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A modal summation method based on far-field sound intensity is used to study the average radiation efficiency and
the corresponding radiation power of a point-excited, simply-supported, rectangular sandwich plate containing a
tunable electrorheological fluid (ERF) core, and set in an infinite rigid baffle. In addition, a classical analytical
procedure based on the Rayleigh integral equation method is adopted to investigate the sound transmission charac-
teristics (TL) of the adaptive plate insonified by plane pressure waves at an arbitrary angle of incidence, or excited
by a perfectly diffuse sound field with a Gaussian directional distribution of energy. Numerical results reveal the
imperative influence of an applied electric field strength (0–3.5 kV/mm) on controlling acoustic radiation from (or
sound transmission through) the smart panel in a wide frequency range. In addition, an effort is made to find the
optimal electric field which yields improved sound radiation and transmission characteristics for each excitation
frequency. Limiting cases are considered and good agreements with the solutions available in the literature used in
this study are obtained.

1. INTRODUCTION

Plates are one of the most extensively used structural com-
ponents in industrial applications. Many civil, industrial, and
modern aerospace and aeronautical structures (e.g., walls and
floors, ship hulls, machine elements, and aircraft sidewalls)
can be practically modelled, to a first approximation, as a fi-
nite baffled panel. Throughout the past few decades, vibroa-
coustic problems involving acoustic radiation from (or sound
transmission through) finitely bounded isolated panel struc-
tures have been subject to intense research. In particular, nu-
merous efforts have been concentrated on studying the sound
radiation and transmission characteristics of rectangular plates
with various complications since early 1960s.1 Maidanik2 was
the first to apply the concept of power flow and statistical
energy analysis to derive several approximate asymptotic ex-
pressions for calculating the modal radiation resistance in dif-
ferent wavenumber regions for a simply-supported, rectangu-
lar isotropic plate placed in an otherwise rigid co-planar baf-
fle. Wallace3 subsequently used the Rayleigh integral to de-
rive analytical expressions for the modal radiation efficiency
of a simply-supported baffled rectangular panel. Leppington,
et al.4 provided a detailed mathematical analysis of the modal
radiation from a simply-supported panel, and used the assump-
tion of high modal densities to revise some of Maidanik’s re-
sults for large acoustic wavenumbers, especially in the ranges
close to the critical frequency.

Roussos5 developed an analytical procedure for an effi-
cient solution of sound transmission through a rectangular,
simply-supported, isotropic or symmetrically laminated com-
posite plate in an infinite rigid baffle and under arbitrary
plane wave incidence. Panneton and Atalla6 used a three-
dimensional finite element model coupled with a boundary el-
ement approach to predict the sound transmission loss through
multi-layer structures made of elastic, acoustic, and poroelastic
(Biot) media. Lee and Kondo7 presented analytical and exper-

imental studies of noise transmission loss of a three-layered
simply-supported baffled rectangular plate with a viscoelastic
core. Foin, et al.8 proposed a variational model to analyse
the vibroacoustic behaviour of a rectangular, baffled, simply-
supported plate covered by a free or a constrained viscoelastic
layer and immersed in either a light or a heavy fluid. Foin,
et al.9 investigated the vibroacoustic behaviour of an elastic,
simply-supported rectangular plate covered by a locally re-
acting decoupling layer immersed in water and subjected to
a point force disturbance. Sgard, et al.10 employed the fi-
nite element method to predict sound-transmission loss across
finite- sized, double-panel sound barrier with poroelastic lin-
ings. Berry, et al.11 investigated the vibroacoustic response of
a finite, simply-supported rectangular plate covered by a thick
layer of decoupling material and immersed in a heavy fluid.
Park, et al.12 used the Rayleigh-Ritz method to investigate the
effects of the support properties (stiffness and damping) on the
forced vibration response and the associated radiated sound of
viscoelastically supported rectangular plates.

Chiello, et al.13 used a free-interface component mode syn-
thesis technique associated with the finite element method to
study the vibroaocoustic behaviour of an elastically-supported
baffled plate excited by a plane wave or a diffuse field. Xie, et
al.14 used results from a modal summation method based on
the farfield sound intensity to investigate the average radiation
efficiency of point-excited baffled rectangular plates, including
those with a very large aspect ratio (strips). Au and Wang15 in-
vestigated sound radiation from forced vibration of rectangular
orthotropic plates with general boundary conditions traversed
by moving loads. Park and Mongeau16 used the Mindlin plate
theory and the Rayleigh-Ritz method to investigate the vibro-
acoustic characteristics of sandwich panels with viscoelastic
supports. Assaf and Guerich17 used a finite element formula-
tion coupled to a boundary element method to predict noise
transmission loss (TL) through viscoelastically-damped sand-
wich rectangular plates subjected to an acoustic plane wave or
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a diffuse sound field excitation.
Chazot and Guyader18 used the so-called patch-mobility

method to predict vibroacoustic behaviour of (or sound trans-
mission through) double panels filled with porogranular ma-
terials. Assaf, et al.19 presented a finite element formula-
tion to analyse the vibroacoustic response of plates with a
constrained-layer damping treatment immersed in a light or
heavy fluid. Zhou and Crocker20 used two different boundary
element analyses to investigate the sound transmission char-
acteristics of foam-filled honeycomb sandwich panels excited
by a random incidence acoustic field. Loredo, et al.21 used
Rayleigh–Ritz’s method for vibroacoustic analysis of baffled
rectangular plates with constrained-layer damping (viscoelas-
tic) patches. Li21 studied active modal control of the vibroa-
coustic response of a fluid-loaded baffled rectangular plate
using piezoelectric actuators and sensors and negative veloc-
ity feedback. He showed that the proposed method increases
the modal damping ratio of the controlled mode and achieves
notable reductions in the associated sound power and mean
square velocity. Just recently, Kam, et al.23 presented a
semi-analytical approach based on the Rayleigh–Ritz method
and the first Rayleigh integral for vibroacoustic analysis of
elastically-restrained shear deformable stiffened rectangular
orthotropic plates, and validated their results by carrying out
experiments.

