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In order to evaluate noise in a sound environment, it is necessary to estimate the sound levels at evaluation points
based on the observations at a reference point. In this study, a method is derived based on the observations con-
taminated by a background noise to estimate system parameters reflecting several orders of correlation information
between the evaluation and reference points in a complex sound environment. Furthermore, a statistical evaluation
method for traffic noise under the existence of background noise is proposed. The effectiveness of the proposed
method is experimentally confirmed by applying it to the traffic noise data measured in a complex sound environ-
ment.

1. INTRODUCTION

In the evaluation of a sound environment around a main line,
it is necessary to estimate the sound levels at evaluation points
based on the observations at a reference point from the view-
point of establishing a monitor system for the actual complex
sound environment. Furthermore, the internal physical mech-
anism of an actual sound environment is often difficult to rec-
ognize analytically, and it contains unknown structural charac-
teristics. In a previous study,1 it was found that complex sound
environment systems are difficult to analyse by using usual
structural methods based on the physical mechanism. There-
fore, a nonlinear system model was derived in the expansion
series form reflecting various types of correlation information
from the lower order to the higher order between input and
output variables.1 The conditional probability density function
contains the linear and nonlinear correlations in the expansion
coefficients, and these correlations play an important role as
the statistical information for the input and output relationships
of sound environment systems.

On the other hand, the random noise in an actual sound en-
vironment usually exhibits multifarious and complex charac-
teristics such as non-Gaussian distribution and non-linear and
non-stationary properties relating to natural, social, and/or hu-
man factors. Furthermore, the observation data are usually
contaminated by background noise with complex statistical
properties. In this situation, in order to evaluate the sound envi-
ronment, precise estimation of the system characteristics of the
sound environment is required, considering the contaminated
observed data.

In this study, a general type of complex sound environment
is considered. An estimation method for the sound levels at
evaluation points for the complex sound environment around a
main line such as a highway and a railroad is proposed on the
basis of the observations at a reference point under the exis-
tence of background noise. By adopting an expansion expres-
sion of the conditional probability distribution as the system

characteristics, a method to estimate the system parameters re-
flecting several orders of correlation information between the
evaluation and reference points is first derived. Furthermore,
a prediction method for the probability distribution of traffic
noise at the evaluation points is also considered.

The effectiveness of the proposed theory is experimentally
confirmed by applying it to actual data of road-traffic noise
measured around a national road in the city of Hiroshima
and low-frequency noise observed in a complicated sound en-
vironment near the exit of a tunnel, which is generated by
Shinkansen trains running through the tunnel.

2. EVALUATION OF TRAFFIC NOISE
UNDER THE EXISTENCE OF
BACKGROUND NOISE

2.1. Statistical Model for Sound
Environment around a Main Line

In the evaluation of traffic noise in a sound environment
around a main line such as a highway and a railroad, it is
necessary to estimate the sound levels at multiple evaluation
points based on the observation at a reference point because of
the difficulties of monitoring the sound levels at all evaluation
points and at every instantaneous time. Furthermore, in the
measurement of the sound environment, the observation data
are generally contaminated by background noise.

The intensity variables satisfying the additive property of
the specific noise and the background noise are considered in
this section. Let x and y be the sound intensities of a spe-
cific noise at an evaluation point and a reference point, respec-
tively. The probability distribution of x has to be predicted on
the basis of the observed data of y. Though the single eval-
uation point is considered, theoretically, for the simplification
of the mathematical expression, the extension of the theory to
the case of the multi-evaluation points is easy by considering
multi-dimensional variable x instead of the single variable x.
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All the information on linear and/or nonlinear correlations be-
tween x and y is included in the conditional probability density
function P (x|y).

In order to explicitly find the various correlation properties
between x and y, let us expand the joint probability density
function P (x, y) into an orthogonal polynomial series, as fol-
lows:2

P (x, y) = P0(x)P0(y)

∞∑
r=0

∞∑
s=0

Arsφ
(1)
r (x)φ(2)s (y); (1)

where Ars =
〈
φ
(1)
r (x)φ

(2)
s (y)

〉
and 〈·〉 denotes the averag-

ing operation. P0(x) and P0(y) can be chosen arbitrarily as
the probability density functions describing the dominant parts
of the actual fluctuation pattern. Two functions φ(1)r (x) and
φ
(2)
s (y) are orthogonal polynomials with the weighting func-

tions P0(x) and P0(y). The information on the various types
of linear and/or nonlinear correlations between x and y is re-
flected hierarchically in each expansion coefficientArs. In this
section, the gamma distribution suitable for the random vari-
ables fluctuating within only the positive region such as the
sound intensity is adopted.

