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Editor’s Space

Challenges in the Design of Quiet Marine Propellers

Ship propellers have been at the

forefront of acoustical design chal-

lenges for more than a century. Before aircraft dominated the

passenger routes between continents, people had to be trans-

ported by ship. The factors that influence propeller noise and

vibration were poorly understood and paying passengers had

to be positioned a long way from intense propeller acoustical

sources. The same could not be said of the crew, who had to en-

dure noise and vibration near the stern that would nowadays be

regarded as horrendous. The speeds of the fastest ocean liners,

such as SS Mauretania, were over 25 knots before 1910. The

faster they went, the more intense the propeller noise sources

became. Ocean liners declined in numbers when air travel be-

came affordable, only to be replaced by cruise ships and ferries

of ever-increasing size. Operators now have to be concerned

with ship impact on marine wildlife as well as with passen-

gers who have reducing tolerance for noise and vibration. The

acoustical design of ship propellers is again a front-line chal-

lenge.

The big problem in surface ships is cavitation, where the

pressure in the flow over the rotating propeller drops below

the vapour pressure of water. The propeller operates in the

turbulent ship wake, so each blade experiences changes in an-

gle of attack as it rotates and regions of cavitation wax and

wane. The formation and collapse of cavitation volumes with

many different length scales causes pressure fluctuations over

a wide frequency spectrum, supplemented by nearly-periodic

components at multiples of propeller blade passing frequency.

The tip vortex usually cavitates first, because it develops in

the region of highest flow speed. When it occurs, the under-

water noise can increase by 5 dB or more for a one knot in-

crease in speed. Overall noise then increases progressively

with speed, with changes in the spectral shape that bias the

content to lower frequencies. The maximum speed of a surface

ship is often more than twice the speed at which cavitation first

appears. The problem of propeller design for low cavitation

noise is further complicated by the need to operate in different

sea states with varying displacement, while hull fouling can

itself increase the required thrust by 50% or even more.

Naval surface ships and submarines require better knowl-

edge of the acoustical properties of propellers, since under-

water radiated noise is the principal means of detection. The

ability of sonar systems to detect other vessels depends criti-

cally on levels of “self-noise” which tend to be governed by

the propellers over much of the speed range. The ship speed at

which cavitation first occurs often imposes an upper limit on

the speed at which search operations can be carried out. When

a submarine is operating at depth, cavitation is suppressed by

static water pressure, but that is not the end of the problem.

The sound power radiated by a propeller increases rapidly

with speed. The precise rate of change depends on the com-

bination of noise generation mechanisms. Many sources are

dipole-like, with frequencies proportional to speed and fluc-

tuating force levels that are proportional to speed squared, so

the sound power increases as the sixth power of speed. Other

sources, such as those associated with the flow of turbulence

over propeller blade trailing edges, increase at the fifth power

of speed. Submarine hulls and propellers have to be designed

to ensure that the intensity of those sources is controlled to

match underwater noise requirements. Factors such as the pro-

peller diameter, the number of propeller blades, the shaft speed

and the radial distribution of load are all important.

Below cavitation inception, the phenomena that control ship

propeller noise can be explored using aeroacoustic technology,

with wind tunnels for experimental investigation. Reynolds,

Mach and Strouhal numbers are key parameters. The entry

flow into the propeller can be simulated in experiments, but not

the free surface of the sea. It is however possible to examine

the effect of the air/water interface by introducing a notional

“pressure release surface” that reflects sound emanating from

the propeller. This leads to so-called Lloyds Mirror effects,

where the reflected sound interferes with the direct radiation

below the surface of the sea.

The experimental and theoretical problems become even

more demanding when cavitation is present. The cavitation

number then becomes a key parameter. However the very dif-

ferent physical properties of air and water make it impossible

to match values of Reynolds number and cavitation number at
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Editor’s Space
the same time, never mind the Froude number that governs

free surface effects. One of several added complications is

the effect of air content on cavitation. Cavitation test facili-

ties are expensive to build and run, but they remain essential

for propeller evaluation. The flow over the complete hull and

the wake field at entry to the propeller can be simulated, albeit

at a reduced Reynolds number. Even a 1/20 scale model of a

300 m long ship requires a large facility, but the Reynolds num-

ber is still two orders of magnitude too low for exact scaling.

The main complication is in the scaling of tip vortex cavita-

tion, where the reduced model-scale Reynolds number causes

an increase in the effects of viscosity and delays cavitation in-

ception to higher speeds. Results are corrected to full-scale us-

ing the McCormick index, established for a given test facility

by comparing model-scale predictions with full-scale results.