Vibration and sound radiation and transmission control of
elastic structures is a crucial issue in many engineering sys-
tems, ranging from ground-based vehicles to machinery, civil
structures, ships, aircrafts, aerospace vehicles, space-based
platforms, and buildings. Two different approaches are nor-
mally used - passive control and active control. In the passive
control approach, the material properties of the structure it-
self, such as damping and stiffness, are customized so as to
modify the structural response. However, the material proper-
ties of such structures are preset in their design or construction
stage, which can hardly be adapted to unanticipated environ-
mental variations. Over the past few decades, intelligent ma-
terials such as piezoelectric materials, shape memory alloys,
or electro- or magneto-rheological materials have been incor-
porated into conventional structures in order to adjust to the
changes of the environment.24, 25 The latter materials have re-
cently gained increasing recognition, as their rheological prop-
erties (damping and stiffness) can swiftly and reversibly be var-
ied when subjected to an electrical field.26

Other valuable features of these materials include simplic-
ity, compactness, low cost, low-energy loss, robustness, and
easy controllability by computers,27 which makes them an
ideal methodology for noise and vibration control in various
spheres of engineering. Consequently, numerous investigators
have thoroughly studied the use of smart electro- or magneto-
rheological-based structures for vibration control in various
spheres of engineering.28–32 There are, however, compara-
tively fewer authors who have investigated the sound radia-
tion and insulation characteristics of these structures. Among
them, Choi, et al.33 formulated a fuzzy control logic on the ba-
sis of field-dependent sound pressure levels to experimentally
investigate noise control of a rectangular closed cabin featur-
ing one side of an ER fluid-based smart plate. Szary34 ex-
amined the sound transmission loss for various kinds of elec-
trorheological suspensions placed between two specially de-
signed barriers under a variable alternative electric field den-

sity in a frequency range from 100 Hz to 2 kHz. Lu, et
al.35 experimentally studied the dynamic and acoustic char-
acteristics of a sandwich cylindrical shell structure with an
electrorheological fluid core, excited by an internal high fre-
quency noise source. In a series of experimental investigations,
Tang, et al.36 devised sandwiched flexible electrorheological
gel layers and studied the tunable behaviour of the transmitted
sound-pressure levels with respect to the external electric field.
More recently, Hasheminejad and Shabanimotlagh37 employed
the linear theory of elasticity in conjunction with the classi-
cal structural damping model, involving complex-valued field-
dependent material constants, to develop a two-dimensional
analytic solution for sound transmission control through an
MRE-based adaptive sandwich infinite panel of arbitrary thick-
ness.

The above review indicates that while there exists a notable
body of literature on vibroacoustic characteristics of composite
panels, rigorous analytical or numerical solutions for the sound
radiation or transmission characteristics of finitely-bounded
ERF-based sandwich structures seems to be absent. Thus, in
this paper, we employ the equations of motion for a simply-
supported ERF-filled rectangular sandwich plate,38 the classi-
cal complex modulus approach for describing the viscoelastic
behaviour of the ER core fluid,31 the pertinent wave field ex-
pansions, and the modal summation method14 along with the
Rayleigh integral equation approach1 to fill this gap. The pro-
posed model is of noble interest, largely due to its inherent
value as a canonical problem in structural acoustics. It can
lead to further understanding of the acoustic behaviour of ER-
material- based adaptive structures. It is also of practical value
for noise control engineers involved in the development of re-
liable analytical and/or experimental tools for the design and
analysis of ERF- based plates or panels with optimal acousti-
cal characteristics.33–37 Lastly, the presented analytical solu-
tion can serve as the benchmark for a comparison to solutions
obtained by strictly numerical or asymptotic approaches.

2. FORMULATION

2.1. Governing Equations for the ERF Plate

The problem configuration is shown in Fig. 1. A sandwich
rectangular plate (a × b) consisting of a base plate (thickness
h3), a constraining layer (thickness h1), and a tunable fluid
core layer (thickness h2), with simply-supported edge condi-
tions, is considered. The skin layers are assumed to be cross-
ply elastic composite laminates, with no slipping with respect
to the core layer, and where identical transverse displacements
are assumed at every point across the cross section for all three
layers w(x, y, t). Using Hamilton’s principle, after some te-
dious manipulations, the displacement equations of motion for
the ERF-sandwich plate can readily be obtained, as outlined in
details in the work of Hasheminejad and Maleki.38 To consider
the steady state vibrational response of the simply-supported
adaptive plate, one may advantageously assume a harmonic
normal resultant force acting on the upper surface of the plate
(e.g., see Fig. 1(a)) which, along with the relevant displace-
ment components, can be expanded in double Fourier series
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as39

q (x, y, t) =

q0(x, y)eiωt =

∞∑
m=1

∞∑
n=1

qmn sin (αmx) sin (βny) eiωt;

ui (x, y, t) =

∞∑
m=1

∞∑
n=1

U (i)
mn cos (αmx) sin (βny) eiωt;

vi (x, y, t) =

∞∑
m=1

∞∑
n=1

V (i)
mn sin (αmx) cos(βny)eiωt;

w (x, y, t) =

∞∑
m=1

∞∑
n=1

Wmn sin (αmx) sin(βny)eiωt; (1)

where ω is the excitation frequency, αm = mπ/a, βn =
nπ/b, ui and vi(i = 1, 3) are the mid-plane deformations
of the skin layers in the x and y directions, respectively,
U

(i)
mn, V (i)

mn(i = 1, 3) and Wmn are unknown modal coef-

ficients, and qmn = 4
ab

b∫
0

a∫
0

q0(x, y)sin(αmx)sin(βny)dxdy

(m,n = 1, 2, 3, ...) are the Fourier coefficients associated with
the harmonic distributed normal force of amplitude q0(x, y).
By direct substitution of the displacement expansions in Eq. (1)
into the governing equations of motion for the ERF plate (see
Eq. 19 in Hasheminejad’s and Maleki’s work38), after some
manipulations, one obtains (2) (see the top of the next page),
where i = 1, 3; δi = 1 if i = 1; and δi = 1 if i = 3,
ρi(i = 1, 2, 3) denotes the mass density in the i-th layer;
I2(= ρ2h

3
2/12) is the mass moment of inertia of the ER fluid

interlayer; G(2) is the viscoelastic shear modulus of the ER
fluid layer; d = h1/2 + h2 + h3/2; and

(
A

(i)
jk , B

(i)
jk , D

(i)
jk

)
=

hi/2∫
−hi/2

(1, zi, z
2
i )Qjkdzi are the rigidity constants in which the

indices j and k can be 1, 2, or 6; zi is the transverse coordinate
in the local coordinate system of the skin layers positioned at
their associated mid-planes; and one should note that B(i)

jk = 0
when the planes are symmetrically laminated with respect to
their mid-plane. Besides, Q

(i)

11 = Q
(i)

22 = Ei
1−v2i

, Q
(i)

12 = viEi
1−v2i

,

and Q
(i)

66 = Ei
2(1+vi)

, where Ei and vi are the Young modulus
and Poisson ratio of the base and constraining layer, respec-
tively. The equations of motion (2) can conveniently be written
in a matrix form

Zmnξmn = qmn; (3)

where ξmn = [U
(1)
mn U

(3)
mn V

(1)
mn V

(3)
mn Wmn]T , qmn =

[0 0 0 0 qmn]T , and the elements of the (5 × 5) coeffi-
cient matrix Zmn = amn+ω2bmn are given in the Appendix.

