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The paper deals with the use of Non Uniform Rational Basis-Splines (NURBS) for the global representation of
domain geometry and unknown functions aimed at the numerical solution of Boundary Integral Equations (BIE).
The use of a global NURBS function basis yields a meshless method which does not need the partition of the
boundary into elements. The level of the accuracy in the representation of dependent and independent variables
can be changed in each simulation, according to the problem requirements, thanks to the recursive definition of
NURBS. The solving system of equations is assembled by means of the collocation of the integral equation onto
the Greville abscissae in the NURBS parametric space. The unknowns are the locations of the control points in
the vector space the unknown function belongs to. Preliminary numerical results have been obtained in potential
aerodynamics and acoustic scattering. The numerical solution reveals a remarkable level of accuracy in all the test
cases analyzed with a convergence rate always higher than the order of the NURBS adopted.

1. INTRODUCTION

In many fields of application, the Boundary Integral Equa-
tions (BIE) approach is a well established technique to address
the solution of Boundary Value Problems (BVP). Using the
BIE, it is possible to represent the unknown function at any
location in the domain as a function of its Cauchy data set.
This approach is more recently considered as standard in in-
compressible and compressible potential aerodynamics, struc-
tural elasticity, heat conduction, electromagnetism, acoustics,
and aeroacoustics. The numerical solution typically relies on
the Boundary Element Method (BEM), in all its variants and
declinations. In classic BEM the boundary of the domain is
partitioned into finite elements, where the dependent and in-
dependent variables are approximated using suitable local ba-
sis functions. The greatest advantage of the numerical meth-
ods based on BIE resides in the reduction of the computa-
tional burden required for the numerical solution, due to the re-
duced dimensionality of the problem. Although this approach
is usually convenient with respect to the so-called field meth-
ods, such as Finite Volumes Method (FV), Finite Difference
Method (FDM), or Finite Element Method (FEM), in some
specific application the number of boundary elements required
to capture a specific feature of the phenomenon may become
extremely high. This is the case, for example, for acoustic
propagation and scattering problems, where the wave length
of the perturbation at high frequencies can be orders of mag-
nitude smaller than the characteristic length of the domain of
interest, thus requiring a huge amount of boundary panels to
correctly reproduce the scattering and interference effects. One
of the possible approaches to mitigate this difficulty is improv-
ing the accuracy of the local representation of the variables
using higher-order functions. This allows for the reduction of
the number of elements needed to achieve the desired level of

accuracy. In this respect, the literature available is very exten-
sive, and an in-depth review is beyond the scope of the paper.
Among others, it is worth mentioning the use of third order
polynomials based on Overhauser1, 2 or Hermite3, 4 elements,
recently coupled with Coons patches.5 The typical limitation
of all the approaches based on the local representation of the
variables is the restriction of the resulting numerical formula-
tion to a single order of accuracy, fixed by the order of the poly-
nomial shape functions used. The possibility to overcome this
limitation has already been investigated within the context of
the finite element method6 using an approach based on general-
ized Hermite polynomials. However, a similar attempt for the
solution of BIE is still missing. This goal has been the driving
motivation in the development of the method presented here.
Indeed, using a global representation of the variables based
on NURBS, the order of the basis functions can be improved
when needed by the specific application in discussion. This is
a consequence of the iterative definition of the NURBS, which
makes possible the increase of the NURBS degree simply by
changing an input parameter. The use of the NURBS for the
representation of curves and surfaces is a common technique
in the CAD community for the modeling of complex geome-
tries with strict requirements of smoothness and continuity be-
tween patches.7, 8 Their use in the numerical solution of BIE
is not new, although it is relatively recent. NURBS have been
used to develop boundary element solutions of integral equa-
tions in elastostatics,9 in radiation and diffraction problems,10

and in potential aerodynamics.11 As already mentioned, the
peculiarity of the present method is in the use of the NURBS
for the development of a global isogeometric approach aimed
at the meshless numerical solution of the BVP. The control
points used for the representation of the dependent variables
are obtained through the h-refinement of the optimal NURBS
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Figure 1. Function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5.

