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The ability to detect and diagnose faults in rolling element bearings is crucial for modern maintenance schemes.
Several techniques have been developed to improve the ability of fault detection in bearings using vibration moni-
toring, especially in those cases where the vibration signal is contaminated by background noise. Linear Prediction
and Self-Adaptive Noise Cancellation are techniques which can substantially improve the signal to noise ratio of
the signal, improving the visibility of the important signal components in the frequency spectrum. Spectral Kur-
tosis has been shown to improve bearing defect identification by focusing on the frequency band with a high level
of impulsiveness. In this paper the ability of these three methods to detect a bearing fault is compared using vi-
brational data from a specially designed test rig that allowed fast natural degradation of the bearing. The results
obtained show that the Spectral Kurtosis was able to detect an incipient fault in the outer race of the bearing much
earlier than any other technique.

NOMENCLATURE
a(k) Weight attached to each observation in LP
ANC Adaptive Noise Cancelling
e Output in ANC and SANC
f Frequency
GM Gear mesh frequency
H Filter length
IRD Inner race defect frequency
K Kurtosis
LF Line Frequency
LP Linear prediction
n Time point
N Number of past samples considered in the

calculation of Rτ
n0 Reference noise
n1 Uncorrelated eference noise
ORD Outer race defect frequency
p Number of past samples considered in LP
Rτ Autocorrelation function
S Signal of interest in ANC/SANC
SAN Self-Adaptive Noise Cancellation
SK Spectral Kurtosis
SNR Signal to Noise Ratio
SS Shaft speed frequency
W Vector of filter coefficients
w Filter weights in ANC and SANC
x Random signal
x̂(n) Predictable part of signal x at
y(n) Filter output

∆ Time delay
∆f Frequency band width
µ Forgerring factor
µ Average value
σ Standard deviation

1. INTRODUCTION

Rolling element bearings are important components in rotat-
ing machinery. By monitoring the vibration signature of bear-
ings, it is possible to obtain important information about their
condition and use this information to improve the maintenance
strategy. Diagnostic techniques based on vibration are mainly
concerned with the extraction of defect features in the acquired
signal, which can be related to the healthy or defective state of
vital parts in a machine. Many different diagnostic methods
have been successfully used to identify machine faults, pro-
cessing the vibration signal in the time or frequency domain, in
order to locate and quantify any existing damage. In complex
machines the signal acquired is normally inclusive of additive
background noise from other machine components or subsys-
tems, which can make it difficult or sometimes impossible to
identify the fault patterns in the signal.

In the case of bearings, the fault is produced typically by the
damage of the surface of the inner or outer race or the rolling
elements. When a damaged surface contacts another rolling
surface, a force impulse is generated, which excites resonances
in the bearing and the machine.1 The successive impacts gen-
erate a vibration signal, which often has an impulsive repeti-
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tive nature that is easy to identify in the presence of low back-
ground noise. In a real machine, the background noise can
mask the bearing fault components of the signal, especially in
gearboxes because the gear meshing can generate a strong level
of vibration.2 For this reason, many different methodologies of
signal processing have been developed in order to facilitate the
detection of defects, particularly in bearings.

Some examples of classic techniques used to enhance bear-
ing fault features in vibration signals are linear prediction
(LP), self-adaptive noise cancellation (SANC), cyclostation-
arity, Hilbert-Huang transform (HHT), and wavelet transform
(WT). LP is based on the estimation of the deterministic part
of a signal as a linear combination of the past inputs and out-
puts of the system, while SANC aims to minimize the noise in
the manipulated signal by recursively adapting the filtration pa-
rameters.3 Cyclostationarity studies the periodicities of the dif-
ferent features of machine vibration signals using the cyclic au-
tocorrelation function and spectral correlation density.4 HHT
can be used to decompose a non-stationary and nonlinear sig-
nal into intrinsic mode functions and obtain instantaneous fre-
quency data,5 and WT can be applied on non-stationary signals
to increase the frequency resolution at low frequencies and re-
duce noise in raw signals.6 All of these techniques have been
already applied by various researchers for the detection and
diagnosis of bearing and gearbox faults.