2.2. The Acoustic Radiation Problem
Let the simply-supported sandwich ERF plate be set

in an infinite rigid baffle, and subjected to a har-
monic point force excitation at point (x0, y0) with fre-
quency ω, i.e. q0(x, y) = F0δ(x − x0)δ(y − y0),
where the associated Fourier coefficients are simply ob-

tained as qmn = 4
ab

b∫
0

a∫
0

q0(x, y)sin(αmx)sin(βny)dxdy =

4F0

ab sin(αmx0)sin(βny0) (see Fig. 1(a)). Also, the total

(a)

(b)

Figure 1. Problem geometry. (a) The acoustic radiation problem. (b) The
sound transmission problem.

acoustic power radiated from the adaptive plate can be deter-
mined by integrating the far-field sound intensity over a hemi-
sphere of radius r to get1

Π =
2π

∫
0

π/2

∫
0

|P (r, θ, φ, t)|2

2ρc
r2 sin θdθdφ; (4)

where c is the speed of sound in the external acoustic fluid, and
P is the complex acoustic pressure at location ”S” in space, ex-
pressed in spherical coordinates (r, θ, π), which can be written
in terms of the plate surface velocity through the well-known
Rayleigh integral in the form40

P (r, θ, φ, t) =
a

∫
0

b

∫
0

iρkc

2π
−
r

∂w(x, y, t)

∂t
e−ik

−
rdydx; (5)

where k = ω/c is the acoustic wave number, r is the vector
connecting a representative element of the plate (dx, dy) to
the field point ”S” (see Fig. 1a), and using Eq. (3) with qmn =
4F0

ab sin(αmx0)sin(βny0), the transverse plate velocity may be
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(
−α2

mA
(i)
11 − β2

nA
(i)
66 + ρihiω

2
)
U (i)
mn + δi

(
−G

(2)

h2
+
I2ω

2

h22

)(
U (1)
mn − U (3)

mn

)
− αmβn

(
A

(i)
12 +A

(i)
66

)
V (i)
mn

+

[
α3
mB

(i)
11 + αmδi

(
I2dω

2

h22
− G(2)d

h2

)
+ αmβ

2
n

(
B

(i)
12 + 2B

(i)
66

)]
Wmn = 0;(

−α2
mA

(i)
66 − β2

nA
(i)
22 + ρihiω

2
)
V (i)
mn + δi

(
−G

(2)

h2
+
I2ω

2

h22

)(
V (1)
mn − V (3)

mn

)
− αmβn

(
A

(i)
12 +A

(i)
66

)
U (i)
mn

+

[
β3
nB

(i)
22 + δiβn

(
I2dω

2

h22
− G(2)d

h2

)
+ α2

mβn

(
B

(i)
12 + 2B

(i)
66

)]
Wmn = 0;

∑
i=1,3

[
α3
mB

(i)
11 + αmβ

2
n

(
B

(i)
12 + 2B

(i)
66

)
+ δiαm

(
−G

(2)d

h2
+
I2dω

2

h22

)]
U (i)
mn

+
∑
i=1,3

[
α2
mβn

(
B

(i)
12 + 2B

(i)
66

)
+ β3

nB
(i)
22 + δiβn

(
−G

(2)d

h2
+
I2dω

2

h22

)]
V (i)
mn

+

∑
i=1,3

[
−α4

mD
(i)
11 − 2α2

mβ
2
n

(
D

(i)
12 + 2D

(i)
66

)
− β4

nD
(i)
22

]
−
(
α2
m + β2

n

)(G(2)d2

h2
− I2d

2ω2

h22

)
+ (ρ1h1 + ρ2h2 + ρ3h3)ω2

}
Wmn = qmn; (2)

written in the form

∂w(x, y, t)

∂t
=

∞∑
m=1

∞∑
n=1

umn sin (αmx) sin(βny)eiωt; (6)

in which umn =
(
4iωF0

ab

)
ψ(ω)sin(αmx0)sin(βny0), where

ψ(ω) is a complex (unknown) function of frequency that
should be obtained by a numerical solution of the linear sys-
tem of Eq. (3). Directly substituting Eq. (6) into (5), after some
tedious manipulations, one obtains the final expression for the
far-field acoustic pressure in the external fluid medium:3

P (r, θ, φ, t) =

∞∑
m=1

∞∑
n=1

umnTmn (r, θ, φ) eiωt; (7)

where

Tmn (r, θ, φ) =

iρkabc
2π3mn

(
e−ikr

r

)[
(−1)

m
eiµ − 1(

µ
mπ

)2 − 1

][
(−1)

n
eiχ − 1(

χ
nπ

)2 − 1

]
; (8)

in which µ = ka · sinθ · cosφ, and χ = kb · sinθ · sinφ. Next,
direct substitution of Eq. (7) into Eq. (4), leads to the expres-
sion for total radiated power from the adaptive plate due to the
action of a harmonic point force at point (x0, y0) in the form
Eq. (9) (see the top of the next page). Now, by considering
the average of all possible locations of the uncorrelated point
loads acting on the plate, the total averaged radiated power is
defined as14

Π =
1

ab

a

∫
0

b

∫
0

Π (x0, y0) dy0dx0 =

∞∑
m=1

∞∑
n=1

Πmn; (10)

where the modal components of the total averaged radiated
power can be found by direct substitution of Eq. (9) into
Eq. (10), after some manipulations, in the form14

Πmn = |umn|2
2π

∫
0

π/2

∫
0

Tmn (r, θ, φ)T ∗mn(r, θ, φ)

2ρc
r2 sin θdθdφ;

(11)

in which the cross-modal terms have been eradicated by us-
ing the classical orthogonality of transcendental eigenfunc-
tions, and |umn|2, which is the modulus squared of the
modal velocity amplitude averaged over all force positions,

is derived in the form |umn|2 = 1
ab

a

∫
0

b

∫
0
umnu

∗
mndy0dx0 =(

2F0ω
ab

)2
Ψmn (ω) Ψ*

mn (ω) . Next, using Eq. (11), the modal
radiation efficiency can be written as14

σmn =
Πmn

1
2ρcab〈v2mn〉

=

4
2π

∫
0

π/2

∫
0

Tmn (r, θ, φ)T ∗mn(r, θ, φ)

(ρc)
2
ab

r2 sin θdθdφ; (12)

where 〈v2mn〉 represents the spatially-averaged modal mean
square velocity, averaged over all possible force positions, ob-
tained in the form