Figure 2. NURBS basis for p = 2.

representation of the geometry. The final system of equation is
obtained by means of a collocation method based on the use of
the Greville abscissae in the parametric space.

The paper is organized as follows: The global NURBS de-
composition of a generic BIE formulation is presented in sec-
tion 2, whereas the collocation method and the h-refinement
technique are outlined in section 3. Section 4 reports the re-
sults of preliminary numerical simulations, and includes the
analysis of the convergence of the solution as a function of the
number of control points used. Appendix A is dedicated to
some consideration about the integration strategy adopted to
handle the singularity of the kernels.

2. NURBS REPRESENTATION OF BIE

Consider a physical phenomenon governed by the Laplacian
of the function ϕ(x), for x ∈ Ω. The BIE formulation of such
a problem has the form

E(y)ϕ(y) =

∮
Γ

(
G
∂ϕ

∂n
− ∂G

∂n
ϕ

)
dΓ(x); (1)

where G(x,y) is the fundamental solution of the governing
partial differential equation, Γ is the boundary of the domain
Ω, x ∈ Γ, y ∈ Ω = Ω ∪ Γ, and ∂ϕ/∂n = ∇ϕ · n, being
n the unit normal to Γ pointing into Ω. The value of the do-
main function E(y) is 1, 1/2, 0 for y ∈ Ω, y ∈ Γ or y /∈ Ω,
respectively (see appendix A). When the Cauchy data of the
problem are known, Eq. 1 is an integral representation of ϕ(y)

for y ∈ Ω. On the other hand, when only part of the Cauchy
set is known from the boundary conditions, Eq. (1) can be used
as an integral equation for the unknown corresponding to the
missing part of the boundary data. If, for example, the differ-
ential problem exhibits Neumann boundary conditions, then
Eq. (1) can be written as

E(y)ϕ(y) =

∮
Γ

K(y,x) ϕ(x)dΓ(x) + b(y); (2)

which is a Fredholm integral equation of the second kind in the
unknown ϕ(x), with kernel K(y,x) = −∇G(y,x) · n, and
where

b(y) =

∮
Γ

G(y,x)
∂ϕ

∂n
dΓ(x) (3)

is known.12, 13 The BIE so obtained can be solved numerically
through the BEM, by partitioning the boundary Γ into M ele-
ments and introducing a local representation of the dependent
and independent variables using an appropriate function ba-
sis. In the present work, the numerical solution of Eq. (2) is
obtained using a global, isogeometric NURBS decomposition.
The general form of a NURBS curve is

f(u) =

∑N
i=1Ni,p(u)Wiqi∑N
i=1Ni,p(u)Wi

, u ∈ [0, 1]; (4)

where the rational basis functions of order p, Ni,p(u) are de-
fined in a recursive way as

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u);

(5)
with

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise
. (6)

The points qi are called control points and the quantities Wi

are the weights of the NURBS. The set of abscissae ui needed
to fully define the basis functions forms the knot vector. If the
knot vector has p + 1 elements repeated at its beginning and
at its end, it is called an open knot vector. In general, for a
NURBS curve the following two properties hold:

1. if a knot ui is repeated k times, the continuity of the curve
at that point is Cp−k.

2. if the curve is C0 at a point, the control point belongs to
the curve.

As a consequence, for a given open knot vector the resulting
NURBS passes through the first and last control points. Equa-
tion (4) can be written as

f(u) =

N∑
i=1

Ri,p(u)qi, u ∈ [0, 1]; (7)
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with

Ri,p(u) =
Ni,p(u)Wi∑n
i=1Ni,p(u)Wi

. (8)

The function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5 is depicted
in Fig. 1, whereas Fig. 2 shows the complete basis in u ∈ [0, 1],
for p = 2.