In this investigation, three diagnostic techniques, LP, SANC
and SK were applied in identifying a bearing defect in a gear-
box where the bearing degradation happened naturally in a
specially designed test rig. LP and SANC have been suc-
cessfully used as de-noising tools in different applications for
many years.7, 8 Nevertheless, even nowadays many researchers
are exploring their capabilities to reduce background noise and
enhance the fault features in a signal to improve the fault de-
tection and diagnosis in bearings.9–15 On the other hand, SK is
a relatively new methodology that is able to enhance the fault
signature in a signal by focusing in the frequency band with
a higher level of impulsiveness.16–18 This technique has been
demonstrated to be very effective, especially for bearing fault
detection, and many researchers have reported its benefits.19–24

The aim of this paper is to compare the performance of these
methodologies in detecting a bearing fault during the early
stages of natural degradation and show the benefits of SK over
more stablished denoising techniques. For this purpose, these
three methodologies have been applied on a vibrational signal
acquired from a particular gearbox where the bearings failed
much earlier than the theoretical life calculated for the loading
conditions. Analysis of acquired vibration signals associated
with different stages of bearing degradation proved to be ideal
for this comparative study. This was principally because the
bearing defect frequency was only evident at the final stage of
degradation. Thus, the study presented will explore whether or
not these techniques can offer the ability to identify the pres-
ence of the defect earlier.

2. THEORETICAL BACKGROUND

2.1. Linear Prediction
The estimation of a dynamic system output and its later anal-

ysis is one of the most important problems in signal process-
ing. Different techniques have been employed by several re-

searchers in a wide range of applications such as neurophysics,
electrocardiography, geophysics, and speech communication.7

One of the most powerful estimation models is based on the
assumption that the value of a signal x at the time n can be ob-
tained as a linear combination of past inputs and outputs of the
system. Those models which use the information from only the
past system outputs are called all-pole or autoregressive mod-
els, and were first used by Yule in an investigation of sunspot
numbers.25 LP is one of those methods where the objective is
to predict or estimate the future output of a system based on
the past output observations. The complete mathematical de-
velopment and a compilation of the different LP approaches
have been presented by Makhoul.7

In vibration-based diagnostics, LP is a method that allows
the separation of the deterministic or predictable part of a sig-
nal from the random background noise using the information
provided by past observations.14, 26 If it is assumed that the
background noise is totally random, by applying this method,
it is possible to eliminate the background noise and thus im-
prove the signal-to-noise ratio. This technique is based on the
principle that the value of the deterministic part of a signal can
be predicted as a weighted sum of a series of previous values:

x̂(n) = −
p∑
k=1

a(k) · x(n− k); (1)

where x̂(n) is the predictable part of the nth sample of the sig-
nal x, p is the number of past samples considered, and a(k) are
the weights attached to each past observation. The weighting
coefficients can be obtained at each step, n, by a linear oper-
ation from the autocorrelation function Rτ of the time series
x(n), which can be efficiently solved using the Yule-Walker
equation:27

R0 R1 · · · Rp−1
R1 R0 · · · Rp−2
...

...
. . .

...
Rp−1 Rp−2 · · · R0

 ·


a1
a2
...
ap

 =

 −R1

−R2

... −Rp

 ; (2)

where,

Rτ =
1

N

N∑
t=τ

x(t− τ) · x(t). (3)

N is the number of past samples considered at each step, in
this case only p past samples were considered for each x̂(n)
prediction for computational reasons, but all the available past
samples at each time point were used in the calculation of the
values Rτ .

