plotted in Fig. 3.
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Figure 3. Axisymmetric out-of plane natural modes of vibration for a clamped
circular plate W ∗

i for i = 1, . . . , 6.

3.2. Iterative Method of Solutions and Anal-
ysis of Numerical Results

3.2.1. Iterative Method of Solutions

The set of nonlinear algebraic Eqs. (37) has been solved nu-
merically by using the Harwell library routine NS01A, based
on a hybrid iterative method combining the steepest descent
and Newton’s methods to obtain the numerical results pre-
sented for the first nonlinear mode shape of a thin FG circular
plate. This method does not require a very good initial esti-
mate of the solution or a step procedure, similar to other meth-
ods described for beams and rectangular plates.20–23 It was
adopted here to ensure rapid convergence when varying the
amplitude, which allowed solutions to be obtained with a quite
reasonable number of iterations. The fundamental nonlinear
mode shape was calculated in the neighborhood of the linear
solution corresponding to a small numerical value of the coef-
ficient ar0(r0 = 1) of the basic function w∗

r0. The resulting
solution was then used as an initial estimate for the following
step corresponding to higher values of ar0(r0 = 1).

3.2.2. Numerical Results and Discussion

The first six linear axisymmetric eigenfunctions of the
model presented above were used, respectively, to obtain the
first nonlinear axisymmetric mode shape. The results obtained
numerically from iterative solutions of the nonlinear algebraic
system Eq. (37) are summarized in Table 3. The computed val-
ues of a2, a3, . . . , a6 obtained for assigned values of a1 vary-
ing from 0.005 to 0.75 correspond to maximum dimension-
less vibration amplitudes varying from 0.0165 to 2.386 and are
given in Table 3. In each table, ai represents the contribution
of the ith basic function w∗

i . The variable w∗
max is the max-

imum non-dimensional amplitude, and (ω∗
nl/ω

∗
l ) is the ratio

of the non-dimensional nonlinear frequency parameter defined
in Eq. (41) to the corresponding non-dimensional linear fre-
quency parameter given in Table 3. It can be seen from this ta-
ble that the non-dimensional nonlinear frequencies calculated
here from the nonlinear analysis for low amplitudes of up to
0.04 (very small values of a1 and a2) coincide exactly with the
corresponding linear ones. Also, near to the linear frequency
of a given mode, only the corresponding basic function has

Table 4. Effect of large vibration amplitudes on the frequencies of the first
non-linear axisymmetric mode shape of a clamped FG circular plate (n =
0.5).

Non-linear frequency ratio
W ∗

max n Present work From graph2

0.2

0.5

1.0076 1.0074
0.4 1.0300 1.0259
1.0 1.1752 1.1629
1.5 1.3626 1.3370

Table 5. Frequency ratio (ω∗
nl/ω

∗
l ) of a clamped isotropic circular plate (n =

0.0).

W ∗
max 20082 200316 196126 196227 Present analysis

0.2 1.0075 1.0072 1.0070 1.0079 1.0108
0.4 1.0296 1.0284 1.0278 1.0313 1.0421
0.8 1.1135 1.1073 1.1065 1.1194 1.1560
1.0 1.1724 1.1615 1.1617 1.1808 1.2318
1.5 1.3567 1.3255 1.3343 1.3711 1.4542

a significant contribution. At large vibration amplitudes, the
mode contributions and the resonance frequency increase with
the amplitude of vibration. The corresponding rate of increase
decreases with the order of the mode considered and becomes
negligible for the higher modes.

3.2.3. Amplitude Frequency Dependence

The dependence of the nonlinear frequency on the non-
dimensional vibration amplitude is listed in Table 4 for the
first nonlinear axisymmetric mode shape of the FG circular
plate for n = 0.5. From this table, it is observed that the
nonlinear frequency increases with increasing vibration ampli-
tudes. It can be also observed that the results calculated via the
present model exhibit a higher increase of the frequency com-
pared with those obtained by Haterbouch and Benamar2 with a
discrepancy of 6.22% for a value of the non-dimensional am-
plitude w∗

max = 1.0 and 0.41% for a non-dimensional vibration
amplitude w∗

max = 0.2. This may be attributed to the negli-
gence of in-plane displacements in the present theory. Table 5
shows the comparison of the nonlinear frequency ratio of the
first mode shape of the isotropic circular plates (case of n = 0)
with those obtained for some isotropic circular plates in the
literature.

