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This paper describes the free vibration analysis of a rectangular duct by using the Rayleigh-Ritz method. Static
beam functions are used as admissible functions in the Rayleigh-Ritz method. These basis functions are the static
solutions of a point-supported beam under a series of sinusoidal loads. The unique advantage of using this method
is that it allows for the consideration of different axial boundary conditions of a duct. Computational results are
validated with existing literature data for a simply supported rectangular duct and the finite element method (FEM)
for other axial boundary conditions. A validated analytical model is used for generating natural frequency data
for different dimensions of rectangular ducts. Further curve fitting has been done for the generated data, and an
empirical relation has been presented to calculate the first fundamental natural frequency for different material
properties of ducts and different axial boundary conditions, which can be used for any dimensions of the duct
within the specified range.

1. INTRODUCTION

Heating, Ventilation, and Air Conditioning (HVAC) systems
extensively use ducts of different sizes and shapes that are con-
nected in series or in parallel for air-handling purposes. The
most prominent duct shapes are circular, rectangular, and el-
liptical. Noise generated from air handling units propagates
in the axial and transverse directions of a duct. Noise radi-
ated from ducts in the transverse direction is called breakout
noise. Rectangular ducts have the highest breakout noise com-
pared to a circular duct’s cross-section due to lower stiffness.
The breakout noise from these ducts has an impact at lower
frequencies. The coupling of acoustic duct modes and struc-
tural duct modes plays a critical role in generating noise in the
transverse direction. The first step in understanding structural-
acoustic coupling is to calculate the natural frequencies and
mode shapes of the structural components. The research in-
terest in this paper is the free vibration analysis of rectangular
ducts.

Different methods have been proposed in literature for free
vibration analysis of polygonal ducts. S. Azimi et al. and
G. Yamada et al. used the receptance method.1, 2 H. P. Lee
used the Rayleigh-Ritz method for calculating the natural fre-
quencies and the mode shape of cylindrical polygonal ducts, in
which sinusoidal functions are used as admissible functions.3

T. Irea, et al. used the transfer matrix method for free vibra-
tion analysis of prismatic shells.4 Sai Jagan Mohan et al. used
the Finite Element Method (FEM) to calculate the duct natural
frequencies and the mode shape.5 They used group theoret-
ical analysis to characterize duct modes. Existing literature
results have only considered simply supported boundary con-
ditions in the axial direction of the duct. According to current
research, there is no work reported for the other axial boundary
conditions. So in the present paper, the Rayleigh-Ritz method,
which is capable of considering different axial boundary con-
ditions, is used for calculating the natural frequencies of rect-
angular ducts.

A good amount of literature is available for the Rayleigh-

Ritz methods with different admissible functions. Selection of
proper admissible functions provides variation in the Rayleigh-
Ritz method. Admissible function varies based on applica-
tions like rectangular plates, rectangular plates with interme-
diate supports, etc. Zhou Ding used the Rayleigh-Ritz method
for natural frequency analysis of rectangular plates with a set of
static beam functions as admissible functions.6 D. Zhou et al.
used a set of static beam functions for free vibration analysis of
rectangular plates with intermediate supports.7 In the present
paper, rectangular ducts are modelled as unfolded plates with
rotational springs, and the creases are modelled as intermedi-
ate supports. The set of static beam functions are extended for
the rectangular ducts. In the Rayleigh-Ritz method, validity
and accuracy are entirely dependent on the choice of the ad-
missible functions.8 These static beam functions are the static
solutions of the point-supported beams under sinusoidal loads.

Calculated results from this method are validated with the
data from the literature and with the FEM results. The vali-
dated analytical model is used to generate the engineering data
for the rectangular ducts with different side ratios (height to
width or width to height of the duct) and with different aspect
ratios (perimeter of the duct cross section to length of the duct).
These ratios are taken as four-step values (0.25, 0.5, 0.75, and
1). Further curve fitting has been done for generated engineer-
ing data results, and an empirical relation has been developed
to calculate the first fundamental frequency. This empirical re-
lation can be used to calculate the first fundamental frequency
for any combination of an aspect ratio and a side ratio between
a range of 0.25 to 1 with a prediction accuracy of 95%.

Figure 1 shows the rectangular duct with dimensions of L1,
L2, and L3 in X , Y , and Z directions, respectively. The refer-
ence coordinate system is also shown in Fig. 1.