The results of the algorithm depend on the number of past
observations p considered. Small values of p produce a poor
prediction, giving a result of negligible improvement in the
signal-to-noise ratio, while very high values of p affect the
computational cost negatively, over restrain the prediction, and
tend to reduce even the main components of the signal. For
this particular investigation, several analyses were carried out
using different numbers of past samples in order to establish
the value p for each test case, which optimizes the signal-to-
noise ratio of the output signal.

2.2. Self-Adaptive Noise Cancellation
Adaptive noise cancelling (ANC) is another technique used

to reduce the background noise in a signal and increase the
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Figure 1. ANC algorithm.

Figure 2. SANC algorithm.

signal-to-noise ratio, improving the visibility of the different
signal components in the frequency spectrum. The first work
in ANC was performed by Howells and Applebaum at the
General Electric Company between 1957 and 1960. The first
ANC system was designed and built at Stanford University in
1965.8 Since then, this method has been successfully applied
to a number of additional problems including electrocardiog-
raphy, cancelling noise in speech signals, cancelling antenna
sidelobe interferences, etc.8

The general ANC concept is shown in Fig. 1, and a basic ex-
planation of the method was given by Chaturvedi et al.:28 the
input x(n) composed by the signal of interest S and additive
noise n0 is received at the primary sensor. A reference noise
n1 (which must be related to the noise n0 in some unknown
way but is not coherent with the signal S) is received at the ref-
erence sensor. The reference input is then adaptively filtered to
match n0 as closely as possible, which is then subtracted from
the primary input x(n) = S+n0 to produce the system output
e = S + n0 − y. This output contains the signal plus residual
undesirable noise. The adaptive filter acts to minimize, indi-
rectly, the average power of this residual noise at the system
output e. The output is fed back to the adaptive filter, and the
filter weights are adjusted at each calculation step to minimize
the total output power of the system. It can be demonstrated
that minimizing the total output power minimizes the output
noise power or, in other words, maximizes the output signal-
to-noise ratio.8

The problem of this method applied to bearing fault detec-
tion in real applications is that it is not always easy to identify
the source of noise n1, which is correlated with the noise n0
(common source) but not with the fault signal. Chaturvedi et
al.28 presented an example where the method was applied to
detect an induced bearing fault in a gearbox using two sen-
sors; one was placed in the surroundings of the bearing hous-
ing to obtain the main signal, and another sensor was placed
at a remote location in the casing of the gearbox to obtain the
reference signal. To solve this issue, a further development of
ANC was formulated using a delayed version of the primary
signal.8 This latter version was named the self-adaptive noise

cancellation (SANC), and the schematic concept is represented
in Fig. 2. The time delay ∆, which is fixed, forces the delayed
version of the input signal to become uncorrelated with the pri-
mary signal, introducing a phase difference. The adaptive filter
responds firstly by compensating for the phase shift so that the
sinusoidal components cancel each other at the output, and sec-
ondly by removing as much noise as possible to minimise the
output error.29 As it happens in the original ANC, the output
error is then fed back to the adaptive filter to adjust recursively
the filter weights w in order to minimize the total output power
and thus, the output noise power. There are many adaptation
rules to do this, the most well-known is the least mean square:8

wn+1
i = wni + µ · e(n) · x(n− ∆ − i); (4)

where the parameter µ (forgetting factor, strictly positive) con-
trols the stability and rate of convergence of the process, and
the subscript i differentiates each of the H weighting coeffi-
cients of the filter. The recursive weight calculation starts with
a random value for each weight wi. The output of the filter
y(n) can be calculated as:

y(n) = WT (n) ·X(n− ∆); (5)

where W is a vector containing the H weighting coefficients
wi, and X(n− ∆) is another vector containing the H compo-
nents of the delayed signal immediately preceding the sample
n. The output e(n) is easily obtained from:

e(n) = x(n) − y(n). (6)