Figure 4 shows the dependence of the frequency ratio of the
clamped FG circular plate on the amplitude of vibration for
various values of the power law index n. As may be seen in
this figure, by increasing the values of the power law index
in the range [0, 2], the frequency increases. For values higher
than n = 2.0, the frequency decreases when n increases. This
may be expected, since when the power law index n = 0.0
or n = 1000.0, the material is pure metallic or pure ceramic,
respectively, and the non-dimensional frequency corresponds
to the isotropic material case.

3.2.4. Amplitude Dependence of the First Nonlin-
ear Axisymmetric Mode Shape of FG Circular
Plates

Previous studies20–23 have shown that the nonlinear mode
shapes of beam- and plate-like structures are amplitude depen-
dent. This effect is illustrated in the present case in Fig. 5 in
which the normalized nonlinear mode shapes of the first ax-
isymmetric mode of the clamped FG circular plate are plotted
for various values of the maximum non-dimensional ampli-
tudes. All curves show the amplitude dependence of the first
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Table 3. Contribution coefficients to the first non-linear axisymmetric mode shape of the clamped FG circular plate, obtained numerically from iterative solution
of the non-linear system in Eq. (37).

w∗
max ω∗

nl/ω
∗
l a1 a2 a3 a4 a5 a6

0.0165 1.0000 0.005 -5.0666 E-008 9.3961 E-009 -2.5725 E-009 8.0453 E-011 -3.8763 E-013
0.0330 1.0003 0.01 -3.2327 E-007 1.0681 E-007 -3.7776 E-009 8.9118 E-010 -3.1623 E-010
0.0661 1.0012 0.02 -2.6017 E-006 8.6160 E-007 -2.5008 E-008 3.1887 E-009 -5.8694 E-010
0.1322 1.0048 0.04 -1.0800 E-008 7.3254 E-009 -5.5800 E-009 5.9800 E-009 -1.0800 E-010
0.2641 1.0190 0.08 -1.6245 E-004 5.4556 E-005 -1.8763 E-006 2.8340 E-007 -4.5036 E-008
0.3299 1.0294 0.10 -3.1274 E-004 1.0588 E-004 -3.9480 E-006 6.4564 E-007 -9.7508 E-008
0.4934 1.0643 0.15 -1.0059 E-003 3.4978 E-004 -1.6334 E-005 3.2094 E-006 -4.5234 E-007
0.8165 1.1646 0.25 -4.0663 E-003 1.5171 E-003 -1.0883 E-004 2.7996 E-005 -4.2409 E-006
1.1347 1.2924 0.35 -9.4441 E-003 3.8097 E-003 -3.8014 E-004 1.1767 E-004 -2.1055 E-005
1.4495 1.4366 0.45 -1.6788 E-002 7.2922 E-003 -9.2628 E-004 3.2968 E-004 -6.9137 E-005
1.7625 1.5906 0.55 -2.5619 E-002 1.1875 E-002 -1.8036 E-003 7.1673 E-004 -1.7152 E-004
2.0746 1.7507 0.65 -3.5523 E-002 1.7397 E-002 -3.0261 E-003 1.3140 E-003 -3.5021 E-004
2.3862 1.9151 0.75 -4.6185 E-002 2.3678 E-002 -4.5770 E-003 2.1363 E-003 -6.2198 E-004

Figure 4. Effect of the power law index n on the variation of the non-linear fre-
quency ratios (ω∗

nl/ω
∗
l ) of the clamped FG circular plate with the amplitude

of vibration.

axisymmetric nonlinear mode shape with an increase of curva-
tures near to the clamped edges, which may lead one to expect
that the bending stress near to the edges of the plate increases
nonlinearly with the increase of the vibration amplitude. This
is examined in the next subsection.

3.2.5. Analysis of the Bending Stress Distribution As-
sociated with the First Nonlinear Axisymmetric
Mode Shape of FG Circular Plates

As mentioned above, the present multimodal model al-
lows not only determination of the amplitude-frequency de-
pendence, but also the deformation of the mode shape due to
the geometrical nonlinearity. From this last result, it was ex-
pected that the effect of the amplitude of vibration on the dis-
tribution of the associated bending stress would be of a great
significance since the bending stress is related to the deriva-
tives of the amplitude dependent transverse mode shape.