P0(x) =
xmx−1

Γ(mx)smx
x

e−
x
sx ;

mx =
µ2
x

σ2
x

; sx =
σ2
x

µx
;µx = 〈x〉 ;σ2

x =
〈
(x− µx)2

〉
; (2)

P0(y) =
ymy−1

Γ(my)s
my
y

e
− y

sy ;

my =
µ2
y

σ2
y

; sy =
σ2
y

µy
;µy = 〈y〉 ;σ2

y =
〈
(y − µy)2

〉
; (3)

where Γ(•) is a gamma function. Thus, orthogonal polynomi-
als φ(1)r (x) and φ(2)s (y) are given by the Laguerre polynomial:2

φ(1)r (x) =

√
Γ(mx)r!

Γ(mx + r)
L(mx−1)
r (

x

sx
); (4)

φ(2)s (y) =

√
Γ(my)s!

Γ(my + s)
L(my−1)
s (

y

sy
);(

L(α)
n (x) =

exx−α

n!

dn

dxn
(e−xxn+α)

)
. (5)

By substituting Eq. (1) into the definition of the conditional
probability, P (x|y) can be expressed in an expansion series
form as follows:

P (x|y) =
P (x, y)

P (y)
=

P0(x)
∞∑
r=0

∞∑
s=0

Arsφ
(1)
r (x)φ

(2)
s (y)

∞∑
s=0

A0sφ
(2)
s (y)

;

(6)

2.2. Countermeasure for Background Noise
in the Sound Environment

In the measurement of the sound environment, effects of the
background noise are inevitable. Then, based on the additive

property of the intensity variable, the observed sound intensity
zk at a discrete time k is expressed as

zk = xk + vk; (7)

where xk and vk are sound intensities of the specific noise
and background noise at an evaluation point. We assume that
the statistics of the background noise are known. In this sec-
tion, an estimation method for the expansion coefficients Ars
in Eq. (1), reflecting the correlation information between x and
y, is derived on the basis of the observed data zk. Considering
the expansion coefficients Ars as unknown parameter vector
a:

a = (a1, a2, a3, ...)(= (a(1),a(2), ...);

a(r) = (Ar1, Ar2, ...); (r = 1, 2, ...); (8)

the simple dynamical model

ak+1 = ak; (ak = (a1,k, a2,k, a3,k, ...)

= (a(1),k,a(2),k, ...)); (9)

is naturally introduced for the successive estimation of the pa-
rameter.

In order to derive the estimation algorithm of the parame-
ter, attention is focused on Bayes’ theorem for the conditional
probability distribution:

P (ak|Zk) =
P (ak, zk|Zk−1)

P (zk|Zk−1)
; (10)

where Zk ≡ {z1, z2, · · · , zk} is a set of observation data up to
time k. Based on Eq. (10), using a similar calculation process
to the previously reported paper,3 the estimate for an arbitrary
polynomial function fM(ak) of ak with M-th order can be
derived as follows (cf. Appendix):

f̂M(ak) = 〈fM(ak)|Zk〉

=

M∑
m=0

∞∑
n=0

BmnCMmθ
(2)
n (zk)

∞∑
n=0

B0nθ
(2)
n (zk)

; (11)

with

Bmn =
〈
θ(1)m (ak)θ(2)n (zk)|Zk−1

〉
;

(m = (m1,m2, ...)). (12)

Two functions, θ(1)m (ak) and θ(2)n (zk), are orthonormal poly-
nomials with the weighting functions P0(ak|Zk−1) and
P0(zk|Zk−1). Furthermore, CMm is the coefficient when the
function fM(ak) is expanded as:

fM(ak) =

M∑
m=0

CMmθ
(1)
m (ak) (13)

As the concrete expression on the fundamental probability
function for the parameter ak fluctuating in both a positive and
negative range, a standard Gaussian distribution is adopted.
Furthermore, a gamma distribution is adopted as the proba-
bility function for the sound intensity zk:

P0(ak|Zk−1) =
∏
i

1√
2πΓi,k

e
−

(ai,k−a∗i,k)2

2Γi,k ; (14)
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P0(zk|Zk−1) =
z
m∗k−1
k

Γ(m∗k)s∗k
e
− zk

s∗
k ; (15)

with

a∗i,k = 〈ai,k|Zk−1〉 ;
Γi,k =

〈
(ai,k − a∗i,k)2|Zk−1

〉
;

m∗k = z∗2k /Ωk; s∗k = Ωk/z
∗
k;

z∗k = 〈zk|Zk−1〉 ; Ωk =
〈
(zk − z∗k)2|Zk−1

〉
. (16)

Therefore, the orthogonal polynomials2, 4 with the weighting
functions of Eqs. (14) and (15) are expressed as follows:

θ(1)m (ak) =
∏
i

1√
mi!

Hmi
(
ai,k − a∗i,k√

Γi,k
); (17)

θ(2)n (zk) =

√
Γ(m∗k)n!

Γ(m∗k + n)
L
(m∗k−1)
n (

zk
s∗k

). (18)

By considering Eq. (7) and independence of xk and vk, two
parameters z∗k and Ωk in Eq. (16) can be given by

z∗k = 〈xk|Zk−1〉+ 〈vk〉 ; (19)

Ωk =
〈
(xk − x∗k)2|Zk−1

〉
+
〈
(vk − 〈vk〉)2

〉
. (20)

Considering Eq. (6) and the property of conditional expecta-
tion, the right sides of the above equations are expressed as
follows:

〈xk|Zk−1〉 = 〈〈xk|yk, Zk−1〉 |Zk−1〉

=

〈∫
xkP (xk|yk)dxk|Zk−1

〉

=

1∑
r=0

e1rA(r),kΦ(yk)

∞∑
s=0

A0sφ
(2)
s (yk)

; (21)

〈
(xk − x∗k)2|Zk−1

〉
=

〈∫
(xk − x∗k)

2
P (xk|yk)dxk|Zk−1

〉

=

2∑
r=0

e2rA(r),kΦ(yk)

∞∑
s=0

A0sφ
(2)
s (yk)

; (22)

with

Φ(yk) = (φ
(2)
0 (yk),φ

(2)
1 (yk),...)t;

A(r),k = (Ar0,a
∗
(r),k)(r = 1, 2, ...);

A(0),k = A(0) = (A00, A01, A02, ...);

a∗(r),k =
〈
a(r),k|Zk−1

〉
; (23)

where t denotes the transpose of a matrix. The coefficients
e1r and e2r in Eqs. (21) and (22) are determined in advance
by expanding xk and (xk − x∗k)

2 in the following orthogonal
series forms:

xk =

1∑
r=0

e1rφ
(1)
r (xk); (xk − x∗k)2 =

2∑
r=0

e2rφ
(1)
r (xk) (24)

Furthermore, using the definition of the Laguerre polynomial
and Eqs. (6) and (7), the expansion coefficient Bmn can be
calculated as in Eq. (25) (see the top of the next page), where
er2r is the expansion coefficient in the following expansion
series:

xr2k =

r2∑
r=0

er2rφ
(1)
r (xk). (26)

From Eqs. (19)–(22) and (25), it can be found that the parame-
ters z∗k , Ωk and the expansion coefficientBmn are given by the
predictions of the unknown parameter ak, the statistics of the
background noise vk, and the observations yk at the reference
point. By considering Eq. (9), the predictions to perform the
recurrence estimation can be given for an arbitrary polynomial
function gN(ak+1), with N th order of ak+1, can be expressed
as:

g∗N(ak+1) = 〈gN(ak+1)|Zk〉
= 〈gN(ak)|Zk〉 = ĝN(ak). (27)

2.3. Prediction of Specific Noise at
the Evaluation Point

Because the conditional probability density function P (x|y)
can be considered as an invariant system characteristic, reflect-
ing mainly the proper correlation relationship between the two
sound intensities y and x at the reference and evaluation points,
the probability distribution Ps(x) of the sound intensity at the
evaluation point corresponding to the random noise observed at
the reference point can be predicted, as: Ps(x) = 〈P (x|y)〉y .
Thus, based on Eq. (6) and using the estimated parameter
âk =

(
Â11, Â12, · · ·

)
, the probability density function Ps(x)

at the evaluation point can be predicted from the observed data
y at the reference point, as follows:

Ps(x) = P0(x)

∞∑
r=0

〈 ∞∑
s=0

Ârsφ
(2)
s (y)

∞∑
s=0

A0sφ
(2)
s (y)

〉
y

φ(1)r (x). (28)

3. APPLICATION TO TRAFFIC NOISE IN AN
ACTUAL SOUND ENVIRONMENT

The effectiveness of the proposed theory in Section 2 is con-
firmed experimentally by applying it to the actual data of road-
traffic noise and low-frequency noise observed in a compli-
cated sound environment near a national road and the entrance
of a tunnel.