As shown by Eq. (4), the performance of the SANC al-
gorithm clearly depends on the choice of three parameters:
the time delay ∆, the filter length H , and the forgetting fac-
tor µ. The influence of these parameters was investigated by
Ho et al.30 who suggested some parameter selection guides.
∆ should be large enough to ensure that the delayed signal be-
comes uncorrelated with the original, and H should be cho-
sen to cancel all the broadband components of the delayed
signal. In both cases, if the selected value for the parame-
ter is too large, it will lead to computation problems. Ho30

stated that the forgetting factor depends mainly on the filter or-
der H . In this particular investigation, the parameters ∆, H ,
and µ were selected after several tests with the aim of optimiz-
ing the signal-to-noise ratio of the output signal. From these
tests it was concluded that the selection of µ is crucial for the
process performance: very small variations on this parameter
can change the output signal, from no noise reduction effect if
the selected value is too high, to distortion of the main signal
components when it is too low. This influence can be seen in
Fig. 3 where the SANC was applied to a representative signal
acquired during the tests using different values for the forget-
ting factor µ. It is always important to check the convergence
of the filter weights to ensure optimal performance.

2.3. Spectral Kurtosis and Envelope
Analysis

Kurtosis is defined as the degree of peakness of a probability
density function p(x), and mathematically it is defined as the
normalized fourth moment of a probability density function:31

K =

∞∫
−∞

[x− µ]4p(x)dx

σ4
; (7)
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Figure 3. Effect of the forgetting factor µ on the SANC results. (a):original
spectrum; (b) signal processed through SANC using µ = 0.0001; (c) signal
processed through SANC using µ = 0.00001; (d) signal processed through
SANC using µ = 0.000001.

where x is the signal of interest with average µ and standard
deviation σ.

As mentioned earlier, in real applications background noise
often masks the signal of interest, and, as a result, the kurto-
sis is unable to capture the peakness of the fault signal, giving
usually low kurtosis values. Therefore, in applications with
strong background noise, the kurtosis as a global indicator is
not useful, and it gives better results when it is applied locally
in different frequency bands.17 This technique is named spec-
tral kurtosis (SK).

The SK was first introduced by Dwyer32 as a statistical tool,
which can locate non-Gaussian components in the frequency
domain of a signal. This method is able to indicate the pres-
ence of transients in the signal and show their locations in the
frequency domain. It has demonstrated to be effective even in
the presence of strong additive noise.17 The basic principle of
this method is to calculate the kurtosis at different frequency
bands in order to identify non stationarities in the signal and
determine where they are located in the frequency domain. Ob-
viously the results obtained strongly depend on the width of the
frequency bands ∆f in which the analysis is performed and its
influence was analysed by Antoni.18

The kurtogram is basically a representation of the calcu-
lated values of the SK as a function of f and ∆f .33 However,
the exploration of the whole plane (f , ∆f ) is a complicated
computation task difficult to deal with, though Antoni18 sug-
gested a methodology for the fast computation of the SK. In
this approach, at each bandwidth level, the number of filtered
sequences is increased by a factor 2, and the kurtogram is fi-
nally estimated by computing the kurtosis of all sequences.

The importance of the kurtogram relies on the fact that it al-
lows the identification of the frequency band where the SK is
maximum, and this information can be used to design a filter
that extracts the part of the signal with the highest level of im-

pulsiveness. Antoni et al.17 demonstrated how the optimum fil-
ter which maximizes the signal-to-noise ratio is a narrowband
filter at the maximum value of SK. Therefore the optimal cen-
tral frequency and bandwidth of the band-pass filter are found
as the values of f and ∆f which maximise the kurtogram.
The filtrated signal can be finally used to perform an envelope
analysis, which is a widely used technique for identification
of modulating frequencies related with bearing faults. In this
investigation the SK computation and the subsequent signal
filtration and envelope analysis was performed using original
Matlab code programmed by Jérôme Antoni.

This investigation assesses the merits of these three tech-
niques in identifying a natural degraded bearing under condi-
tions of relatively large background noise.