Close correlation between visible cavitation at model and

full scale has been achieved, but another large step is required

to predict spectra of underwater noise radiation. The principal

focus has been on the fluctuating pressure field on the hull sur-

face in the frequency range up to 100 Hz at full scale, because

vibration velocity in this frequency range is a key determinant

of passenger comfort. Computational fluid dynamics (CFD)

techniques can, in principle, be used to predict propeller noise

as well as fluid flow. Progress is being made, but fundamen-

tal studies of propeller noise generation mechanisms, with and

without cavitation, are still essential. Cavitation test facilities

and empirical data will not be replaced easily by computer sim-

ulation.

Roger Kinns
Senior Visiting Research Fellow
School of Mechanical and Manufacturing Engineering
UNSW Australia

Leo Beranek’s 100th Anniversary

The officers, directors and members of the International In-

stitute of Acoustics (IIAV) are honored to recognize one of

the giants of acoustics, noise and vibration in our time, Dr.

Leo Beranek. He celebrated his 100th birthday on September

15, 2014. Leo Beranek has made so many scientific contri-

butions that they are almost too many to count, but include

numerous ones concerning psychoacoustics, community noise

assessment and concert hall acoustics. An excellent summary

of his contributions is provided in the Fall 2014 issue (Volume

10, Issue 4) of Acoustics Today published by the Acoustical

Society of America. Dr. Beranek’s autobiography Riding the

Waves published in 2008 by The MIT Press and reviewed in

the March 2008 issue of this journal (Volume 13, Issue 1) pro-

vides spell-binding insight into his many lifetime contributions

and achievements. To recognize Dr. Beranek’s contributions

in acoustics, noise and vibration, Leo Beranek was named as

Honorary Fellow by our Institute in the year 2000 and was

given the award at the 7th International Congress on Sound

and Vibration (ICSV7) in Garmisch-Partenkirchen, Germany

at which he presented a special lecture.

Malcolm J. Crocker,
Executive Director, IIAV
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Adaptive Resonant Vibration Control
of a Piezoelectric Flexible Plate Implementing
Filtered-X LMS Algorithm
Zhi-cheng Qiu and Biao Ma
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641,
PR China

(Received 3 July 2013; revised: 15 November 2013; accepted: 2 December 2013)

Vibration in aerospace structures can lead to structural damage. To solve this problem, the implementation of active
vibration control must be considered. This paper investigates active vibration control under the persistent resonant
excitation of a clamped-clamped piezoelectric plate system. The finite element method (FEM) and ANSYS modal
analysis methods are utilized to obtain the dynamics model and mode shapes of the plate. A two-norm criterion is
used for optimal placement of piezoelectric sensors and actuators, taking into account the non-controlled modes to
reduce spillover problems. A genetic algorithm (GA) is used to search the optimal locations of actuators/sensors.
Then, a proportional derivative (PD) control algorithm and a filtered-X least mean square (filtered-X LMS) feed-
forward control algorithm are designed for the system. Subsequently, numerical simulations with optimal place-
ment of actuators and sensors are carried out to compare the performance of the controllers. Finally, experiments
are conducted. The experimental results demonstrate that the designed filtered-X LMS control algorithms can
suppress the resonant vibration better than that of the PD control.

1. INTRODUCTION

Flexible structures are widely used in industrial applications
and aerospace structures.1, 2 Flexible structures have the advan-
tages of light weight and low energy consumption. Nowadays
flexible space structures are developing towards the direction
of large scale, flexibility, and low stiffness. However, vibra-
tion is easily caused by external disturbance due to the low
stiffness and small damping of the material.3, 4 Moreover, a
dynamic aeroelastic instability phenomenon results from the
interactions between motions of an aircraft panel and aerody-
namic loads exerted on that panel by air flowing past one of the
faces, which is called panel flutter.5, 6 Vibration and flutter will
lead to unwanted displacements, positioning errors, and even
worse, lead to the destructive damage of the structure.2 Espe-
cially, when the structure vibrates at its resonance frequencies,
the structural working life will be greatly shortened. There-
fore, active vibration control must be applied to guarantee the
normal working of flexible structures.