〈v2mn〉 =
1

ab

a

∫
0

b

∫
0
|umn|2sin2 (αmx) sin2(βny)dydx =(

F0ω

ab

)2

Ψmn (ω) Ψ*
mn (ω) . (13)

Direct substitution of Eq. (8) into right-hand side of Eq. (12),
after some manipulations, leads to the final expression for the
modal radiation efficiency in Eq. (14) (see the top of the next
page). Thus, by using Eq. (12), the total average radiation effi-
ciency of the plate is obtained in the final form

σ =
Π

1
2ρcab〈v2〉

=

∑∞
m=1

∑∞
n=1 Πmn

1
2ρcab〈v2〉

=

∑∞
m=1

∑∞
n=1 σmn〈v2mn〉

〈v2〉
; (15)

where 〈v2〉 =
∞∑
m=1

∞∑
n=1
〈v2mn〉 is the spatially-averaged mean

square velocity of the plate. Here, it is noteworthy that because
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Π (x0, y0) =

∞∑
m=1

∞∑
n=1

∞∑
−
m=1

∞∑
−
n=1

umnu
∗
−
m

−
n

2π

∫
0

π/2

∫
0

Tmn (r, θ, φ)T ∗−
m

−
n

(r, θ, φ)

2ρc
r2sinθdθdφ; (9)

σmn =
64k2ab

π6m2n2

π/2

∫
0

π/2

∫
0

 sin
(
µ
2 + mπ

2

)
sin
(
χ
2 + nπ

2

)[(
µ
mπ

)2 − 1
] [(

χ
nπ

)2 − 1
]


2

sin θdθdφ. (14)

of the averaging over all possible force locations (see Eq. (10)),
the average radiation efficiency depends only on the self-modal
radiation.

2.3. The Sound Transmission Problem

In this subsection, the transmission loss through the simply-
supported rectangular sandwich ERF plate, subjected to an
obliquely incident harmonic plane wave, Pinc, of amplitude
p0, and the incidence angle (θ0, φ0), as depicted in Fig. 1(b),
is investigated. Also, Prefl and Ptrans denote the reflected and
transmitted pressure waves, respectively. These three pressure
waves may be rewritten as the combination of the so-named
blocked pressure (i.e., the pressure on the incident side when
the plate is regarded as a rigid wall) and the reradiated pres-
sure (i.e., the pressure exclusively due to the plate vibration).
Making the standard assumption that the reradiated pressure
is negligible compared to the blocked pressure in the equation
of motion for the plate,5 one can arrive at accurate solutions
over a large frequency range, excluding the frequencies near
the plate fundamental resonant frequency.

Adopting the three dimensional Cartesian coordinate
system (x, y, z) (or equivalently the spherical coordinate
system (r, θ, φ)) attached to the top surface of the plate
for a point S in the far- field (see Fig. 1(b)), along with
the two dimensional auxiliary coordinate system (x, y)
referring to a point on the ERF plate, one can consider the
equations of motion of the ERF plate (Eq. (2)) with the
blocked pressure as the only forcing function in the form
q(x, y, t) = Pinc(x, y, t) + Prefl(x, y, t) − Ptrans(x, y, t) ≈
Pb(x, y, t), in which the blocked pressure Pb is gen-
erally assumed to be twice the incident pressure (i.e.,
Pb(x, y, t) = 2Pinc(x, y, t)).5 Also, the incident travelling
plane wave may be represented as in Eq. (16) (see the top
of the next page),41 where, with no loss of generality, the
amplitude p0 of the incident pressure is taken to be a real
constant. Furthermore, the generalized modal amplitude of
the transverse load due to the external forcing pressure may

simply be obtained from q

(
−
x,
−
y, t

)
= 2Pinc

(
−
x,
−
y, t

)
=

∞∑
m=1

∞∑
n=1

qmn sin
(
αm
−
x
)

sin(βn
−
y)eiωt, where qmn =

8p0ImIn, in which
−
I
m

=
mπ[1−(−1)me−ika sin θ0 cosφ0 ]

(mπ)2−[ka sin θ0 cosφ0]
2 ,

−
I
n

=

nπ[1−(−1)ne−ikb sin θ0 sinφ0 ]
(nπ)2−[kb sin θ0 sinφ0]

2 , The vibration of the plate causes
the reradiated pressure to be transmitted by the plate. The
Rayleigh integral is known to relate plate velocity to the

transmitted pressure, i.e.,40

Ptrans (r, θ, φ, t) =
a

∫
0

b

∫
0

iρkc

2π
−
r

∂w(
−
x,
−
y, t)

∂t
e−ik

−
rd
−
y d
−
x . (17)

Here, noting that r2 = x2 + y2 + z2, x = r · sinθcosφ and
y = r · sinθsinφ, one can arrive at the useful expression

r = r

√
1− 2 sinθcosφr x− 2 sinθsinφr y +

(
x
r

)2
+
(
y
r

)2
(see

Fig. 1(b)). As a result, a closed form evaluation of the inte-
gral shown in Eq. (17) can be obtained in the far-field by using
the approximations 1/r ≈ 1/r, (x/r)2 → 0 and (y/r)2 → 0,
leading to the following expression for the far-field transmit-
ted pressure in (18) (see the top of the next page), where the
transverse plate velocity may be expanded in the form

∂w

(
−
x,
−
y, t

)
∂t

=

iω
∞∑
m=1

∞∑
n=1

Wmn sin
(
αm
−
x
)

sin(βn
−
y)eiωt. (19)

Direct substitution of the expansion in Eq. (19) into the integral
representation in Eq. (18), after some manipulations, leads to

Ptrans (r, θ, φ, t) =

−ω2ρab

2πr
exp

[
iω
(
t− r

c

)] ∞∑
m=1

∞∑
n=1

WmnImIn; (20)

where Im =
mπ[1−(−1)me−ika sin θ cosφ]

(mπ)2−[ka sin θ cosφ]2
, In =

nπ[1−(−1)ne−ikb sin θ sinφ]
(nπ)2−[kb sin θ sinφ]2 , Now, the total transmitted acoustic

power, Πtrans, can be calculated by integrating the far-field
transmitted intensity over a large hemisphere in the form1

Πtrans =
2π

∫
0

π/2

∫
0
Itransr

2 sin θdθdφ; (21)

where the far-field transmitted intensity, Itrans, is given as the
product of the far-field transmitted acoustic pressure and the
complex conjugate of the far-field radial fluid particle velocity,
ur = Ptrans

pc
5 which, by using the expansion shown in Eq. (20),

reduces into

Itrans =
1

2
Re [Ptransur

∗] =
|Ptrans (r, θ, φ, t)|2

2ρc
=

ρω4a2b2

8π2r2c

∣∣∣∣∣
∞∑
m=1

∞∑
n=1

WmnImIn

∣∣∣∣∣
2

. (22)
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Pinc

(
−
x,
−
y, t

)
= p0 exp

[
i
(
ωt− k −x sin θ0 cosφ0 − k

−
y sin θ0 sinφ0

)]
; (16)