3. EXPERIMENTAL SET UP

The vibrational data used in this investigation was obtained
from a specially designed gearbox test rig. The gearbox type
employed is a part of the transmission driveline on the ac-
tuation mechanism of secondary control surfaces in civil air-
crafts. The bearing of this gearbox failed in an endurance test
at around 30% of its total expected life (around 3000 hours),
making it an ideal candidate for this investigation where fast
natural degradation of the bearing was needed. The rig was
built originally to identify the origin of premature failure in
order to modify the gearbox design. The acquired vibrational
signal was used in this investigation to find traces of the fault
during the early stages of degradation, which is an obvious ad-
vantage from a maintenance point of view.

This gearbox, whose basic cross section is shown in Fig. 4,
has two bevel gears with 17 teeth on each gear, generating a
transmission ratio of 1:1. Each gear is supported by two an-
gular contact bearings with 12 balls each and a contact angle
of 40◦, mounted in a back-to-back configuration. The main
dimensions of the bearing and the attached bearing defect fre-
quencies can be seen in Table 1 and Table 2 respectively. The
test rig was built trying to emulate the actual transmission sys-
tem used in the aircraft, and it is schematically represented in
Fig. 5. The transmission is driven by an electric motor with
a nominal speed of 710 rpm. An electric load motor placed
at the opposite side of the test rig was used to apply differ-
ent loads used during the experiment. In order to simulate the
actual loading conditions expected during the life of the gear-
boxes, the test rig was subjected to a mixture of seven different
types of flight load cycles derived from the actual flight data
and loads. These load cycles include the simulation of takeoff
and landing with different flap positions, ground maintenance,
etc. The expected bearing life for these loading conditions was
around 3000 hours. Figure 6 shows a typical type 3 load pro-
file, which was chosen as an illustrative example because it
contains several speed changes and the highest torque is ap-
plied in this particular load cycle. The loading conditions of
each cycle type applied are explained in Table 3, which spec-
ifies the number of times each cycle was applied during the
experiment for the expected bearing life, the duration of each
cycle, and the maximum torque applied in each case.

The experiment ran continuously for 24 hours a day over a
duration of 36 days, but at certain points during the test run the
rig was stopped for visual inspection for damage in the bear-
ings. The gearbox was always then reassembled and the se-
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Table 2. Main Defect Frequencies and Harmonics (Hz).

Harmonic 1X 2X 3X 4X 5X 6X
Shaft speed frequency (SS) 11.8 23.7 35.5 47.3 59.2 71
Gear mesh frequency (GM) 201.2 402 604 805 1006 1207

Inner race defect frequency(IRD) 83.2 166 250 333 416 499
Outer race defect frequency (ORD) 58.8 118 176 235 294 353

Cage defect frequency 4.9 9.8 14.7 19.6 24.5 29.4
Ball spin frequency 25.6 51.2 76.8 102 128 154

Rolling element defect frequency 51.2 102 154 205 256 307

Table 3. Load cycles characteristics summary.

Cycle type 1 2 3 4 5 6 7 8 9
Number of repetitions 18296 22869 4574 462 462 2200 6600 4620 41580during bearing life

Duration (sec) 131 131 131 350 42 71 268 52 52
Torque max. (Nm) 126.1 126.1 158.6 126.1 126.1 42.8 42.8 12.4 97.7

Figure 4. Gearbox Section.

Figure 5. Layout of the test rig.

quence continued. Figure 7 shows a detail of the bearing outer
race during a visual inspection undertaken one month after the
experiment started, covering 24% of the estimated bearing life.

Three accelerometers were mounted in the gearbox at lo-
cations identified in Fig. 4, two of them placed on the top of
the gearbox measuring acceleration in the vertical plane and a
third one placed on the casing measuring the acceleration in
the horizontal plane. The selected accelerometers (Omni In-
struments model RYD81D) had an operating frequency range
of 10 Hz to 10 kHz. These accelerometers were connected
to signal conditioners (model Endevco 2775A) that were at-

Table 1. Bearing Main Dimensions.