On the basis of Eqs. (4) to (8) the NURBS representation of
ϕ has the form

ϕ(u) =

N∑
i=1

Ri,p(u)qi; (9)

with coefficients qi and basis functions as reported in Eq. (8).
Applying Eq. (9) to the RHS of Eq. (2), and limiting, for the
sake of simplicity, the notation to the two-dimensional case,
we obtain

E(y)ϕ(y) = b(y)−
N∑
i=1

qi

∮
Γ

∂G(u,y)

∂n
Ri,p(u)J(u)du;

(10)
where J(u) is the Jacobian of the transformation from the
physical space coordinate x to the NURBS parametric space
one u. It is worth noting that the integrals in Eq. (10) span the
whole boundary. Indeed, the use of the global NURBS rep-
resentation makes the concept of surface elements no longer
required for the numerical solution of Eq. (10) and thus the
partition of Γ is not strictly needed. On the other hand, the
integrals in Eq. (10) must be accurately evaluated and, unless
we have an analytical solution for them (and this could hap-
pen for very simple geometries and/or boundary conditions), a
suitable numerical integration strategy must be identified. To
this aim, a possible solution for complex geometries and/or
boundary conditions could be the partition of the boundary into
macro patches on which suitable quadrature formulas can be
easily applied. However, it is important to notice that this par-
titioning, if needed, would have nothing to do with the number
of unknowns of the solving linear system, but only with the
proper evaluation of the integrals in Eq. (10). In appendix A
the effects of the partition of Γ on the convergence of the inte-
grals in Eq. (10) is analyzed for two different geometries.

3. THE NUMERICAL SOLUTION

The numerical solution of Eq. (10) can be obtained using
the collocation method, with collocation points lying on the
boundary Γ. To this aim, it is necessary to identify a set of
collocation points yk ∈ Γ. In the present approach, this re-
quires the identification of a set of abscissae uk in the NURBS
parametric space corresponding to points on Γ in the physical
space through the relationship

y(uk) =

N∑
i=1

Ri,p(uk)ηi; (11)

where n is the number of the control points ηi used to build the
NURBS reproducing the geometry of Γ. To ensure that y(uk)

is located on the boundary, the abscissa uk must be chosen
according to the Greville distribution9, 14

u
′

k =
ui+1 + ui+2 + . . .+ ui+p

p
, i = 1, . . . , n− 1. (12)

Figure 3. NURBS Circle, (�) control points, (×) Greville’s abscissae in the
physical space, (◦) refined Greville’s abscissae in the physical space.

Figure 4. Velocity potential ϕ for a uniform flow U∞ in x-direction. (−)

Analytical solution, (�) BIE-NURBS, p = 3.

The abscissae u
′

k satisfying Eq. (12) correspond to points in the
physical space such that y(u

′
) ∈ Γ (see Fig. 3). A key aspect

in the numerical evaluation of the integrals in Eq. (10) is the
management of the singularities of the kernels arising from the
collocation of the observation point y on the boundary. In this
respect, the meshless approach presents a significant advantage
with respect to the classic BEM, as the integration is now ex-
tended to the whole boundary or, for complex geometries, to
a part of it significantly larger than a single boundary element.
As a consequence, the verification for singularity occurrence,
which is not a straightforward task with NURBS, is less criti-
cal, or even not required at all, thus simplifying the numerical
integration procedure. The asymptotic behavior of the integral
appearing in Eq. (2) is briefly explained in appendix A for the
sake of clarity and completeness of the paper. Once that the
location of the collocation points is fixed using the Greville ab-
scissae we can apply the same decomposition given in Eq. (9)
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to the left hand side of Eq. (10). For y ∈ Γ we obtain

1

2
Rq = b− Cq; (13)

where the elements of b and C have the form

bj =

∮
Γ

G(x,yj)
∂ϕ

∂n
dΓ, Cij =

∮
Γ

∂G(u,yj)

∂n
Ri,p(u)J(u)du;

(14)
where u ∈ [0, 1]. The entries of the N × N matrix R have
the form Rij = Ri,p(u

′

j). The final form of the linear system
is (0.5 R + C) q = b, which can be solved using the most
appropriate solver.