2. THE RAYLEIGH-RITZ METHOD

The main advantage of this present Rayleigh-Ritz method
with the static beam function as an admissible function is that

10 (pp. 10–14) International Journal of Acoustics and Vibration, Vol. 20, No. 1, 2015



P. N. Chavan, et al.: FREE VIBRATION ANALYSIS OF A RECTANGULAR DUCT WITH DIFFERENT AXIAL BOUNDARY

Figure 1. A schematic diagram of a rectangular duct.

Figure 2. An unfolded plate representation of a simply supported rectangular
duct.

it has the capability to choose boundary conditions in the axial
direction. The different axial boundary conditions considered
are Simple-Simple (S-S), Clamped-Clamped (C-C), Clamped-
Simple (C-S), and Clamped-Free (C-F).

Figure 2 shows the unfolded representation of the rectangu-
lar duct shown in Fig. 1. It consists of four flat plates connected
side-by-side with intermediate supports that are represented,
and the ends with torsional springs as shown in Fig. 2. Thus,
it can be approximated as a beam with three intermediate sup-
ports in the X1-direction and a simple supported beam in the
axial direction (Z-direction).

2.1. The Rayleigh-Ritz Approach
For the free vibration analysis of plate, the deflection w can

be expressed as

w(x, y, t) =W (x, y)eiωt; (1)

where ω is the eigenfrequency of plate vibration, t is the time,
and i =

√
−1. Assuming,

ξ = x/L; η = z/L3. (2)

The mod shape function W (ξ, η) can be expressed in terms of
the series function as follows,

W (ξ, η) =

∞∑
m=1

∞∑
n=1

Amnφm(ξ)ψn(η); (3)

where φm(ξ) and ψn(η) are the admissible functions in the
circumferential and axial directions, respectively. Amn are un-
known coefficients. By minimizing the total energy for thin
plates as follows

∂

∂Amn
(Umax − Tmax) = 0; (4)

Umax and Tmax are maximum potential and kinetic energies
for the thin plates obtained by using the vibration theory of

thin plates. Equation (4) leads to the eigenfrequency equation,
which is given as

∞∑
m=1

∞∑
n=1

[
Cmnij − λ2E(0,0)

mi F
(0,0)
nj

]
Amn = 0; (5)

where

Cmnij = E
(2,2)
mi F

(0,0)
nj + E

(0,0)
mi F

(2,2)
nj /γ4 +

ν
(
E

(0,2)
mi F

(2,0)
nj + E

(2,0)
mi F

(0,2)
nj /γ2

)
+

2(1− ν)
(
E

(1,1)
mi F

(1,1)
nj /γ2

)
;

λ2 = ρhω2L4
3/H;

γ = L/L3;

E
(r,s)
mi =

∫ 1

0

(drφm/dξ
r) (dsφi/dξ

s) dξ;

F
(r,s)
nj =

∫ 1

0

(drψn/dη
r) (dsψj/dη

s) dη; (6)

ρ = density, h = thickness, L = perimeter of rectangular duct,
and H = Eh3/(12 ∗ (1− ν2)).

As discussed, the validity and accuracy of the Rayleigh-Ritz
method entirely depends upon the choice of the admissible
function. The appropriate admissible function should at least
satisfy the geometrical boundary conditions and, if possible,
all the boundary conditions. In the presented method, these ad-
missible functions are taken as a set of static beam functions.
So,

φm(ξ) = ym(ξ);

ψn(η) = yn(η); (7)

ym(ξ) and yn(η) are the mth and nth static beam functions in
the X1 and Z directions, respectively. These functions satisfy
the geometrical boundary conditions and the zero deflection
condition at the line supports.

2.2. Static Beam Functions
The static beam functions for the rectangular plate with three

intermediate supports in X1-direction are given in the refer-
ences.7 The static beam function in the axial direction can be
considered as the deflection of a beam with end supports.6 The
deflection y(ξ) of the beam in the circumferential direction can
be written as

ym(ξ) =

3∑
k=0

Cmk ξ
k+

3∑
j=1

Pmj
(ξ − ξj)3

6
U(ξ−ξj)+sin(mπξ).

(8)
The deflection y(η) of the beam in the axial direction can be
written as

yn(η) =

3∑
k=0

Cnk η
k + sin(nπη); (9)

where Pmj (j = 1, 2, 3) and Cmk (k = 0, 1, 2, 3) are unknown
coefficients, and U(ξ − ξj) is a Heaviside function.

By observing Eqs. (8) and (9), the second series term is
missing in Eq. (9) because the plate has intermediate supports
in the circumferential direction and also continues in the axial
direction.