No. of rolling elements 12
Ball Diameter (Bd) 0.4063”
Contact Angle (Φ) 40◦

Pitch Diameter (Pd) 1.811”
Input Shaft Speed 710 rpm

Gear Teeth 17

Figure 6. Type 3 load cycle profile.

tached to an NI USB 6009 data acquisition device. This digital
data was filtered, windowed, and stored in the computer using
Dasylab version 10.0, and finally it was exported for its final
manipulation in Matlab R2010A. Other than the vibration data,
various parameters were monitored and stored at the same time
and with the same sampling frequency: angular position of the
input shaft, input and output torque, and shaft speed.

The experiment started running on 19 July 2010 and the
vibration measurements were taken on the 19 August 2010,
22 August 2010, and finally on 24 August 2010. For each mea-
surement case, a total 1,048,569 points were acquired at a sam-
pling rate of 5 kHz, which resulted in a measurement length of
approximately 3.5 minutes; sufficiently long to cover a whole
loading cycle. The stored data was then analysed, selecting
groups of 8,192 data samples in the region of constant speed
where maximum load was applied (Fig. 6). After a preliminary
data analysis it was decided to always use the signal acquired
by the third channel in the next steps of the analysis. This
signal comes from the accelerometer which measures acceler-
ation in the horizontal plane, and the characteristics found in
the signal spectrum were representative of what was observed
in the other channels.

The visibility of the main signal components is usually mea-
sured using the signal-to-noise ratio (SNR). This concept is
widely used in electronics to evaluate the performance of dif-
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Figure 7. Detail of bearing outer race after one month.

ferent electronic devices such as amplifiers or radio receivers
because it gives a measure of the signal quality. In those ap-
plications, the signal-to-noise ratio is calculated as the ratio
between the power of the signal and the power of the back-
ground noise. Another definition of SNR is the ratio between
the average amplitude of the main signal components µ, and
the standard deviation of the background noise σ, which is
equivalent to the reciprocal of the coefficient of variation.34

This alternative definition is used in those applications where
it is difficult to differentiate between the main signal and the
background noise such as image processing, and this defini-
tion was employed in this investigation. The average amplitude
of the main signal components was calculated in each case as
the average amplitude of the visible peaks associated with the
characteristic defect frequencies (Table 2), while the rest of the
components with significant lower amplitude were considered
as background noise. In order to estimate the average ampli-
tude of the main signal components, the amplitude attached
to each characteristic frequencies of the rig (Table 2) and its
harmonics, was calculated for each spectrum. Obviously, be-
cause not all the possible defects were present at all times, it
was necessary to determine whether there is a visible peak at
each of those defect frequencies or not for each measurement.
The assumption made was to consider main signal components
only those peaks whose amplitude in the spectrum is at least 3
times the average amplitude across the whole frequency range.
This average was calculated excluding the amplitudes related
with the defect frequencies. Using this procedure, it was pos-
sible to separate the main peaks in the spectrum attached to the
known defect frequencies and the rest of the components in
the spectrum, considered as background noise. According to
this definition, each case that studied the improvement in the
signal-to-noise ratio was measured as a percentage comparing
the SNR of the manipulated signal against the SNR of the raw
signal.