Ptrans (r, θ, φ, t) =
iρω
2πr

a

∫
0

b

∫
0

∂w(
−
x,
−
y, t)

∂t
exp

[
−ikr

(
1− sin θ cosφ

r

−
x− sin θ sinφ

r

−
y

)]
d
−
y d
−
x; (18)

Thus, the final expression for the total transmitted acoustic
power can be found by simple substitution of Eq. (22) into
Eq. (21) as

Πtrans =

2π

∫
0

π/2

∫
0

ρω4a2b2

8π2c

∣∣∣∣∣
∞∑
m=1

∞∑
n=1

WmnImIn

∣∣∣∣∣
2

sin θdθdφ; (23)

Where, for a given qmn = 8p0ImIn, the unknown displace-
ment coefficients Wmn can readily be obtained from the linear
system of Eq. (3). Finally, the acoustic transmission loss (TL)
for the baffled ERF plate can be determined from

TL = 10 log

(
1

τ

)
; (24)

where τ = Πtrans/Πinc is the transmission coefficient, and
since the incident disturbance is a plane wave, the incident
acoustic power, Πinc, can simply be determined from the inci-
dent intensity multiplied by the area of the plate in the form41

Πinc =

(
ab

2ρc

)
p20 cos θ0. (25)

In the case of a diffuse sound field, Kang, et al.42 intro-
duced a directional weighting function for the incident energy,
leading to accurate calculation of the plate transmission loss
from TL = 10log( 1

τd
), where the angle-averaged diffuse-field

transmission coefficient, τd(ω), which takes into account the
angular characteristic of incident energy, is defined as43

τd (ω) =
∫2π0 ∫

π/2
0 D (θ, φ) τ (θ, φ, ω) sin θ cos θdθdφ

∫2π0 ∫
π/2
0 D (θ, φ) sin θ cos θdθdφ

; (26)

in which D(θ, φ) signifies the directional distribution of inci-
dent sound energy, which is generally taken to be of Gaussian
form with zero mean and vertical symmetry of the incident en-
ergy, i.e., D(θ, φ) = e−βθ

2

, where 1 ≤ β ≤ 2 is a constant de-
pending on measurement parameters such as frequency, facili-
ties dimensions, geometry, source and microphone positions.44

Here, it should be noted that, in many physical situations, the
diffuse sound field can be a very practical approximation to the
real sound field.13, 42–44

3. NUMERICAL RESULTS

In order to illustrate the nature and general behaviour of the
solution, we consider some numerical examples in this sec-
tion. Noting the large quantity of parameters and the relatively
intense computations involved here, while realizing the draw-
backs in accessibility of experimental input data, our attention
will be focused on a specific model. A square sandwich alu-
minium/ERF/aluminium panel of fixed length (a = b = 0.5 m)

with equal skin layer thicknesses (h1 = h3 = 0.0005 m)
set in an infinite rigid baffle is considered, while, the thick-
ness of the ER layer is assumed to be twice that of each
skin layer (h2 = 0.001 m). The material parameters for the
aluminium layers are selected as ρ1 = ρ3 = 2700 kgm3;
E1 = E3 = 70 GPa; v1 = v3 = 0.3. Also, using the accessible
information on the ER material pre-yield rheology, the elec-
tric field dependence of ER material in the pre-yield regime is
considered. In particular, the complex modulus for a typical
ER fluid is adopted from Yalcintas and Coulter’s work45 in the
form

G(2) (E) = G′ (E) + iG′′ (E) ; (27)

where G′(E) = 50,000 E2 is the shear storage modulus,
G′′(E) = 2600 E + 1700 is the loss modulus, and 0 ≤
E(t) ≤ 3.5 kV/mm is the electric field strength. Also,
ρ2 = 1700 kg/m3 is the mass density of the ER fluid. In addi-
tion, the surrounding fluid medium is assumed to be air at at-
mospheric pressure and ambient temperature (ρ = 1.2 kg/m3,
c = 340 m/s).

A Mathematica code was constructed for treating the lin-
ear system of Eq. (3), solving for the unknown transverse
modal displacement coefficients Wmn as functions of the inci-
dent wave angles and frequency (or external loading frequency
in the radiation problem) as well as the electric field magni-
tude, and ultimately calculating the spatially-averaged mean
square velocity of the plate, 〈v2〉, the total average radiation
efficiency, σ , and the acoustic transmission loss, TL, for the
above selected geometric parameters. Also, the value of the
exponential parameter, β = 2, is selected for a perfectly dif-
fuse sound field,44 and the integrals in Eqs. (23) and (26) were
numerically evaluated using the Mathematica built-in func-
tion ”NIntegrate.” The convergence of results was systemat-
ically checked in a simple trial-and-error manner, by increas-
ing the truncation constants in the Fourier expansions, while
looking for steadiness or stability in the numerical value of
the solutions. Using a maximum number of thirty modes,
(mmax = nmax = 30) was found to yield satisfactory results
for the selected geometric parameters in all loading situations.

Before presenting the main numerical results, we shall
briefly check the overall validity of the work. To do this, we
first used our general ”sound transmission” Mathematica code
to compute the sound transmission loss for a three-layered
aluminium-ERF-aluminium plate (with its physical properties
as given in Table 1), under a selected electric field strength
(E = 0.5 kV/mm) and incidence angles (θ0 = φ0 = 60◦), as
shown in the first subplot of Fig. 2(a). Furthermore, we used
our general ”sound radiation” Mathematica code to compute
the mean square velocity, 〈v2〉, for the three-layered adaptive
plate, under a selected electric field strength (E = 0.5 kV/mm)
and for a unit amplitude harmonic load (F0 = 1), as shown
in the second subplot of Fig. 2(a). It is clear that the ERF
plate resonance frequencies show up as dips in the Transmis-
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Figure 2. (a) Sound transmission loss and mean square velocity spectrum for
a three-layered aluminium-ERF-aluminium plate under selected electric field
strength (E = 0.5 kV/mm) and incidence angles (θ0 = φ0 = 60◦; F0 = 1).
(b) Comparison of the calculated sound transmission loss of a single-layer
panel with those available in the literature. (c) Comparison of the calculated
radiation efficiency of a single-layer panel with that available in the literature.