International Journal of Acoustics and Vibration, Vol. 20, No. 1, 2015 11



P. N. Chavan, et al.: FREE VIBRATION ANALYSIS OF A RECTANGULAR DUCT WITH DIFFERENT AXIAL BOUNDARY

The unknowns in Eqs. (8) and (9) can be uniquely decided
by using the boundary conditions and zero deflection condi-
tions at the intermediate supports. This can be written in the
matrix form as W (ξ, η) =

∑∞
m=1

∑∞
n=1Amnφm(ξ)ψn(η).[

A D
T G

] [
Cm

Pm

]
=

[
Rm

Sm

]
; (10)

where A is J × 4 matrix, T is 4 × 4 matrix, and they refer
to the first series terms of equations. D is J × J matrix, G is
4 × J matrix, and they refer to the second series terms of the
equation. Rm is J×1 matrix, Sn is 4×1 matrix, and they refer
to the third term of the equation for the boundary conditions of
the beam. Cm and Pm are unknown coefficient matrices as
follows:

Cm =
[
Cm0 Cm1 Cm2 Cm3

]T
;

Pm =
[
Pm1 Pm2 Pm3

]T
. (11)

Generally A, D and Ri matrices are given as

A =


1 ξ1 ξ21 ξ31
1 ξ2 ξ22 ξ32
...

...
...

...
1 ξJ ξ2J ξ3J

 ;

Rm =


− sin(mπξ1)
− sin(mπξ2)

...
− sin(mπξJ)

 ;

D =



0 0 0 · · · 0
(ξ2−ξ1)3

6 0 0 · · · 0
(ξ3−ξ1)3

6
(ξ3−ξ2)3

6 0 · · · 0
...

...
...

...
...

(ξJ−ξ1)3
6

(ξJ−ξ2)3
6 · · · (ξJ−ξJ−1)

3

6 0

 ; (12)

where J is the number of intermediate supports that are three
in the circumferential direction and zero in the axial direction.
So in the axial direction the matrices A, D, G, Rm, and Pm

will be zero.
Clamped, simply supported, and free-boundary conditions

are denoted by C, S, and F. The elements of the matrices T,
G, and Si according to the boundary conditions of the beam
are

• T11 = T22 = 1, Sn2 = −nπ for the beam with C as the
left end;

• T11 = 1, T23 = 2 for the beam with S as the left end;

• T13 = 2, T24 = 6, Sn2 = (nπ)2 for the beam with F as
the left end;

• T31 = T32 = T33 = T34 = 1, T42 = 1, T43 = 3,
G3j = (1−ξj)3/6,G4j = (1−ξj)2/2, Sn4 = −nπ(−1)n
for the beam with C as the right end;

• T31 = T32 = T33 = T34 = 1, T43 = 2, T44 = 6,
G3j = (1− ξj)3/6, G4j = 1− ξj for the beam with S as
the right end;

• T33 = 2, T34 = 6, T44 = 6, G3j = 1 − ξj , G4j = 1,
Sn4 = (nπ)3(−1)n for the beam with F as the right end.

Table 1. Comparison of the first five natural frequencies of a rectangular duct
with S-S boundary conditions.

Sr. No. Static Beam Lee Paper3 Transfer Matrix FEM
Method Results Method Results

1 97.97 97.97 97.87 97.87
2 113.16 113.16 113.04 113.03
3 129.81 129.82 125.47 126.81
4 138.76 138.76 138.62 138.59
5 141.41 141.41 140.05 139.88

Table 2. Comparison of the first five natural frequencies of a rectangular duct
with C-C boundary conditions.

Sr. No. Static Beam Method FEM Results
1 99.27 99.16
2 117.98 117.79
3 130.79 128.32
4 145.27 143.93
5 148.43 148.19

Table 3. Comparison of the first five natural frequencies of a rectangular duct
with C-S boundary conditions.

Sr. No. Static Beam Method FEM Results
1 98.57 98.46
2 115.39 115.24
3 130.26 127.53
4 143.19 141.76
5 143.34 143.11

Table 4. Comparison of the first five natural frequencies of a rectangular duct
with C-F boundary conditions.

Sr. No. Static Beam Method FEM Results
1 94.15 93.65
2 104.69 104.30
3 125.83 125.18
4 127.45 —
5 135.32 132.10

3. RESULTS AND DISCUSSIONS

To illustrate the validity and the accuracy of the methods,
some numerical results have been presented and compared
with the literature results and the FEM results. Lack of litera-
ture data for other than simply supported axial boundary condi-
tions motivates validation with the results from the FEM anal-
ysis. Typical dimensions of duct and material properties used
in the calculation are L1 = 0.4 m, L2 = 0.3 m, L3 = 1.5 m,
and the thickness h = 0.005 m. The material properties are:
Young’s modulus E = 71 GPa, Poisson’s ratio ν = 0.29, and
density ρ = 2770 kg/m3.