3.1. Knots h-refinement
In the derivation performed so far we assumed, without

loss of generality, unit weights in Eq. (8). This choice is
certainly not optimal for the representation of complex func-
tions, but is the only one possible to easily represent the un-
knowns. Indeed, for a generic function ϕ could be possi-
ble, in principle, to identify an optimal set of weights and
control points capable to achieve a high level of accuracy
with a limited number of degrees of freedom. In real ap-
plications, this can easily be done to represent regular ge-
ometries (for example, simple geometries of the boundary Γ).
On the contrary, in complex phenomena, the optimal repre-
sentation of the unknown ϕ could be not a simple task. As
an example, consider a domain bounded a circle. It can be
represented exactly with the six control points depicted by
squares in Fig. 3, provided that the vectors of the correspond-
ing weights and nodes are WT

c = {1 0.5 0.5 1 0.5 0.5 1} and
uTc = {0 0 0 0.25 0.5 0.5 0.75 1 1 1}, respectively (see, e.g.,
Piegl8). On the other hand, the physical phenomenon de-
scribed by the function ϕ can be extremely complex, even if
the boundary of the domain is so simple. If, for example, we
are dealing with the scattering of an acoustic wave imping-
ing on the circle at medium-high frequencies, Wc and uc are
clearly not suitable to accurately reproduce the scattering pat-
tern. In order to increase the number of collocation points for
the numerical solution of the BIE, the h-refinement technique
is used, starting from the NURBS optimal representation of
Γ. With the h-refinement technique, the non-zero intervals be-
tween the components of the knot vector uc are refined with
equally spaced knots. The number of inserted knots does not
need to be the same for each interval, and thus the NURBS
representation can be enriched only where needed. These new
knots become the control points of the representation of the
unknown ϕ. The refinement obtained using an uneven distri-
bution of knots in the different intervals is depicted in Fig. 3
(◦), along with the original knot vector (×).

4. RESULTS AND DISCUSSION

The method presented in the paper was first applied to sim-
ple problems, for which analytical solutions are available, in
order to validate the accuracy of the numerical results and as-
sess its convergence for an increasing NURBS order, p. The
problems chosen for this assessment were the incompressible,

Figure 5. Convergence of ε for the solution of potential incompressible
aerodynamics.

two-dimensional potential flow around an impermeable circu-
lar cylinder, and the scattering of a planar wave impinging on
a sound-hard cylindrical obstacle.

After this analysis, the method was tested on a boundary ge-
ometry of class C0, to demonstrate the capability of the method
in the modelling of slope discontinuities of the boundary pro-
file. Indeed, such a situation, which is very common in prac-
tical applications, could become critical for a global represen-
tation based on (at least) C1 continuous functions, so a care-
ful treatment of the corner points is needed. Here, the two-
dimensional scattering of a plane wave by a cylinder with a
squared cross section is compared with an accurate numeri-
cal solution obtained with a widely assessed, highly accurate,
commercial FEM code.

4.1. Assessment Against Analytical
Solutions

As already mentioned, this section includes an analysis of
the convergence of the numerical error with the order p of
the NURBS. This particular aspect deserves some preliminary
clarification to put the obtained results in the proper perspec-
tive.

The method presented in this paper exhibits a p−type con-
vergence to the asymptotic solution by increasing the order p
of the spline resulting from Eq. (9). On the other hand, the im-
provement of the solution for a given value of p is obtained by
refining the control points distribution (see section 3.1). On the
other hand, the convergence obtained by increasing the number
N of control points cannot be exactly interpreted as an h-type
convergence, because there is no mesh, and thus talking about
mesh size h would not apply. Nevertheless, the knots refine-
ment improves the representation for a fixed order p. For these
reasons, in the following the convergence diagrams are plotted
as a function of the number of knots (i.e., the number of un-
knowns) N using p as a parameter, similarly to what is done
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Figure 6. Scattering field on the cylinder, f = 50Hz. (−) Analytical, (×)

BIE-NURBS, (�) BIE-NURBS at Greville’s abscissae.