The vibration problem has motivated a huge amount of re-
search in the vibration control of flexible structures, and a great
amount of work has been conducted in the field of smart struc-
tures by many researchers. Forward first used the piezoelectric
ceramics in the vibration control of an end-supported mast.7

Bailey and Hubbard designed an active vibration damper for a
cantilever beam using polyvinylidene fluoride (PVDF) film as
a distributed-parameter actuator.8 An optimal control design is
presented by Zhou et al. to actively suppress large-amplitude,
limited-cycle flutter motions of rectangular isotropic plates at
supersonic speeds using piezoelectric actuators.6 The results
demonstrate that the piezoelectric materials show good perfor-
mance in panel flutter suppression. Li used the piezoelectric
material to improve the flutter characteristics of the supersonic
plates.9 The numerical results showed that the aeroelastic flut-
ter properties can be greatly improved by introducing active

stiffness and active mass into the supersonic plate with piezo-
electric patches.

At present, researches on vibration control mainly lie in
modelling methods of the mathematical model, optimal place-
ment of actuators/sensors, and control algorithms.10–12 The
locations of the actuators/sensors have a significant influence
on the performance of the control system. Misplaced actu-
ators/sensors may lead to problems such as lack of observ-
ability and controllability. Researchers have used many op-
timization criteria and techniques to find the optimal loca-
tion of actuators/sensors. Arbel first proposed the concept of
controllability/observability in the optimal placement of actu-
ators/sensors.13 Bruant and Proslier proposed a modified op-
timization criterion in consideration of the spillover effects.14

Some researchers have also suggested other optimization cri-
terion based on H2 or H∞ norms.15–17 There are also many
other optimization criterion such as the minimization of the
linear quadratic regulator cost18 and the maximization of the
harvested strain energy in piezoceramic materials.19 In addi-
tion, the genetic algorithm (GA) has been extensively used in
finding the optimal places of the actuators/sensors.20, 21

There are many control algorithms utilized to suppress the
vibration of flexible structures. Warminski et al. studied four
types of control algorithms for the vibration suppression of a
large, flexible composite beam structure.22 Shin et al. de-
signed an acceleration feedback (AF) controller for a clamped-
clamped beam.23 Lin and Liu presented a novel resonant fuzzy
logic controller (FLC) to minimize structural vibration using
collocated piezoelectric actuator/sensor pairs.24 The experi-
mental results demonstrated the effectiveness of the FLC in
active vibration control. Qiu et al. studied a kind of discrete-
time sliding mode variable structure control (VSC) algorithm
to suppress vibration of a flexible plate.25 The experiments
demonstrated that the proposed control algorithm is feasible
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and efficient in active vibration control. Time delay exists in
active control systems, instability may occur if the time delay
is neglected in controller design. Kun et al. presented a theo-
retical and experimental study of the delayed positive feedback
control technique using a flexible plate as the research object.26

Tong et al. designed an H∞ time-delay controller for a flexi-
ble plate.27 The feasibility and effectiveness of the time-delay
controller are demonstrated by numerical simulations and ex-
periments. Ji et al. proposed an adaptive semi-active SSDV
(Synchronized Switch Damping on Voltage) method based on
the LMS algorithm and applied the algorithm to the vibration
control of a composite beam.28

Currently, adaptive control methods in active vibration and
noise are widely used. The adaptive feed-forward control al-
gorithm29 is widely used in active resonance vibration con-
trol under persistent excitation, which was first presented by
Widrow and Stearns.30 A reference signal is needed in the
operation process of a filtered-X LMS algorithm. Unfortu-
nately, it is hard to get in a practical application. Model er-
rors of the control path may lead to unstable systems or an
increased signal error. However, the algorithm is particularly
effective in suppressing harmonic vibration and is easy to be
realized despite the above-mentioned shortcomings. Anderson
and How applied the combined filtered-X LMS feed-forward
and feedback control algorithm to the spacecraft vibration iso-
lation platform.31 Zhu et al. used the multi-input multi-output
(MIMO) filtered-U least mean square (filtered-U LMS) algo-
rithm to control the vibration of a cantilever smart beam.32

Ma implemented a novel adaptive filtering algorithm in a can-
tilever beam bonded with piezoelectric patches and compared
with the least mean square algorithm; satisfactory vibration re-
duction was achieved in different situations.33 Carra et al. ap-
plied the filtered-X LMS algorithm in a rectangular aluminium
plate vibrating in air or in contact with water.34 Satisfactory
reductions of the error signals were obtained in the experi-
ments in the case of an empty tank. The control action pro-
duced lower effects while introducing water to the tank. Oh
et al. presented the active vibration control of a flexible can-
tilever beam using one piezoceramic actuator bonded on the
beam and an adaptive controller based on the filtered-X LMS
algorithm.35 The control results indicated that a considerable
vibration reduction could be achieved in a few seconds. The
performance of the filtered-X LMS algorithm for suppressing
wing vibration and flutter was investigated by Carnahan and
Richards.36 The control method showed good performance in
suppressing wing vibration and flutter.