The radial bending stress distributions associated with
the first axisymmetric nonlinear mode shape with non-
dimensional radius are plotted in Fig. 6. It can also be seen
in Fig. 7 that the nonlinear radial bending stresses exhibit a
higher increase near to the clamped edge compared with that
expected in linear theory. The rate of increase in the radial
bending stress is about 1.52, the rate of increase expected in
linear theory for the first mode.

Figures 8–9 present the effect of the volume fraction index
on the bending stress at the clamped edge and the plate center

Figure 5. Normalized first non-linear axisymmetric mode shape of FG circular
plate at various non-dimensional amplitudes and the power index n = 0.5.

Figure 6. Non-dimensional radial bending stress associated to the first non-
linear axisymmetric mode shape of a clamped FG circular plate for n = 0.5
and various non-dimensional vibration amplitudes.

through the plate thickness. It is obvious that by increasing the
gradient index (n), the variation of Young’s modulus becomes
increasingly abrupt through the thickness and, consequently,
the stress varies accordingly. It is observed that the stress vari-
ation through the plate thickness is linear for the completely
ceramic-rich and metal-rich plates corresponding, respectively,
to n = 0.0 and n = ∞, while the behavior is nonlinear and
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Figure 7. Effects of large vibration amplitudes on the non-dimensional radial
bending stress at the edge of the FG circular plate.

Figure 8. Effect of the volume fraction index n on the radial bending stress
through the thickness at the clamped center of the FG circular plate.

is governed by the variation of the properties in the thickness
direction for the FGCP. Figure 10 depicts the variation related
to the bending stress of a clamped FG circular plate at differ-
ent levels of the plate cross-section for the power law index
n = 0.5 and the vibration amplitude W ∗

max = 1.5.

3.2.6. Explicit Analytical Solution

The purpose here is to replace the iterative method of the so-
lution of the set of the nonlinear algebraic equation, Eq. (37),
necessary to obtain the clamped FG circular plate nonlinear ax-
isymmetric mode shape and associated nonlinear resonant fre-
quencies at large vibration amplitudes by an explicit solution,
which may be appropriate for engineering purposes or for fur-
ther analytical investigations. This explicit solution is obtained
by applying and adapting the so-called first formulation devel-
oped for many beams and plates cases studied by El Kadiri,
Benamar, and White28 and El Kadiri and Benamar.29 A com-
parison is then made between the two solutions—numerical it-
erative and analytical—in order to determine exactly the range
of validity of the last approximate approach. To illustrate the
method, the fundamental nonlinear mode shape is considered

Figure 9. Effect of the volume fraction index n on the radial bending stress
through the thickness at the clamped Edge of the FG circular plate.

Figure 10. Variation of the radial bending stress at different levels of FG
circular plate for n = 0.5.

Table 6. Numerical values of the modal parameters k∗ii and b∗111i.

i k∗ii b∗111i
1 104.363105549862 421.176182024113
2 1581.74423079117 320.895319824783
3 7939.54845205673 -562.906703667013
4 25022.2457661498 51.9601847057999
5 61012.1806626721 -15.6321082304476
6 126429.530992020 6.09018059687781

here by taking r0 = 1. The analysis for the higher nonlinear
modes would proceed similarly. A less constraining assump-
tion, compared to the single mode approach, is made by ne-
glecting in the expression aiajakb∗ijkr, appearing in Eq. (37),
which leads to a simple formulation, leading to explicit expres-
sion for the amplitude dependence first nonlinear mode of the
FG circular plates.

3.2.7. Explicit Expression for the Amplitude Depen-
dence First Nonlinear Mode of FG Circular
Plate

The first formulation is based on an approximation, which
consists in neglecting in the expression aiajakb∗ijkr of Eq. (37)
when the first FG circular plate nonlinear mode is examined,
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Figure 11. Comparison between the values of the modal contributions of the first non-linear mode shape of the FG circular plate.

the first, second and third order terms with respect to εi, i.e.
the terms of the type a21εkb

∗
11kr, a1εjεkb

∗
1jkr, or εiεjεkb∗ijkr,

so that the only remaining term is a31b
∗
111r. Thus, Eq. (37)

becomes (
k∗ir − ω∗2

nl1m
∗
ir

)
εi +

3

2
a31b

∗
111r = 0; (53)

for r = 2, . . . , 6, in which the repeated index i is summed over
the range [1, 6]. Since the use of linear FG circular plate mode
shapes as basic functions leads to diagonal mass and rigidity
matrices, the above system permits one to obtain explicitly

the basic function contributions ε2, . . . , ε6 of the second and
higher functions corresponding to a given value of the assigned
first basic function contribution a1, as follows:

εr = −
3

2

a31b
∗
111r

(k∗rr − ω∗2
nl1m

∗
rr)

; (54)

where r = 2, . . . , 6.
The εr’s, (r 6= 1), depend on the known parameter m∗

rr,
k∗rr, b

∗
111r; the assigned value a1, and the nonlinear frequency

parameter ω∗
nl1. To express simply ω∗2

nl1 with an acceptable
accuracy, the single-function formula obtained from Eq. (41),
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Figure 12. Comparison between the normalized radial section of the first non-
linear axisymmetric mode shape of a clamped FG circular plate for the power
law index n = 0.5 and various non-dimensional amplitudes. (—): Iterative
method of solution. (- - -): Explicit analytical solution.

in which all of the ai’s, except a1, are taken equal to zero, and
is used as follows:

ω∗2
nl1 =

k∗11
m∗

11

+
3b∗1111
2m∗

11

a21. (55)

In the case considered here, the mass matrix is identical
to the identity matrix m∗

11 = m∗
rr = 1, and by substituting

Figure 13. Comparison of frequencies parameter (ω∗
nl/ω

∗
l ) for the first non-

linear clamped FG circular plate. (—): Iterative method of solution. (- - -):
Explicit analytical solution.

Table 7. Comparison between values of frequency parameter (ω∗
nl/ω

∗
l ) as-

sociated with the first non-linear axisymmetric mode shape of a clamped FG
circular plate, obtained by iterative and explicit analytical solution at various
values of the maximum non-dimensional amplitude w∗

max.

Non-linear frequency ratio (ω∗
nl/ω

∗
l )

w∗
max Iterative solution Explicit solution Deviation (%)

0.5 1.0662 1.0678 0.1500
0.6 1.0939 1.0971 0.2925
0.7 1.1252 1.1308 0.4976
0.8 1.1603 1.1692 0.7670
0.9 1.1984 1.2118 1.1181
1.0 1.2393 1.2583 1.5331
1.1 1.2831 1.3088 2.0029
1.2 1.3291 1.3628 2.5355
1.5 1.4610 1.5217 4.1546

Eq. (55) into Eq. (54) leads to

εr =
3a31b

∗
111r

2
(
k∗11 +

3
2a

2
1b

∗
1111 − k∗rr

) ; (56)

where r = 2, . . . , 6.
Equation (56) is an explicit simple formula, allowing di-

rect calculation of the higher mode contributions to the first
nonlinear mode shape of the FG circular plate as functions
of the assigned first mode contribution a1 and the known pa-
rameters k∗rr and b∗111r (given in Table 6). Then, defines the
first nonlinear amplitude-dependent FG circular plate mode
shape w∗

nl1(r
∗, a1) is given as a series involving the circular

plate modal parameters depending on the first six axisymmet-
ric functions w∗

1(r
∗), w∗

2(r
∗), . . . , w∗

6(r
∗):

w∗
nl1(r

∗, a1) = a1w
∗
1(r

∗) +

6∑
r=2

3a31b
∗
111r

2
(
k∗11 +

3
2a

2
1b

∗
1111 − k∗rr

)w∗
r(r

∗); (57)

in which the predominant term, proportional to the first linear
mode shape, is a1w∗

1(r
∗), and the other terms, proportional

to the higher linear mode shapes ε2w∗
2(r

∗), . . . , ε6w
∗
6(r

∗), are
the corrections due to the nonlinearity.

It may be seen in Figs. 11(a)–11(e) in which the higher mode
contributions obtained by the explicit approximate solution are
plotted against the maximum non-dimensional vibration am-
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Figure 14. Comparison between dimensionless radial bending stresses distribution along the thickness, at the clamped Center (a) and the clamped Edge (b) of
the FG circular plate for various non-dimensional vibration amplitudes. (—): Iterative method of solution. (- - -): Explicit analytical solution.

plitude and compared with that obtained by the iterative solu-
tion.

3.2.8. Validity Domain of the Analytical Solutions

The explicit analytical method of solution applied here to
the first nonlinear mode shape of a clamped FG circular plate
appears to be very appropriate for the analysis of geometri-
cally nonlinear free vibration problems. Since it is based on
an assumption concerning the order of magnitude of the basic

function contribution coefficients, its domain of validity has to
be delimited.