In order to evaluate the sound environment around the main
line such as a highway and a railroad, the sound level at an
evaluation point has to be estimated on the basis of the ob-
servation at a reference point. For the road-traffic noise, the
reference point and the evaluation point were chosen at the po-
sitions being 1 m and 20 m apart from one side of the road as
shown in Fig. 1. Since there are fences, a river, and buildings
between the reference point and the evaluation point, the sur-
rounding environment shows very complex characteristics, and
it is difficult to identify the sound propagation characteristics
based on the physical mechanism. By applying the proposed
method, the probability density function of the sound level at
the evaluation point was predicted on the basis of the obser-
vation at the reference point. Road-traffic noise was measured
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Bmn =

√
Γ(m∗k)n!

Γ(m∗k + n)

n∑
r1=0

(−1)
r1

(
n
r1

)
1

n!

Γ(m∗k + n)

Γ(m∗k + r1)

1

s∗k

·
r1∑
r2=0

r2∑
r=0

er2r

〈
θ
(1)
m (ak)(Ar0,a(r),k)|Zk−1

〉
Φ(yk)

∞∑
s=0

A0sφ
(2)
s (yk)

〈
vr1−r2k

〉
; (25)

Table 1. Statistics of the specific noise and the background noise.

Specific Noise Background Noise
Mean Standard Deviation Mean Standard Deviation

[watt/m2] [watt/m2] [watt/m2] [watt/m2]
1.7185× 10−6 2.0567× 10−6 1.7185× 10−6 6.734× 10−8

Figure 1. A schematic drawing of the experiment in a road traffic noise envi-
ronment near a national road.

at every 0.2 s using a sound-level meter (model NL-06 inte-
gral standard type, Rion Co.) under an A-characteristic and
FAST response with a time constant of 0.125 s in an RMS cir-
cuit. Applying the proposed algorithm developed in Section 2
on the 400 data sample, the expansion coefficients in Eq. (1)
were estimated. The statistics of the road-traffic noise and the
background noise are shown in Table 1. In order to confirm
the effectiveness of the proposed method, it is necessary to ap-
ply it to the data with the large amplitude of the background
noise. Therefore, after separately recording the specific noise
and background noise into a data recorder, by replaying the
recorded two noises and mixing them in an anechoic chamber,
the observation data were measured. Then, we adjusted the
amplitude of background noise so as to have the same mean
value as the specific noise.

Using Eq. (28) and the estimated expansion coefficients, the
probability distribution at the evaluation point was predicted
from the observation at the reference point. The 300 sampled
data following the data used for the estimation of the expan-
sion coefficients were adopted for predicting the probability
distribution of the sound level at the evaluation point. For the
purpose of confirming the prediction accuracy of the proposed
method, it was only applied to the data during a short time
interval as a trial. In the real assessment for the noise envi-
ronment, the proposed method has to be applied to the data
in appropriate time intervals, according to the purpose of real
noise evaluation. Figure 2 shows the comparison between the
theoretically predicted curves and the experimentally sampled
points on the probability distribution. The cumulative distribu-
tions of sound level related to noise evaluation quantities Lx
((100 − x) percentile level) are shown. In the evaluation of
the noise environment, the prediction of the cumulative dis-
tribution connected with the noise evaluation index Lx is im-
portant.5 The ”1st Approx.” considers only the first term in
Eq. (28), and the predicted curves from the ”2nd Approx.” to
the ”5th Approx.” consider the estimated expansion coeffi-

Figure 2. A comparison between predicted curves and experimental values of
the probability distribution at the evaluation point for road-traffic noise.

Table 2. Comparison between the experimental values and theoretically pre-
dicted values for several noise evaluation quantities in dB evaluated from
Fig. 2.