Figure 7. Effect of refinement at f = 50Hz. Scattering field, (−) analytical,
(×) BIE-NURBS, (�) BIE-NURBS at Greville’s abscissae, N = 20, p = 3.

with h-type convergences. It is important to notice that the
structure of the algorithm is such that for each value of p, the
minimum number of unknowns is fixed (see Eq. (9)), and thus
each convergence curve starts from a different N . To clarify,
the convergence diagrams depict only the minimum and max-
imum convergence rates measured for the problem analysed,
whereas the complete report of the rates observed is presented
in Tables 1 and 2, including the minimum error.

For the sake of completeness, in appendix A the conver-
gence of the numerical integration of the boundary integral
in Eq. (10) is discussed for the case of a complex geome-
try. Indeed, the integrals resulting from the present global ap-

Figure 8. Scattering field at f = 200Hz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 32, p = 3.

proach are defined over the entire boundary and for complex
geometries the accuracy of their numerical evaluation can be
improved by partitioning the domain into macro-elements. It
must be stressed that this partition has nothing to do with the
asymptotic behavior of the method, and is only intended for
the accurate calculation of the matrix coefficients.

4.1.1. Incompressible Potential Flow Around a Unit
Circle

In the first application, the function ϕ has the physical mean-
ing of the velocity potential associated to the irrotational flow
of an inviscid fluid. In such a flow v = ∇ϕ, and the phe-
nomenon is governed by the Laplace equation for ϕ. Here, we
consider an impermeable circular cylinder immersed within a
main flow at speed v0. The velocity field is given by the su-
perposition of the main stream velocity and the perturbation
v′ induced by the obstacle. The fundamental solution of the
problem and its normal derivative on Γ are

G(x,y) = − 1

2π
ln r,

∂G

∂n
= − 1

2π

r · n
r2

; (15)

where r = ‖x− y‖. The analytical solution ϕa exists and has
the form (in polar coordinates) ϕa = v0r

(
1 +R2/r2

)
cos(θ).

Fig. 4 shows the comparison of the numerical solution of the
present method, ϕ, with the analytical solution ϕa. The con-
vergence of the global error ε, defined as

ε =

√∫
Γ

∥∥∥∥ϕ− ϕaϕa

∥∥∥∥2

dΓ, (16)

is presented in Fig. 5 as a function of 1/N for different val-
ues of the the degree of the NURBS representation. Table 1
reports the values of the convergence rates measured using a
linear regression of the error in the log-log plane, and the min-
imum error observed. What can be observed first, is that the
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Table 1. Convergence rates for the solution of the Laplace equation.

p Convergence rate Error at N max
3 5.2850 1.88240447163443e-06
4 6.3204 1.98627799279891e-07
5 5.6809 5.88921480592586e-07
6 4.9574 3.86320539590748e-07

Table 2. Convergence rates for the scattering of a plane wave by a cylindrical
obstacle.

p Convergence rate Error at N max
f = f =

f = 50 Hz f = 200 Hz
50 Hz 200 Hz

2 4.0698 3.5075 0.000765660508167538 0.0444788053349804
3 5.2460 5.1965 0.000182807195261099 0.0149446263946068
4 7.4613 5.8926 2.02511544866008e-05 0.0051694130089412
5 8.4307 8.5100 1.02520999392619e-05 0.0016074909579270
6 9.2709 10.336 5.56624126228440e-06 0.0008186444737082

convergence curves are non linear in the log/log plane, and,
consistently with the use of a rational function basis, the rate of
convergence cannot be inferred directly from the order p of the
NURBS. The rate of convergence is slightly higher for lower
N , gradually diminishes in finer simulations, and appears to be
marginally dependent on the order p of the NURBS. Indeed,
the average rate is between N−4 and N−5 for 3 ≤ p ≤ 6.
Moreover, the best results are surprisingly obtained for p = 4.
This phenomenon is not present in the acoustic simulations
(see next section), and is currently under investigation. A pos-
sible reason could be related to the adoption of a uniform sam-
pling in the NURBS parameter space which may produce un-
wanted oscillations of the higher-order functions.8