sion Loss (TL) subplot and peaks in the mean square velocity
subplot, as marked in the figures, and demonstrate very good
agreements with the natural frequencies displayed in Fig. 5 of
the work of Yeh and Chen,46 which were obtained by means
of the finite element method. As a further verification, we
let the bottom and midlayer thickness values of the adaptive
plate approach zero (h2 = h3 ≈ 0) in our general ”sound
transmission” code, and calculated the Transmission Loss (TL)
spectra for normal incidence as well as for the diffuse case
(D(θ, φ) = 1) for single-layered aluminium plates with their
physical properties, as shown in Table 2. The outcome, as dis-
played in Fig. 2(b), shows very good agreement with the Trans-
mission Loss (TL) data presented in Figs. 3 and 6 in the works
of Chiello, Sgard, and Atalla13 and Sakuma and Oshima,47 re-
spectively. Lastly, we let the bottom and mid-layer thickness
values approach zero in our general ”sound radiation” code,
and calculated the average radiation efficiency, σ, for a single-
layered aluminium plate with its physical properties as given
in Table 3. The outcome, as shown in Fig. 2(c) shows excel-
lent agreement with the data presented in Fig. 3 of the study
conducted by Xie, Thompson, and Jones.14

Figure 3 shows the variation of sound transmission loss (TL)
with incident wave frequency for selected angles of incidence
(θ0 = 0, 45, 80; φ0 = 0, 45◦), and for applied electric field
strengths (E = 0, 1, 2, 3.5 kV/mm). Also shown are the
TL spectra calculated for the ERF panel in a perfectly diffuse

Figure 3. Variation of sound transmission loss with incident wave frequency
for selected angles of incidence (including the perfectly diffuse situation) and
applied electric field strengths.

Table 1. Input physical properties used for the verification example presented
in Fig. 2(a).

a = 0.3 m
b = 0.25 m

h1 = 0.00005 m
h2 = h3 = 0.0005 m
E1 = E3 = 70 GPa
v1 = v3 = 0.3

ρ1 = ρ3 = 2700 kg/m3

ρ = 1.2 kg/m3

c = 340 m/s
θ0 = φ0 = 60◦

E = 0.5 kV/mm

Table 2. Input physical properties used for the verification examples presented
in Fig. 2(b).

Chiello, Sgard, and Atalla13

a = 0.48 m
b = 0.4 m

h1 = 0.003 m
h2 = h3 = 3×10−7 m

E1 = E3 = 200(1+0.01i) GPa
v1 = v3 = 0.3

ρ1 = ρ3 = 7800 kg/m3

ρ = 1.2 kg/m3

c = 340 m/s
E = 0 kV/mm

Sakuma and Oshima47

a = b = 0.9 m
h1 = 0.01 m

h2 = h3 = 10−6 m
E1 = E3 = 75(1+0.002i) GPa

v1 = v3 = 0.22
ρ1 = ρ3 = 2500 kg/m3

ρ = 1.2 kg/m3

c = 340 m/s
θ0 = φ0 = 0◦

E = 0 kV/mm

Table 3. Input physical properties used for the verification example presented
in Fig. 2(c).

a = 0.5 m
b = 0.6 m

h1 = 0.003 m
h2 = h3 = 3×10−7 m

E1 = E3 = 71(1+0.1i) GPa
v1 = v3 = 0.3

ρ1 = ρ3 = 2700 kg/m3

ρ = 1.2 kg/m3

c = 340 m/s
E = 0 kV/mm
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sound field. The most important observations are as follows:
The application of the electric field appears to have an appre-
ciable effect on sound transmission, especially in the very low
frequency range (f < 30 Hz). In particular, increasing the
electric field strength at such low frequencies leads to a dis-
tinct monotonic increase in the TL amplitudes, nearly regard-
less of the angle of incidence. This may clearly be linked to the
increase in the overall structural stiffness of the system in the
so-named stiffness controlled region.1 As the incident wave
frequency increases, the effect of the electric field gradually
decreases, especially for the case of normal incidence, where
there is minimum shear effect induced in the ERF core layer.
In the very high frequency range (f > 1000 Hz), increasing
the electric field has a small effect on the TL amplitudes for
all angles of incidence. This is perhaps due to the fact that at
such high frequencies, the plate inertia effects overwhelms the
electric field effects.

Also, it is well known that the incidence angle has a no-
table effect on the excitation of panel vibrational modes. In the
case of normal incidence, the sound pressure imposed on the
panel is uniform, and thus only the odd-odd panel modes are
expected to be excited (to transmit sound power). Furthermore,
in the case of oblique incidence with the incident wave travel-
ing parallel to the x-axis (i.e., for φ0 = 0◦), the radiated power
for even-even or odd-even modes of the panel is rather small,
and the resonance dips in the calculated TL take place at the
resonance frequencies whose y-axis mode numbers are odd.
Likewise, the resonance dips in the calculated TL for incident
waves travelling parallel to the y-axis (i.e., for φ0 = 90◦) hap-
pen at the resonance frequencies whose x-axis mode numbers
are odd. Keeping the above discussion in mind, one can read-
ily see from Fig. 3 that for non-normal incident wave fields,
many more plate resonance frequencies get involved (note the
numerous dips appearing in the sub-figures), as either the in-
clination angle, θ0, or the azimuth angle, φ0, increases, nearly
regardless of the electric field strength. Moreover, the smallest
TL levels are observed in case of the near-grazing (θ0 = 80◦)
incident wave field, while decreasing the inclination angle, θ0,
has a slight amplification effect on the panel sound transmis-
sion loss, especially at low incident wave frequencies (thus,
the largest overall TL levels are observed in case of the nor-
mally incident, or θ0 = 0◦, sound field). The TL curves for
the perfectly diffuse or random sound field behave rather dif-
ferently, recalling that a diffuse sound field superposes a series
of equal-amplitude uncorrelated progressive plane waves, with
all directions of sound propagation arising with the same prob-
ability, and the phase relations of the waves being arbitrary at
any given point in space.42–44

In particular, in the low frequency region (f < 100 Hz),
the TL levels associated with the diffuse field are very close to
those of the normally incident (θ0 = 0◦) case, where mainly
the uniform odd-odd panel modes seem to be excited. In the
higher frequency range (f > 100 Hz), on the other hand, the
TL curves of the diffuse sound field behave very similarly
to those of the near-grazing (θ0 = 80◦) incident sound field,
where the appearance of the numerous dips indicate that in-
creasingly more panel resonance frequencies get involved (i.e.,
sound transmission is mainly controlled by panel resonant ef-
fects48). This similarity in the sound transmission character-
istics of the diffuse and near-grazing incidence problems can
also be observed in Fig. 5 of the work of Schiller and Beck.49

Therefore, in the mid- to high-frequency range, it may be suf-
ficient to use the near-grazing incidence TL with an acceptable
error (or with a correction factor) in order to predict the diffuse
field transmission loss, nearly regardless of the electric field
strength.