Noise Evaluation L5 L10 L50 L90 L95

Quantities
Experimental Values 67.3 66.1 62.9 55.6 53.6

Predicted Curve (1st Approx.) 66.2 64.7 56.7 41.7 35.5
Predicted Curve (2nd Approx.) 68.2 66.7 60.0 45.5 40.0
Predicted Curve (3rd Approx.) 68.6 67.3 61.1 47.3 41.1
Predicted Curve (4th Approx.) 67.9 66.7 62.1 52.0 46.4
Predicted Curve (5th Approx.) 67.6 66.7 62.3 53.9 49.8

cients Â11, Â12, Â21, and Â22, additionally. It can be observed
that the theoretically predicted curves approach the experimen-
tal values when expansion coefficients of several higher orders
are considered. Several noise evaluation quantities Lx evalu-
ated from Fig. 2 are shown in Table 2. It is obvious that the pro-
posed method provides accurate predictions within±1 dB per-
missible errors in the measurement of environmental noises,
and the effectiveness of the proposed method has been con-
firmed numerically.

For the low-frequency noise generated by the Shinkansen
trains running through the tunnel, a reference point and an
evaluation point were chosen at the positions that were 10 m
and 25 m apart from the entrance of the tunnel as shown in
Fig. 3. By applying the proposed method in Section 2, the
probability density function of the low-frequency noise at the
evaluation point was predicted. Four kinds of low-frequency
noise data was generated from the Shinkansen trains: 1) Up
”Hikari”, 2) Down ”Hikari”, 3) Up ”Nozomi”, and 4) Down
”Nozomi” were measured by using a ceramic microphone with
a low-frequency sound pressure level meter (model NA18A,
Rion Co.) under a FLAT-characteristic (i.e., a flat frequency
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Figure 3. A schematic drawing of the experiment in low-frequency noise near
an entrance of a tunnel.

Table 3. Statistics of the specific noise.

Train Mean [watt/m2] Standard Deviation [watt/m2]
Up ”Hikari” 2.5295× 10−5 3.3607× 10−5

Down ”Hikari” 3.0542× 10−5 4.6687× 10−5

Up ”Nozomi” 3.3074× 10−5 6.8644× 10−5

Down ”Hikari” 4.5607× 10−5 9.7969× 10−5

characteristic within the range of 1 Hz to 100 Hz) at every
0.1 s. In the measurement of low-frequency noise, the effects
of a wind noise are inevitable.6–8 Therefore, by applying the
proposed estimation algorithm in Eq. (11) to the observation
data for the Up ”Hikari” train affected by a wind noise, the ex-
pansion coefficients in Eq. (1) were first estimated. The statis-
tics of the low-frequency noise and the background noise are
shown in Tables 3 and 4, respectively. Based on the estimates
of the expansion coefficients, the probability distributions for
the sound level of the low-frequency noises generated from
the i) Down ”Hikari”, ii) Up ”Nozomi” and iii) Down ”No-
zomi” trains were predicted by measuring the sound-level data
at the reference point and using Eq. (28). Figures 4, 5 and 6
show comparisons between the theoretically predicted curves
and experimental values for the probability distributions at the
evaluation point for the Down ”Hikari” train, Up ”Nozomi”
train, and Down ”Nozomi” train, respectively. The cumula-
tive distributions of the sound level are shown in these figures.
When cboxa sufficient number of expansion coefficients of
higher order are taken into consideration, the theoretically pre-
dicted curves approach the experimentally sampled values for
the probability distribution of the low-frequency noise.

Furthermore, in order to discuss the precision of the pro-
posed prediction method of the probability distribution, com-
parisons between the theoretically predicted values and the ex-
perimental values for noise evaluation quantities Lx (x =5,
10, 50, 90, 95) obtained from Figs. 4, 5 and 6 are shown in
Tables 5, 6 and 7. In an evaluation for low-frequency noise
with the fluctuation, L5, and L10 correspond approximately to
the peak or maximum values of the fluctuation, and L50 corre-
sponds to the median. Furthermore, L90 and L95 correspond
to the background noise levels. From these results, the effec-
tiveness of the proposed prediction method for the probability
distribution at evaluation points has been confirmed numeri-
cally.