4.1.2. Scattering of a Planar Wave by a Circular
Cylinder

In this case, the function ϕ represents a physical quantity
satisfying the wave equation in Ω. The equation governing the
propagation of an acoustic perturbation of angular frequency ω
at speed c0 is the Helmholtz equation,∇2ϕ+κ2 ϕ = 0, where
κ = ω/c20. Adopting the eiωt time convention, the fundamental
solution and its normal derivative on Γ are

G(x,y, κ) =
i

4
H(2)

0 (κ r),
∂G

∂n
= − iκ

4
H(2)

1 (κr)
r · n
r

;

(17)
where r = ‖x − y‖ and H(2)

m (κ r) is the second-kind Han-
kel function of order m. The case study at hand consists of a
plane wave of unit amplitude impinging on a circular cylinder
of infinite length, for which the analytical solution is known
(for example, see Morse and Ingard15). Indicating κ as the
wave vector, the incident field is given by ϕi = eiκ·r. Fig-
ure 6 shows the solution at f = 50 Hz. The values of |ϕ|
at the solution points are indicated with squares, whereas the
NURBS reconstruction of the solution along the whole bound-
ary is depicted with the times sign. The agreement with the an-
alytical solution is remarkable. The effect of the h-refinement
can be observed in Fig. 7, where four knots have been inserted
in the first and last intervals and two knots in the second and
third ones. The refined solution is substantially indistinguish-
able from the analytical one. This excellent behavior is pre-
served also at higher frequencies, as Figs. 8, 9, and 10 show
for f = 200 Hz, f = 500 Hz, and f = 1000 Hz, respectively.

Figure 9. Scattering field at f = 500Hz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 50, p = 5.

Figure 10. Scattering field at f = 1kHz, (−) analytical, (×) BIE-NURBS,
(�) BIE-NURBS at Greville’s abscissae, N = 90, p = 5.

Also in this case, the convergence of the proposed formulation
is evaluated using the global error ε defined in Eq. (16). The
convergence analysis is performed using the h-refinement by
inserting equally spaced knots. The convergence of ε as a func-
tion of 1/N is presented in Figs. 11 and 12 for p = 2, 3, 4, 5, 6

at f = 50 Hz and f = 200 Hz, respectively, whereas the con-
vergence rates measured and the errors are reported in Table 2.
As in the aerodynamic application, the log-log plots show a
non-linear behavior. The major difference in the present appli-
cation is in the progressive enhancement of the accuracy and
rate of convergence as p increases.

It can be observed that the rate of convergence is greater than
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Figure 11. Convergence of ε at f = 50Hz.

Figure 12. Convergence of ε at f = 200Hz.

p for all the degrees tested, reaching values close to O(N−13)

for p = 6 at the higher frequency, confirming the remarkable
level of accuracy achievable with the h-refinement.

4.2. 2D Scattering of a Sound-Hard
Quadrilateral Obstacle

After the assessment of the method by comparison with
analytical results, it is worth testing its performance with a
test case presenting features that can be critical for the global
NURBS iso-geometric representation. It is the case of a ge-
ometry profile with corners, where the curvature becomes in-
finite, and where the NURBS could give meaningless results
if not treated appropriately. The analyzed geometry is that of

Figure 13. NURBS representation of the quadrilateral geometry. Markers
indicate the control points used. The side dimension is l = 2, whereas the
curvature radius rc of the approximated corner is such that rc/l = 0.025.

Figure 14. NURBS representation of the quadrilateral geometry. Close–up of
the top right corner.

a cylinder with a square cross section, with side edge dimen-
sion l = 2. Figures 13 and 14 show the geometry of the cross
section, as well as a close-up of one of the corner. In order to
avoid the curvature singularity, there are two possible strate-
gies. The first one is to divide the boundary profile into four
macro-elements corresponding to the four edges of the square.
This possibility falls in the same case analyzed in appendix A
and is not repeated here. The second one relies on the elimina-
tion of the curvature singularity at the corner points by impos-
ing a small, finite curvature radius rc (see Fig. 13). The global
NURBS representation is directly applied to the approximated
geometry so obtained, setting rc/l = 0.025.