In industrial applications, it is hard to get an accurate dy-
namical model of controlled systems. Both the filtered-X LMS
and the filtered-U LMS control algorithms are effective in sup-
pressing the vibration of these systems. Das et al. proposed a
new virtual FXLMS algorithm for a virtual microphone.37 The
comparison of the FXLMS algorithm with FULMS is theoret-
ically analysed and experimentally validated using a cantilever
beam by Huang et al.38 The difference between the two algo-
rithms mainly lies in the structure of the filters. The filtered-X
LMS algorithm is based on the finite impulse response (FIR)
filter; while the filtered-U LMS algorithm is based on the infi-
nite impulse response (IIR) filter. The influence on the refer-
ence signal caused by control output feedback will be reflected
by poles in transfer function. Since the transfer function of the
FIR filter is a full zeros expression, the FIR filter could not

eliminate the influence to the reference signal caused by con-
trol output feedback. Therefore, the FIR model is suitable for
the adaptive filtering feed-forward control method. Compared
with the FIR filter, the IIR filter with zeros and poles could
compensate the feedback effect.

The filtered-X LMS algorithm has the merits of a high-
controlling correction rate, good robustness to uncertainties,
and fast speed of tracking external disturbance. Moreover,
this algorithm is easy to implement with its simple structure.
Therefore, it is suitable to implement the filtered-X LMS al-
gorithm to the clamped-clamped piezoelectric plate system in
this paper. However, the interference source in the filtered-X
LMS is supposed to be measurable and used as the reference
signal, and this is not unrealistic in some applications. As a
comparison, the filtered-U LMS control algorithm is more suit-
able for applications in which the interference source cannot be
measured directly. It has better convergence and control per-
formance than the filtered-X LMS algorithm when feedback
is present. The control performance for the clamped-clamped
plate of the filtered-U LMS control algorithm will be studied
in our future work for comparison with the filtered-X LMS al-
gorithm.

This paper aims at suppressing the resonance vibration of
a clamped-clamped plate under resonant sinusoidal excitation.
Optimal placement of the actuators and sensors is processed
based on the finite element mathematical model using an H2

norm criterion. Then the PD controller and filtered-X LMS
controller are designed. Both simulations and experiments are
carried out to compare the performance of the two designed
control algorithms.

The contributions of this paper are as follows: (a) the model
of a piezoelectric clamped-clamped plate used to simulate
panel flutter analysis is obtained by FEM. The FEM model
is used for the optimization of piezoelectric sensors/actuators
and simulations of control algorithms. (b) A kind of actua-
tors/sensors optimal placement method based on the genetic al-
gorithm is investigated. The waste time for searching the opti-
mal positions is very short when the index of the maximal con-
trolled modes and the index of minimal non-controlled modes
are obtained. (c) Simulations and experiments are conducted
to validate the effectiveness of the filtered-X LMS controller in
suppressing the resonant vibration of a clamped-clamped plate
under persistent excitation. A PD controller is also designed
as a comparison. The results show that both the designed
controllers could suppress resonant vibration effectively; the
filtered-X LMS controller shows a better performance.

The rest of the paper is organized as follows. In Section 2,
the finite element model of a clamped-clamped plate bonded
with piezoelectric actuators and sensors is derived. In Sec-
tion 3, the optimal criterion used for the placement of the ac-
tuators and sensors and the GA used for searching for a glob-
ally optimal solution are described. A numerical simulation
of a clamped-clamped plate is performed. In Section 4, the
filtered-X LMS control algorithm is employed. The numerical
simulation results of PD control and filtered-X LMS control
are provided. In Section 5, a clamped-clamped plate setup is
constructed. Experiments are conducted by using the designed
PD control and the filtered-X LMS control algorithms. Finally,
the conclusion is drawn in Section 6.
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Figure 1. Three-dimensional model and schematic diagram of the system.