4. CONCLUSION

In this paper, an evaluation method of traffic noise in a
complex sound environment under the existence of a back-

Table 4. Statistics of the wind noise.

Mean [watt/m2] Standard Deviation [watt/m2]
1.2629× 10−5 4.5943× 10−5

Figure 4. A comparison between predicted curves and experimental values of
the probability distribution at the evaluation point for a low-frequency noise
by Down ”Hikari”.

Figure 5. A comparison between predicted curves and experimental values of
the probability distribution at the evaluation point for a low-frequency noise
by Up ”Nozomi”.

ground noise has been proposed. More specifically, a predic-
tion method of the sound level at evaluation points based on
the observations at a reference point has been theoretically de-
rived. By paying attention to the intensity variables satisfying
the additive property of the specific noise and the background
noise, a method predicting the probability distribution of the
sound intensity at evaluation points has been proposed. The
proposed prediction method has been realized by introducing
a sound environment model of the conditional probability type.
The proposed method has then been applied to the estimation
and prediction of actual road-traffic noise and low-frequency
noise, and it has been experimentally verified that good results
have been achieved with this method.

Table 5. Comparison between the experimental values and theoretically pre-
dicted values for several noise evaluation quantities in dB evaluated from
Fig. 4.

Noise Evaluation L5 L10 L50 L90 L95

Quantities
Experimental Values 82.9 78.5 70.0 62.6 60.5

Predicted Curve (1st Approx.) 78.9 78.0 72.3 62.3 58.6
Predicted Curve (2nd Approx.) 79.1 77.7 72.1 62.1 58.4
Predicted Curve (3rd Approx.) 78.9 77.6 71.8 61.8 58.2
Predicted Curve (4th Approx.) 78.6 77.4 71.7 61.7 57.7
Predicted Curve (5th Approx.) 80.2 78.2 70.7 60.6 57.0
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f̂M(ak) =

∫ ∫
...

∫
fM(ak)P (ak|Zk)dak =

∫ ∫
...
∫ M∑

m′=0

CMm′θ
(1)
m′ (ak)P0(ak|Zk−1)

∞∑
m=0

∞∑
n=0

Bmnθ
(1)
m (ak)θ

(2)
n (zk)dak

∞∑
n=0

B0nθ
(2)
n (zk)

.

(A3)

Figure 6. A comparison between predicted curves and experimental values of
the probability distribution at the evaluation point for a low-frequency noise
by Down ”Nozomi”.

Table 6. Comparison between the experimental values and theoretically pre-
dicted values for several noise evaluation quantities in dB evaluated from
Fig. 5.

Noise Evaluation L5 L10 L50 L90 L95

Quantities
Experimental Values 85.3 88.9 71.4 63.2 62.0

Predicted Curve (1st Approx.) 79.7 78.3 72.4 62.9 58.7
Predicted Curve (2nd Approx.) 79.7 78.3 72.3 62.6 58.7
Predicted Curve (3rd Approx.) 78.7 77.7 71.8 62.1 58.6
Predicted Curve (4th Approx.) 78.9 77.7 71.7 62.1 58.0
Predicted Curve (5th Approx.) 80.6 88.8 71.2 61.2 57.1
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APPENDIX. DERIVATION OF THE ESTIMATE

The conditional joint probability density function of the pa-
rameter ak and the observation zk can be generally expanded
in a statistical orthogonal expansion series:

P (ak, zk|Zk−1) =

P0(ak|Zk−1)P0(zk|Zk−1)

∞∑
m=0

∞∑
n=0

Bmnθ
(1)
m (ak)θ(2)n (zk);

(A1)

Substituting Eq. (A1) into Eq. (10), the following expression
can be obtained.

P (ak|Zk) =

P0(ak|Zk−1)
∞∑

m=0

∞∑
n=0

Bmnθ
(1)
m (ak)θ

(2)
n (zk)

∞∑
n=0

B0nθ
(2)
n (zk)

.

(A2)
By using the above equation and the relationship in Eq. (13),
and taking the conditional expectation of the function fM(ak),
the estimate of fM(ak) can be expressed as Eq. (A3). Fur-
thermore, by using the orthonormal condition for the function
θ
(1)
m (ak):∫ ∫

...

∫
θ(1)m (ak)θ

(1)
m′ (ak)P0(ak|Zk−1)dak = δmm′ ;

(A4)
Eq. (11) can be derived.
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