The solution of the present approach has been compared
with the numerical solution obtained with the widely assessed
commercial FEM software COMSOL.16 The maximum ratio
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between the mesh element size and the wavelength has been
set to 0.05, in order to guarantee a converged reference solu-
tion with at least 20 elements per wavelength. The simulations
of the present method are compared to the reference FEM so-
lution in Figs. 15, 16 and 17. The first one depicts the abso-
lute value of the scattered pressure on a circle of virtual mi-
crophones of radius rm = 20l, whereas the second shows the
total pressure along the upwind portion of the x−axis. In both
cases, the frequency is 50 Hz. The solution obtained with the
proposed approach is in remarkable agreement with the FEM
solution, revealing that the approximation of the corner points
with a finite curvature profile does not significantly affect the
numerical solution. It is important to stress that the integral
coefficients were obtained here by numerical integration along
the entire boundary, confirming that the global representation
yields accurate results also for geometries with potentially crit-
ical features.

Figure 17 presents a direct qualitative comparison of the two
fields obtained with the NURBS (left) and FEM (right) simu-
lations. The absolute value of the total pressure obtained with
the two methods is in remarkable agreement on all the domain
portion analyzed.

5. CONCLUDING REMARKS

A methodology for the numerical solution of BIE based on
a global NURBS representation of dependent and independent
variables has been presented. The non-local NURBS decom-
position yields a meshless solution algorithm, which can be
solved using a collocation method on the Greville abscissae in
the NURBS parametric space. The unknowns of the resulting
system of equations are the locations of the control points in
the vector space the unknown function belongs to. The main
advantage of the proposed methodology is the possibility to
choose the order of the approximation at runtime, exploiting
the recursive definition of the NURBS function basis. The
method has been applied to problems of potential aerodynam-
ics and acoustics for which analytical solutions are available.
The preliminary results obtained reveal a remarkable agree-
ment with the exact solutions. A very high convergence rate
is achieved, reaching O(N−13) using sixth-order NURBS in
the acoustic application. The reliability of the meshless iso-
geometric approach has been verified for geometries present-
ing critical features, such as corners and curvature changes. In
all the test cases addressed, the global NURBS representation
has revealed a very high accuracy and a substantial insensi-
tivity to the extent of the numerical integration domain. The
method is currently being extended to the analysis of three-
dimensional problems, focusing on the treatment of the spu-
rious eigenfrequencies affecting the numerical solution of ex-
terior acoustics based on integral equations. Indeed, the pe-
culiarities of the present approach observed and validated in
the two-dimensional case suggest that the implementation of
the classical regularization techniques, such as the CONDOR
(Burton and Miller,17) or the CHIEF (Schenck,18), must be
substantially revised to take advantage of the global NURBS
representation. Specifically, a robust strategy to treat the hy-
persingular kernels arising in the Burton and Miller regular-

Figure 15. Scattered pressure evaluated at a circle of microphones with
rm/l = 20 (left) for f = 50 Hz. The continuous line indicates the FEM
solution obtained with the COMSOL software.

Figure 16. Total pressure evaluated along the upwind portion of the x−axis,
for f = 50 Hz. The continuous line indicates the FEM solution obtained with
the COMSOL software.

ization is currently under analysis and will be the object of a
future paper.
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Table 3. Real part of the double-layer integrals (×103) as a function of number of Gaussian abscissae NG and number of partition of the boundary NΓ.