At each incident wave frequency, there is only one electric
field level which leads to a maximum or a minimum transmis-
sion loss amplitude, denoted here by Emax (kV/mm) or Emin
(kV/mm), respectively. The left column in Fig. 4 displays
the variations in sound transmission loss (TL) amplitude with
the incident wave frequency associated with such electric field
strengths, for the adaptive plate under selected angles of inci-
dence (θ0 = 45◦; φ0 = 0, 45◦) as well as for the perfectly dif-
fuse field (note that the TL associated with the E = 0 kV/mm
case is also shown in the figure by black lines). Moreover,
the right column of Fig. 4 depicts the frequency spectrums of
the corresponding input electric field amplitudes required for
maximizing or minimizing sound transmission loss. The most
important observations are as follows: Perfect coincidence of
the black curves (E = 0) with the blue curves (E = Emin) in
the entire low frequency range (i.e., in the stiffness-controlled
region) as well as in some relatively small frequency patches
in the moderate and high frequency range leads to the impor-
tant conclusion that maintaining a null electric field level (i.e.,
keeping the panel stiffness low) can significantly deteriorate
the sound transmission performance of the ERF-based plate,
primarily in the low frequency range.

In other words, it is clear that inappropriate application of
the electric field (e.g., note the blue curves associated with
E = Emin) may even lead to minimum sound transmission
loss levels in a wide frequency range. The most interesting
observation is perhaps the fact that by selecting E = Emax
(i.e., the red colored curves), one can advantageously avoid the
commonly occurring sharp (resonant) dips in the uncontrolled
(E = 0) or non-optimally controlled (E 6= Emax) adaptive
structure, leading to maximum transmission loss in the entire
frequency range, nearly irrespective of incident wave direction.
Moreover, the maximum or minimum electrical field pattern
(shown in the second column of the figure) resembles a repeat-
ing ramp type curve, while the effect of incident wave direction
on the electric field strength is not very prominent. Further-
more, repeated zones of a null electric field (E = 0 kV/mm)
are observed in the entire frequency range, which are associ-
ated with either a maximum or a minimum sound transmission
loss level. Thus, one can conversely conclude that applying a
non-zero electric field (i.e., increasing the structural stiffness
and damping), does not necessarily lead to an improvement in
the system’s sound transmission characteristics.

Figures 5(a) and (b) show the variation of total average radi-
ation efficiency, σ, as well as the average mean square velocity,
〈v2〉, with the external load frequency (F0 = 1 N), for selected
applied electric field strengths (E = 0, 1, 2, 3.5 kV/mm). The
most important observations are as follows: While the elec-
tric field strength has little or nearly no effect on the average
radiation efficiency spectrum at low and high frequency ends
(Fig. 5(a)), it is of significant influence on the average mean
square velocity in the entire frequency range (Fig. 5(b)). In
particular, the electric field seems to be of major consequence
on the radiation efficiency only in the intermediate frequency
range (i.e., increasing the electric field strength has a notable
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Figure 4. Calculated maximum and minimum sound transmission loss spec-
trums for selected angles of incidence (including the perfectly diffuse field)
along with the associated applied electric fields.

amplification effect on the sandwich plate radiation efficiency
roughly in the range of 10 < f < 100 Hz; see Fig. 5(a)). This
may be explained by comparison with Fig. 5(b), where it is
clear that increasing the electric field level (increasing or de-
creasing the overall system stiffness and displacement ampli-
tudes) leads to a notable rightward shift in the resonance fre-
quencies of an adaptive plate (i.e., the peaks in the mean square
velocity curves) to the higher frequency range (see Hashemine-
jad and Maleki38).

Moreover, there is a notable decrease in the oscillation am-
plitude of the mean square velocity curves with increasing the
electric field strength towards E = 3.5 kV/mm (or increas-
ing overall system stiffness) at intermediate and low frequen-
cies, which may be linked to the overall decrease in the sys-
tem kinetic energy. Thus, one may conclude that while di-
rect application of an electric field can perceptibly influence
the radiation efficiency of an adaptive panel in the intermedi-
ate frequency range, it can effectively reduce the average mean
square velocity in the entire frequency range. Lastly, as the
excitation frequency further increases, approaching the system
critical frequency (fc = ωc2π ≈ 11.9 kHz; as observed from
Fig. 5(a)), the occurrence of ’edge’ modes dominate the so-
called corner modes,1 and the electric field strength almost en-
tirely loses its effect on the sound radiation efficiency, which
gradually increases towards its maximum level slightly beyond
the critical frequency and then makes a small drop towards the
asymptotic value of unity.43

As in the case of the previously discussed sound transmis-
sion problem (see Fig. 4), at each excitation frequency there is
only one electric field level which causes a maximum or mini-
mum average radiation efficiency or a maximum or minimum
mean square velocity, denoted here by Eσmax/E

σ
min kV/mm

or Evmax/E
v
min kV/mm, respectively. The left column in

Fig. 6 displays the variations in the total average radiation
efficiency, σ, as well as the average mean square velocity,
〈v2〉, with the excitation frequency associated with such elec-
tric field strengths (note that the results associated with the
E = 0 kV/mm case are also shown in the subplots by black
lines). Moreover, the right column of Fig. 6 depicts the fre-
quency spectrums of the corresponding electric field ampli-
tudes calculated for maximizing or minimizing the average ra-
diation efficiency or the mean square velocity. Here, the nearly

Figure 5. (a) Variation of the total average radiation efficiency with the exter-
nal load frequency for selected applied electric field strengths. (b) Variation of
the average mean square velocity with the external load frequency for selected
applied electric field strengths.

perfect coincidence of the black curve (E = 0) with the red and
blue curves (E = Eσmin,max) in the entire low frequency range
(i.e., in the stiffness-controlled region) once again leads to the
important conclusion that the electric field level has nearly no
effect on the sound radiation performance of the ERF-based
plate in the low frequency range.

Furthermore, almost perfect coincidence of the maximum
mean square velocity (E = Evmax or the red) curve with that
of the null field (E = 0 or the black curve) in the low fre-
quency range demonstrates that decreasing the electric field
strength (system stiffness) leads to a natural increase in the
system mean square velocity. Also, it is clear that as in the
case of the sound transmission problem (Fig. 4), inappropriate
application of the electric field may deteriorate sound radiation
efficiency in a wide frequency range (i.e., note the blue curve
associated with E = Eσmin. Another interesting observation
is the fact that by selecting E = Eσmax or E = Evmax (i.e.,
the red colored curves), one can respectively avoid the com-
monly occurring sharp dips or peaks in the uncontrolled or
non-optimally controlled adaptive structure, leading to maxi-
mum radiation efficiency (or mean square velocity) in the en-
tire frequency range.