Tables 1 to 4 consist of comparisons of the natural frequency
for a simple supported rectangular duct with aluminium mate-
rials. Table 1 shows the results comparison of different meth-
ods for an aluminium rectangular duct. As mentioned earlier,
the Rayleigh-Ritz method with static beam functions as ad-
missible functions is capable of incorporating other boundary
conditions. These results are compared with the FEM analysis
results. Tables 2, 3, and 4 show a comparison of the results
for the different boundary conditions like C-C, C-S, and C-F,
respectively for the aluminium rectangular duct.

FEM analysis has been carried out using commercial soft-
ware (ANSYS),9 in which shell elements are used with 30 el-
ements per side. The Block Lanczos modal analysis scheme is
used for calculating natural frequencies.

Results for the S-S axial boundary conditions are compared
with the Lee paper, which also uses the Rayleigh-Ritz method
but with different admissible functions.3 The values match ex-
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Figure 3. Mode shapes for the 1st, 3rd, 6th, and 8th natural frequencies of a
rectangular duct with S-S boundary conditions.

actly with the values given by the present method (can be seen
from first two columns of Table 1). The results are also com-
pared with the transfer matrix method and the FEM results.
The error observed is less than 5%. So a good amount of ac-
curacy can be seen within these results. The same thing can be
observed for the other axial boundary conditions. Results are
shown in Tables 2, 3, and 4. The mode shapes are plotted and
are shown in Fig. 3. Dominantly, the symmetric-symmetric
(S-S) and symmetric-antisymmetric (S-AS) modes can be ob-
served at the first few frequencies, and the antisymmetric-
antisymmetric (AS-AS) modes can be observed at higher fre-
quencies.

3.1. Engineering Data
Now this validated analytical model is used to generate val-

ues of a non-dimensional frequency parameter (λ) for different
standard dimensions of the rectangular ducts. The dimensions
of the ducts are divided into two ratios, one is a side ratio rep-

Table 5. The non-dimensional frequency parameter (λ) for the S-S axial
boundary condition.

Mode no. S1 ↓ \ S → 0.25 0.5 0.75 1
1 1678.81 424.56 192.37 111.19
2 0.25 1698.35 444.75 213.57 130.32
3 1731.41 480.53 227.03 133.55
4 1779.04 503.55 245.79 150.33
1 2066.62 522.62 236.72 136.69
2 0.5 2090.51 546.78 261.36 161.90
3 2130.53 588.06 295.12 168.77
4 2187.11 647.61 304.25 189.31
1 2409.82 609.41 276.02 159.34
2 0.75 2437.71 637.34 304.05 187.50
3 2484.11 684.12 351.20 211.54
4 2549.40 750.01 370.74 233.18
1 2536.54 641.52 290.61 167.78
2 1 2566.14 671.13 320.21 197.39
3 2615.41 720.48 369.56 246.74
4 2684.52 789.57 438.65 254.14

Table 6. The non-dimensional frequency parameter (λ) for the C-C axial
boundary condition.

Mode no. S1 ↓ \ S → 0.25 0.5 0.75 1
1 1679.71 426.02 194.49 114.12
2 0.25 1701.64 450.18 221.69 132.86
3 1739.22 492.66 228.86 144.41
4 1790.91 504.81 252.95 160.12
1 2067.81 524.15 238.81 139.48
2 0.5 2094.34 552.26 269.08 171.01
3 2139.32 600.20 296.77 171.96
4 2200.11 657.45 320.45 197.92
1 2411.15 611.05 278.14 162.07
2 0.75 2441.91 643.01 311.65 197.15
3 2494.03 696.64 367.04 213.58
4 2563.62 769.22 372.31 240.96
1 2537.91 643.21 292.76 170.52
2 1 2570.52 676.93 327.85 206.98
3 2625.82 733.28 385.44 256.09
4 2699.31 808.97 447.52 261.29

resented by ‘S1.’ The other one is an aspect ratio represented
by ‘S.’ The non-dimensional frequency (λ) values have been
given for the different combinations of these ratios. The ratios
used are 0.25, 0.5, 0.75, and 1. According to the dimension of
the duct, one has to decide both of the ratios, then, from the ta-
ble, select the appropriate λ value for the combination of these
ratios. Eq. (13) can be used to calculate the natural frequencies
in Hz from this non-dimensional value. This non-dimensional
frequency parameter is independent of the material properties
except for the Poisson’s ratio, which is used as 0.29 to generate
these values. Frequency (f ) in Hz is given by

f =
λ

2π × L2
3

√
Eh2

12ρ (1− ν2)
; (13)

where L3 and h are the length and thickness of the duct, re-
spectively, and E, ρ, and ν are Young’s modulus, density, and
Poisson’s ratio, respectively.