circle
NG=15 NG=30 NG=60

NΓ=1 5.13868867036 5.13868866829 5.13868867004

NΓ=2 5.13868867036 5.13868866829 5.13868867004

NΓ=4 5.13868867036 5.13868866829 5.13868867004

flower-like
NΓ=1 8.567698577476 8.567693658759 8.567712281749

NΓ=2 8.567698577476 8.567693658759 8.567712281749

NΓ=4 8.567698577476 8.567693658759 8.567712281749

APPENDIX A: KERNEL SINGULARITIES
AND NUMERICAL INTEGRATION

The aim of the present section is to analyze the asymptotic
behavior of the kernel K of Eq. (2) for y → y0 ∈ Γ and its re-
lationship with the strategy used for the numerical integration.
The analysis deals with the two specific applications covered.
Assume that the observation point y approaches Γ from Ω (i.e.,
from the positive side of the boundary) pointing to the bound-
ary point yo (see Fig. 18). The integral on the right hand side
of Eq. (2) can be decomposed into two contributions: the in-
tegral over a straight segment Γε centered in yo of length 2ε,
plus the integral over the remaining part of Γ

I(y) =

∫
Γε

ϕ(x)
∂G(y,x)

∂n
dΓ +

∫
Γ\Γε

ϕ(x)
∂G(y,x)

∂n
dΓ.

(A.1)
Assuming ε sufficiently small, I can be approximated as

I(y) ' ϕ(yo) Iε +

∫
Γ\Γε

ϕ(x)
∂G(y,x)

∂n
dΓ. (A.2)

The kernels associated to the aerodynamic and the acoustic
problems are

Kae(x,y) = − 1

2π

r · n
r2

,

Kac(x,y) = −1

4
iκ H(2)

1 (κR)
r · n
r

. (A.3)

Recalling the asymptotic form of H(2)
1 for small values of its

argument (for example, see Kreyszig19), it can be easily seen
that both Kae and Kac go to infinity as r−1. Introducing the
local coordinate (ξ, η), such that y ≡ (0, η) and x ≡ (ξ, 0)

(see Fig. 13), it follows that

Iεac =

∫ ε

−ε

[
−η

2π (ξ2 + η2)
+ i η

κ2

16

]
dξ = Iεae +

iεκ2

8
η.

(A.4)
It can be easily seen that

Iεae = − 1

π
arctan

ε

η
. (A.5)

Taking the limit for y → y0 yields limη→0 Iεae =

limη→0 Iεac = −0.5. Now, substituting the result into
Eq. (A.2), it is possible to indefinitely shrink Γε to obtain for
both acoustic and aerodynamics

lim
ε→0
I(y0) = −1

2
ϕ(yo) +

∫
Γ

ϕ(x)
∂G(y,x)

∂n
dΓ. (A.6)

Substituting Eq. (A.6) into Eq. (2) follows that the domain
function E(y) equals 0.5 at a regular point y0 ∈ Γ. The
remaining part of the integral (i.e., the integral appearing in
Eq. (A.6)) is a convergent improper integral and can be inte-
grated using standard adaptive quadrature formulae capable of
isolating the singularity of the integrand function.

In the present work, the Gauss-Kronrod adaptive quadra-
ture rules have been used, as implemented in the GNU Sci-
entific Library.20 The results obtained are presented in Table 3,
where the value of the real part of the integral in Eq. (A.6) is
reported for different number of Gaussian integration points
NG. The influence of a partition of the boundary Γ into NΓ

parts has been also included. Two geometries have been ana-
lyzed: a circle and a flower-like geometry represented by the
parametric equations x(θ) = [1 + 0.5 sin(5θ)] cos(θ), y(θ) =

[1+0.5 sin(5θ)] sin(θ). As can be seen, the convergence of the
integration is extremely fast, giving values substantially con-
verged even with the coarsest quadrature rule. In addition, the
partition of Γ has no effects on the integral values, confirm-
ing the validity of the NURBS global representation for the
meshless solution of the BIE. Needless to say, in presence of
complex geometries, presenting slope and curvature disconti-
nuities, the assumption of unit weights in Eq. (8) makes the ac-
curate approximation of the integrand impossible, thus causing
the numerical convergence of the quadrature rule impossible to
be achieved when extended to the whole boundary. Neverthe-
less, in those specific cases the geometry can be partitioned
into macro patches having the desired level of smoothness and
the integrals in Eqs. (2) and (3) can be split into their restric-
tions to each continuous patch.
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