4. RESULTS OBTAINED

Once the experiment was carried out, the data acquired was
processed using the methodologies mentioned in Section 2.
The results obtained for each measurement are plotted in this
section with the following format:

Figure 8. Results obtained from the first observation (19/08/10)

a) Amplitude spectrum of the original signal

b) Amplitude spectrum of the signal obtained by LP

c) Amplitude spectrum of the signal obtained by SANC

d) Magnitude of the squared envelope of the signal obtained
by filtration in the frequency band of the maximum SK

The spectrums of the original signal and the signals obtained
by LP and SANC are represented twice. The left plot cor-
responds to the spectrum covering a frequency range of 0–
2500 Hz which contains the gear mesh components and its
harmonics. The right plot covers the region of 0–500 Hz,
where it is easier to identify the typical defect frequencies. The
available frequency range of the squared envelope of the sig-
nal obtained by filtration after the kurtosis analysis depends
on the filter parameters, different for each analysis. The kur-
tograms of the different observations and the main information
extracted taken can be seen in Annex 1.

4.1. First Observation (19/08/2010)
For this observation, the LP analysis (Fig. 8(b)) was per-

formed using 200 past samples for each prediction, and the
parameters selected for the self-adaptive filter (Fig. 8(c)) were:
delay ∆ = 100 samples, filter order H = 1000, and forgetting
factor µ = 0.00001. The maximum kurtosis found was 2.4, at
a frequency band centred in 2083.33 Hz and a bandwidth of
833.3 Hz.

4.2. Second Observation (22/08/2010)
For the second observation, the LP analysis (Fig. 9(b)) was

performed using 200 past samples for each prediction, and the
parameters selected for the self-adaptive filter (Fig. 9(c)) were:
delay ∆ = 500 samples, filter order H = 1000 and forgetting
factor µ = 0.00005. The maximum kurtosis found was 2.4 at
a frequency band centred in 2083.33 Hz and a bandwidth of
833.3 Hz.
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Figure 9. Results obtained from the second observation (22/08/10)

4.3. Third Observation (24/08/2010)
For the third observation, the LP analysis (Fig. 10(b)) was

performed using 200 past samples for each prediction, and
the parameters selected for the self-adaptive filter (Fig. 10(c))
were: delay ∆ = 500 samples, filter order H = 1000, and for-
getting factor µ = 0.0001. The maximum kurtosis found was
1.7, at a frequency band centred in 2083.33 Hz and a band-
width of 833.3 Hz.

5. RESULTS AND DISCUSSION

The first measurement (19/08/10, Fig. 8) was acquired one
month after the start of the experiment, which corresponds ap-
proximately to 24% of the expected bearing life. The spectrum
of the original signal is clearly dominated by the gear mesh
frequency (∼ 202 Hz) and its harmonics. However, looking
closely to the lower frequencies (the right column) it is pos-
sible to see a peak around 352 Hz, which is close to the 6th

harmonic of the outer race defect frequency (ORDF), but any
defect in the outer race at this point was ruled out by visual
inspection (see Fig. 7). The presence of this peak is attributed
to a natural frequency of the structure or a consequence of de-
formation due to the three-point clamping during grinding the
outer ring, and it will be present in all the stages of the ex-
periment. There is also a component at 300 Hz, which corre-
sponds to the 6th harmonic of the 50 Hz line frequency (LF).
This was corroborated by the fact that this peak appears even
for those analyses carried out using data from the load cycle
region where the motor speed was 0, indicating that this is a
parasite component coming from the electrical grid.

From the analysis and observations of Fig. 8, background
noise was reduced by LP and especially by SANC, increas-
ing clearly the signal-to-noise ratio compared with the original
signal, which are 2.6% and 42.9%, respectively (see Table 4),
and facilitating the identification of the different signal com-
ponents. The amplitude of the main peaks in the frequency
spectrum were also reduced in magnitude, but this is not sig-
nificant in terms of component identification because the signal

Figure 10. Results obtained from the third observation (24/08/10).

contains the same main components at a better signal-to-noise
ratio. No new peaks masked by the background noise were
identified. The envelope obtained after the signal filtration at
the maximum kurtosis frequency band shows clearly that the
signal is dominated by the gear mesh frequency, but at this mo-
ment it does not provide any information of an incipient fault
in the system.