Tables 5 to 8 contain the values of λ for the first four natural
frequencies of the rectangular duct. This data is generated for
different combinations of aspect ratios and side ratios and also
for different axial boundary conditions like S-S, C-C, C-S, and
C-F, respectively.

3.2. Empirical Relation
In the above section, the non-dimensional frequency param-

eter (λ) has been given for different duct geometry dimensions,
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Table 7. The non-dimensional frequency parameter (λ) for the C-S axial
boundary condition.

Mode no. S1 ↓ \ S → 0.25 0.5 0.75 1
1 1679.23 425.22 193.32 112.46
2 0.25 1700.02 447.36 217.33 131.43
3 1735.07 486.24 227.84 138.50
4 1784.83 504.12 249.11 154.78
1 2067.24 523.31 237.67 137.93
2 0.5 2092.51 549.47 265.01 166.55
3 2134.62 593.78 295.86 169.76
4 2193.55 656.79 311.88 193.27
1 2410.47 610.15 276.98 160.56
2 0.75 2439.91 640.18 307.70 192.02
3 2488.83 690.04 358.68 212.45
4 2556.35 759.26 371.44 236.80
1 2537.11 642.28 291.58 169.01
2 1 2568.42 674.05 323.90 201.91
3 2620.36 726.50 377.07 255.02
4 2691.81 798.94 446.67 255.68

Table 8. The non-dimensional frequency parameter (λ) for the C-F axial
boundary condition.

Mode no. S1 ↓ \ S → 0.25 0.5 0.75 1
1 1673.84 419.56 187.35 106.12
2 0.25 1687.01 433.38 201.87 121.26
3 1714.45 462.46 222.62 125.87
4 1777.71 499.18 232.96 139.24
1 2060.52 516.49 230.60 130.58
2 0.5 2076.94 533.24 247.76 148.15
3 2109.71 567.12 282.94 164.01
4 2152.16 616.66 290.38 177.96
1 2402.53 602.24 268.88 152.23
2 0.75 2419.63 621.66 288.55 172.15
3 2450.82 660.51 327.82 206.34
4 2506.91 719.04 365.55 211.42
1 2528.80 633.90 283.02 160.24
2 1 2549.34 654.50 303.83 181.26
3 2590.37 695.72 345.11 222.43
4 2651.32 756.99 407.09 248.42

Table 9. Values of constant ‘λ0’ in an empirical Equation (14).

Axial boundary condition Value of constant
S-S 169
C-C 171.5
C-S 170
C-F 165

from which one can calculate the first four natural frequencies
directly for standard-dimension ducts. In this section, the em-
pirical relation has been presented, which will be useful to get
the non-dimensional frequency parameter (λ) for any combina-
tion of aspect ratios between 0.25 to 1 and side ratios between
0.25 to 1. This empirical relation has been formed by perform-
ing curve fitting for the above generated data. The empirical
relation is of the form

λ = λ0 × S−1.96 × S0.31
1 ; (14)

where λ0 is constant, which depends on the axial boundary
condition. Table 9 represents the values of constant ‘λ0’ for
different cases.

This empirical relation is useful for calculating the first fun-
damental frequency of a rectangular duct with different axial
boundary conditions.

4. CONCLUSIONS

Free vibration analysis of rectangular ducts with different
axial boundary conditions is important for understanding the

vibration behaviour of these ducts in HVAC systems. A pro-
cedure is developed to calculate natural frequencies and mode
shapes of a rectangular duct with different axial boundary con-
ditions based on the Rayleigh-Ritz method. The Rayleigh-Ritz
method, with a set of static beam admissible functions, has
been used to consider different axial boundary conditions. This
is one of the distinct advantages of using the proposed method.
The results have been presented for the typical rectangular-
duct dimensions. Proposed model results are validated through
comparison of the known values in the literature and the results
from the FEM method. Results are in agreement with accu-
racy more than 95%. This validated analytical model has been
used to generate the engineering data, which will help engi-
neers calculate the first four natural frequencies for different
rectangular-duct dimensions. The empirical relation has been
proposed based on engineering data. It will be helpful to cal-
culate the first fundamental frequency of a rectangular duct for
any combination of aspect ratios and side ratios in the range of
0.25 to 1 and also for different axial boundary conditions.
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