To have an accurate conclusion concerning this domain of
validity, especially in engineering applications, a criterion was
adopted based on the effect of the assumptions made on the
mode shape, the nonlinear frequencies, and the radial bend-
ing stress obtained at the clamped edge and center of the FG
circular plate are examined.

The normalized first nonlinear axisymmetric mode shape,
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obtained by numerical iterative solution and explicit analyti-
cal solution, is plotted in Figs. 12(a)–12(c) for various values
of the maximum dimensionless vibration amplitude. It can be
observed that the nonlinear effect increases with increasing the
amplitude of vibration, and it may be seen from these figures
that the first normalized nonlinear mode shape obtained by ex-
plicit approximate solution is in excellent agreement with that
obtained by the iterative method of solution for maximum di-
mensionless vibration amplitude up to 1 and 0.5, respectively.

In Fig. 13, the nonlinear frequency estimates, calculated us-
ing the single-function formula in Eq. (55) and the complete
formula in Eq. (41), are plotted against the maximum dimen-
sionless vibration amplitude, for the axisymmetric mode shape
and the numerical results thus obtained for various values of
the maximum non-dimensional amplitude are listed in Table 7.
Table 7 and Fig. 13 show that the single-mode approach gives
a good estimate of nonlinear frequency parameter (ω∗

nl/ω
∗
l )

with a percentage error induced by the explicit approach so-
lution that does not exceed 4.20% for the first axisymmetric
mode shape at w∗

max = 1.5 compared with the one given by
Eq. (41).

The dimensionless radial bending stress distribution along
the thickness is associated with the first nonlinear axisymmet-
ric mode shape obtained by the iterative method and that ob-
tained by the analytical method and are plotted in Figs. 14(a)
and 14(b) for various maximum dimensionless vibration am-
plitude. It may be seen from these figures that the radial
bending stress obtained by the two approaches are in excel-
lent agreement for maximum dimensionless vibration ampli-
tude up to 1 and 0.5 for the first nonlinear axisymmetric FG
circular plate mode shape. As may be seen in the correspond-
ing figures, the error increases with increasing the vibration
amplitude. For example, the error induced by the first formu-
lation in the bending stress, corresponding to the first nonlinear
mode, at the clamped edge of the FG circular plate, is 0.10 for
a dimensionless amplitude of vibration equal to 0.5 times the
plate thickness and does not exceed 6.0% for a dimensionless
amplitude of vibration equal to 1.5. It can then be concluded
that the explicit analytical method gives acceptable results with
respect to the nonlinear bending stress estimates for vibration
amplitudes up to once the plate thickness for the first nonlinear
mode shape.

4. CONCLUSIONS

The nonlinear free vibrations of FG circular plates have been
examined using a theoretical model for geometrically nonlin-
ear free vibrations. The model based on Hamilton’s principle
reduces the nonlinear free vibration problem to solution of a
set of nonlinear algebraic equations. The amplitude depen-
dence of the first nonlinear mode shape of clamped FG cir-
cular plates and the associated nonlinear parameters has been
obtained via iterative solution of a set of nonlinear algebraic
equations, involving a fourth order tensor due to the geometri-
cal nonlinearity.

Considering the results obtained, numerical data corre-
sponding to various values of the volume fraction index n are
plotted and discussed. Also, the results show that the nonlinear
frequency increases with increasing vibration amplitudes, and
all curves show the amplitude dependence of the stress distri-
bution and a higher increase of the bending stress near to the

clamps compared with the rate of increase obtained in the lin-
ear theory.

In order to obtain explicit analytical solutions for the first
nonlinear axisymmetric mode shape of the FG circular plates,
which are expected to be very useful in engineering applica-
tions and in further analytical developments, the improved ver-
sion of the semi-analytical model developed by El Kadiri, Be-
namar, and White28 and El Kadiri and Benamar29 for beams
and rectangular plates has been developed and adapted for the
FG circular plate, which are shown to be in a good agreement
with the iterative method.

Further investigations are needed to determine the mem-
brane stress distribution at large vibration amplitudes by tak-
ing into account in the theory the effects of the in-plane dis-
placements. It is also necessary to carry out a parametric study
concerning the effect of the graded material properties such as
Young’s modulus E and the mass density ρ on the nonlinear
vibration behavior of the plate.
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