The original spectrum of the second measurement taken
three days after the first one (see Fig. 9) shows more or less
the same components noted in the first observation, with the
difference being that there is a reduction in the amplitude of
the peaks, and the background noise is slightly lower. No new
signal components are identified by LP or SANC, despite the
fact that the background noise reduction is considerable, with
an improvement of the 14.4% and 16.5%, respectively, in the
signal-to-noise ratio in comparison with the original signal (see
Table 4). The most interesting result of this analysis is the sig-
nal envelope obtained after the filtration at the maximum kur-
tosis band: apart from the typical gear mesh frequency and
harmonics, it is possible to identify a new peak at the fre-
quency of 58.4 Hz, indicating an incipient fault in the outer
race of the bearing, in addition to sidebands around the gear
mesh frequency at 190.2 Hz and 214 Hz. The distance between
them and the gear mesh frequency is approximately 12 Hz, the
shaft speed. It is important to emphasize the fact that (d) in
Figs. 7, 8, and 9 represents the spectrum of the squared enve-
lope of the filtered signal, not the spectrum of the filtered signal
itself.

On 24 August 2010, the last data capture was performed
(see Fig. 10). The first observation to note is that the ampli-
tude of the different components is lower in this case. This is
due to the fact that this measurement was done during a loading
cycle type where the maximum transmitted torque was lower
(40 Nm) than in the previous measurements (125 Nm). Even
under these low torque conditions and despite the reduction
in amplitude, all previously noted peaks were evident in the
spectrum, in addition to a clear peak at 58.8 Hz, indicating
the defect in the outer race of the bearing. Moreover, several
sidebands around the harmonics of the gear mesh frequency,
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Figure 11. Bearing outer race degradation after 36 days.

Table 4. Maximum Kurtosis location.

Observation Method µ σ SNR

1

Original 0.2001 0.0190 10.5315
LP 0.1004 0.0093 10.8054

SANC 0.0612 0.0041 15.0496
SK 0.0570 0.0054 10.6368

2

Original 0.1304 0.0120 10.8667
LP 0.0701 0.0056 12.4314

SANC 0.0548 0.0043 12.6596
SK 0.0158 0.0014 11.1926

3

Original 0.0886 0.0087 10.18391
LP 0.0487 0.0040 12.1750

SANC 0.0353 0.0023 15.4082
SK 0.0081 0.0008 9.6747

separated by the shaft frequency, were noted, showing that
probably the bearing failure was causing a shaft misalignment,
which affected the gear mesh. The spectrum of the squared en-
velope showed the peak at 58.8 Hz and a second harmonic of it
at 117.9 Hz, indicating the fault in the outer race that was con-
firmed after by visual inspection of the component (Fig. 11).

6. CONCLUSION

This investigation shows the results of the application of
three different vibration-based analysis methodologies for
bearing diagnosis: LP, SANC, and SK together with envelope
analysis. These techniques are typically used for applications
where strong background noise masks the mechanical signa-
ture of a machine, making the identification of the fault source
challenging. This is the case of the experiment presented in
this investigation. LP, and particularly, the SANC showed its
capability to reduce the background noise and facilitate the
identification of the different components in the signal spec-
trum, but in this specific application they did not identify the
defect on a bearing earlier than the SK.

The latter technique demonstrated the ability to identify the
defect earlier than all other methods. This method is thus a
very powerful tool for the early detection of faults in bearings,
even for those applications where strong background noise
from other sources in the machine masks the characteristic
fault components in the frequency domain.
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ANNEX 1: INFORMATION PROVIDED BY
THE KURTOGRAM

Figure 12. Kurtograms of the different observations.

Table 5. Maximum Kurtosis location.

Observation Fc(Hz) ∆f (Hz) K max Frequency Band(Hz)
1 2083.33 833.3 2.4 1666.7-2500
2 2083.33 833.3 2.4 1666.7-2500
3 2083.33 833.3 1.7 1666.7-2500
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