4. CONCLUSIONS

The three-dimensional sound radiation and transmission
control from and through an electrorheological fluid-based
rectangular sandwich plate, set in an infinite rigid baffle, and
subjected to a periodic transverse excitation or an arbitrary in-
cident plane wave, is considered in this study. The problem
solution is based on the equations of motion for a simply-
supported ERF-based plate, the classical complex modulus ap-
proach for the viscoelastic behaviour of ER core fluid, the
pertinent wave field expansions, and the modal summation
method along with the Rayleigh integral equation approach.
Special attention is paid to the influence of electric field
strength, incident wave angle (including the perfectly diffuse
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Figure 6. Calculated maximum and minimum average radiation efficiency
and mean square velocity spectrums along with the associated applied electric
fields.

situation) and excitation frequency on the sound transmission
and radiation characteristics of the adaptive panel. The most
important observations regarding the sound transmission and
radiation problem are respectively summarized in the follow-
ing two paragraphs.

Increasing the electric field strength at very low incident
wave frequencies (i.e., in the stiffness controlled region) leads
to a distinct monotonic increase in the sound transmission am-
plitudes, nearly regardless of angle of incidence, caused by the
increase in the overall structural stiffness of the system. As
the incident wave frequency increases, the electric field effect
gradually decreases, especially in cases of normal incidence,
where there is minimum shear effect induced in the ERF core
layer. In the very high frequency range (f > 1000 Hz), the
plate inertia effects dominate the electric field effects and the
electric field level is observed to have a small influence on
the sound transmission loss, almost regardless of the angle
of incidence. In case of normal incidence, only the odd-type
plate modes are observed to get excited, while for oblique inci-
dence (non-zero inclination angle), even-type modes can also
get involved, the extent of which depends on the azimuth an-
gle. Also, as the oblicity of the incident wave increases, the
sound transmission loss amplitudes generally decrease, nearly
regardless of the electric field strength, especially at high inci-
dent wave frequencies. In particular, the largest TL levels are
found in case of the normally incident sound field.

Furthermore, in the low frequency range, the TL levels as-
sociated with the diffuse sound field are observed to be very
close to those of the normally incident case, while the panel
resonant effects dominate at higher frequencies, and the TL
curves of the diffuse field behave very similarly to those of
the near-grazing incidence situation. Therefore, in order to ap-
proximate the diffuse field transmission loss with an acceptable
error in the mid- to high-frequency range, it may be sufficient
to use the near-grazing incidence TL, nearly regardless of the
electric field strength. Lastly, maintaining a null electric field
level is shown to significantly deteriorate the sound transmis-
sion performance of the ERF-based plate, primarily in the low
frequency range, while applying a non-zero electric field does
not necessarily lead to an improvement in the system’s overall
sound transmission characteristics.

The electric field strength has little or nearly no effect on

the average radiation efficiency spectrum at low and high fre-
quency ends, while it can effectively reduce the average mean
square panel velocity in the entire frequency range. In partic-
ular, increasing the electric field strength is demonstrated to
have a notable amplification effect on the adaptive plate radia-
tion efficiency in the intermediate frequency region (10 < f <
100 Hz). It also causes a notable rightward shift in the reso-
nance frequencies appearing in the mean square velocity plot
of the adaptive plate in addition to a general drop in velocity
amplitudes. As the excitation frequency approaches the system
critical frequency, the occurrence of ’edge’ modes dominate
the so-called corner modes, and the electric field strength al-
most entirely losses its effect on the system sound radiation ef-
ficiency, which gradually increases towards its maximum level
slightly beyond the critical frequency and then makes a small
drop towards the asymptotic value of unity. Lastly, by adopt-
ing the optimal electric field strength, one can advantageously
avoid the commonly occurring sharp resonant peaks and dips
in the radiation spectrum of the uncontrolled or non-optimally
controlled adaptive structure, resulting in major improvements
in the system’s overall sound radiation characteristics. It is
hoped that the present study will provide designers the basic
information required in practical noise control applications of
ER fluid-embedded smart structures.
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a33mn = −α2

mA
(1)
66 − β2

nA
(1)
22 −G(2)/h2,

a34mn = G(2)/h2,
a35mn = α2

mβn

(
B

(1)
12 + 2B

(1)
66

)
+ β3

nB
(1)
22 − βnG(2)d/h2,

a41mn = 0,
a42mn = −αmβn

(
A

(3)
12 +A

(3)
66

)
,

a43mn = G(2)/h2,
a44mn = −α2

mA
(3)
66 − β2

nA
(3)
22 −G(2)/h2,

a45mn = α2βn

(
B

(3)
12 + 2B

(3)
66

)
+ β3

nB
(3)
22 + βnG

(2)d/h2,

a51mn = α3
mB

(1)
11 + αmβ

2
n

(
B

(1)
12 + 2B

(1)
66

)
− αmG(2)d/h2,

a52mn = α3
mB

(3)
11 + αmβ

2
n

(
B

(3)
12 + 2B

(3)
66

)
+ αmG

(2)d/h2,

a53mn = α2
mβn

(
B

(1)
12 + 2B

(1)
66

)
+ β3

nB
(1)
22 − βnG(2)d/h2,

a54mn = α2
mβn

(
B

(3)
12 + 2B

(3)
66

)
+ β3

nB
(3)
22 + βnG

(2)d/h2,
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a55mn = −α4
m

(
D

(1)
11 +D

(3)
11

)
+

−2α2
mβ

2
n

(
D

(1)
12 +D

(3)
12 + 2D

(1)
66 + 2D

(3)
66

)
−β4

n

(
D

(1)
22 +D

(3)
22

)
−
(
α2
m + β2

n

)
G(2)d2/h2,

and
b11mn = ρ1h1 + I2/h

2
2,

b12mn = −I2/h22,
b13mn = b14mn = 0,
b15mn = αmI2d/h

2
2,

b21mn = −I2/h22,
b22mn = ρ3h3 + I2/h

2
2,

b23mn = b24mn = 0,
b25mn = −αmI2d/h22,
b31mn = b32mn = 0,
b33mn = ρ1h1 + I2/h

2
2,

b34mn = −I2/h22,
b35mn = βnI2d/h

2
2,

b41mn = b42mn = 0,
b43mn = −I2/h22,
b44mn = ρ3h3 + I2/h

2
2,

b45mn = −βnI2d/h22,
b51mn = αmI2d/h

2
2,

b52mn = −αmI2d/h22,
b53mn = βnI2d/h

2
2,

b54mn = −βnI2d/h22,
b55mn =

(
α2
m + β2

n

)
I2d

2/h22 + (ρ1h1 + ρ2h2 + ρ3h3).
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