2. SYSTEM DESCRIPTION AND FINITE
ELEMENT MODELLING

2.1. Description of a Clamped-Clamped
Flexible Plate System

Figure 1 shows the three-dimensional model and the
schematic diagram of the system. It should be emphasized
that the PZT actuators/sensors are glued after the optimiza-
tion analysis in Section 3.3. Furthermore, PZT actuators are
surface-bonded symmetrically on the top and bottom surfaces
of the plate. The working principle of the system can be de-
scribed as follows. Firstly, the disturbance is measured by the
PZT sensor in the control side. The signal from the sensor is
converted into the voltage signal by using a charge amplifier.
Through an A/D converter circuit, the analogue signal is trans-
formed to the digital signal and then transferred into the ARM
controller. The ARM controller will transmit the signal to the
computer. By running the algorithm, the computer calculates a
control output, which will be sent to the ARM controller, D/A
converter, and PZT drive power supply in sequence.

A four-node rectangular element is used to build up the
model of the system. The element meshing and node are num-
bered for the clamped-clamped plate, as shown in Fig. 2. The
plate is modelled using the finite element method (FEM). It is
discretized by using a four-node rectangular element based on
the Kirchhoff plate theory. Each node has three degrees of free-
dom, corresponding to the transverse displacement w, rotation
angles θx = ∂w/∂y and θy = −∂w/∂x.

2.2. Piezoelectric Plate Model Derived by
using FEM

Since the investigated piezoelectric clamped-clamped flexi-
ble plate is excited by PZT actuators, there is no external force
applied to the plate system in the present case. The element
dynamics equation is

mq̈e + kqe = kave · V ae + kavc · V ac; (1)

where m is the mass matrix of a piezoelectric plate element;
k is the stiffness matrix of a piezoelectric plate element; V ae

is the excited voltage applied to the PZT actuator used for ex-
citation; V ac is the control voltage applied to the PZT actuator
used for control; kave and kavc are the coefficient vectors of the
internal excitation force and control force, respectively.

From the element meshing and node numbering of the
clamped-clamped plate illustrated in Fig. 2, the plate is divided
into 816 elements. There are 25 nodes in the length direction
and 35 nodes in the width direction. Each node has three de-
grees of freedom. As shown in Fig. 2, the boundary condition
of the plate is clamped-free-clamped-free (CFCF). By apply-
ing the boundary condition to the plate system, one should con-
strain all the degrees of freedom of nodes on the two edges of
the plate along the Y direction, i.e., nodes from 1 to 35 and
841 to 875 are constrained.

Assembling all the plate elements and the piezoelectric ele-
ments under the consideration of the boundary condition, one
can obtain the dynamics equation of the piezoelectric clamped-
clamped plate as

Mq̈ + Cq̇ + Kq = FAE + FAC; (2)
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Figure 2. Element meshing and node numbering for a clamped-clamped plate.

where M ∈ R2415×2415 and K ∈ R2415×2415 are the global
mass matrix and stiffness matrix, respectively; q ∈ R2415×1

is the general coordinate vector; FAE ∈ R2415×1 and FAC ∈
R2415×1 are the excitation force and control force vectors, re-
spectively; C ∈ R2415×2415 is the damping matrix; C =
αM+βK, α and β are the Rayleigh mass and stiffness damp-
ing constants, respectively.

After assembling, the output voltage vector of the sensors
can be expressed as

Y(t) = Ksvq̇; (3)

where Y(t) =
{
Y1(t) Y2(t) . . . Yns(t)

}T
, the subscript

ns denotes the number of sensors; Ksv is the coefficient matrix
of piezoelectric sensors.

2.3. Modal Transformation and State Space
Formulation

Using a modal transformation method, the coupled equation
will become the decoupled one to simplify the analysis. The
transformation relation is

q = Φη; (4)

where Φ is the modal matrix, and η is the modal displacement
vector.

Substituting Eq. (4) into Eq. (2) and Eq. (3), yields

Mη̈ + Cη̇ + Kη = FAE + FAC; (5)

and
Y(t) = KsvΦη̇; (6)

where M = ΦTMΦ, K = ΦTKΦ, C = ΦTCΦ are diago-
nal matrices corresponding to the mass, stiffness, and damping
matrices, respectively; FAE = ΦTFAE and FAC = ΦTFAC
are the generalized excitation force vector and the generalized
control force vector, respectively.

Equation (5) and Eq. (6) can be written as the state space
representation as{

Ẋ = AX + Bff + BuU

Y = CX
; (7)

where X=

[
η
η̇

]
is the state vector; A=

[
0 I

−M
−1

K −M
−1

C

]
is the system matrix; Bf =

[
0

M
−1

ΦTKave

]
is the excitation

force matrix; Bu =

[
0

M
−1

ΦTKavc

]
is the control force ma-

trix; C =
[
0 KsvΦ

]
is the output matrix; f = Vae and

U = Vac are the excited and control voltages, respectively.
Furthermore, the matrices A, Bf, Bu and C can also be writ-

ten as

A =

[
0 I
−Ω2 −2ςΩ

]
, Bf =

[
0

Bae

]
,

Bu =

[
0

Bac

]
, C =

[
0 Cs

]
; (8)

where Ω = diag(ω1 ω2 . . . ωn), ς = diag(ς1 ς2 . . . ςn),
in which diag(·) denotes diagonal operation; ωi, ςi are modal
frequency and damping ratio of the ith mode, respectively;
Bae = M

−1
ΦTKave; Bac = M

−1
ΦTKavc; Cs = KsvΦ.
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3. OPTIMIZATION OF PIEZOELECTRIC
SENSORS/ACTUATORS

3.1. H2 Norm Optimal Placement Criterion
Assuming the state space representation of a system is

(A,B,C), when the damping ratio of the system meets the
condition ζ � 1, the norm of the ith mode can be approxi-
mately written as ∥∥Gi

∥∥
2
=

∥∥Bi

∥∥
2

∥∥Ci

∥∥
2

2
√
ζiωi

; (9)

where Gi is the transfer function of the system for the ith
mode; B, C are equal to Bae, Cs expressed in Eq. (8).39

From Eq. (9), one can conclude that the norm of the ith
mode is related to its modal frequency, damping ratio, con-
trol coefficients, and sensor coefficients of the ith mode. The
norm of the jth actuator for the ith mode is∥∥Gij

∥∥
2
=

∥∥Bij

∥∥
2

∥∥Ci

∥∥
2

2
√
ζiωi

. (10)

Obviously, the denominator in Eq. (10) is proportional to
the ith modal frequency. With the natural frequency increas-
ing, the norms of higher modes are getting smaller and smaller
compared with those of the lower modes. However, this may
cause spillover problems, which are disadvantageous to the
controlling of the system. Therefore, the H2 norm can not be
used as the optimization criterion directly.

Normalization processing of theH2 norm is necessary. Nor-
malization for the jth actuator for the ith mode is expressed as

δ2,ij =

∥∥Gij

∥∥2
2

max
(∥∥Gij

∥∥2
2

) ; (11)

where i = 1, 2, . . . , n; j = 1, 2, . . . , ns; ns denotes the number
of actuators.15

In Eq. (11), δ2,ij can be explained as: the ratio between the
norm of the jth actuator and the maximum norm among all the
candidate actuators for the ith mode. The optimization crite-
rion for the jth actuator is defined as

δ2,j =
n∑

i=1

wiδ2,ij ; (12)

where wi is the selected weight of the ith mode.
The weight wi can be positive or negative values. For the

controlled modes, wi is usually set as positive. The greater the
weight is, the more important of the mode is. However, in or-
der to reduce spillover problems and minimum energy for non-
controlled modes, the weights should be set negative for the
non-controlled modes. Therefore, the algorithm would search
for a position where not only the norms of the controlled modes
are high, but also the norms of the non-controlled modes are
low.

3.2. Genetic Algorithm (GA)
Genetic algorithm (GA) is a stochastic optimization algo-

rithm. It was formally presented by J. Holland in 1975.40 Orig-
inating from Darwin’s biological theory of evolution, GA com-
bines computer science with the biological theory of evolu-
tion. The algorithm simulates the rule of survival-of-the-fittest

in nature and has the merits of global, parallelism, rapidity, and
adaptability.

In view of the above-mentioned merits, GA is applied to find
the optimal locations of actuators. The genetic operations of
GA include selection, crossover, and mutation.21 Selection is
an operation that chooses superior individuals from the initial
population as parents of next generation. The selection oper-
ation is based on the fitness values of individuals. Those who
have bigger fitness values have bigger chances to be survived.

One should know that selection only selects superior indi-
viduals but does not produce new individuals. To generate new
individuals, crossover and mutation are utilized. By selecting
two individuals from the current population and interchang-
ing part of the genes from the crossover points, two new in-
dividuals are obtained. There are several crossover operations
including one-point crossover, uniform crossover, and arith-
metic crossover. By crossover operation, the GA can move in
a desirable direction. However, the probability of a crossover
should not be too big or too small. Generally, the probability
of a crossover usually ranges from 0.59 to 0.99.

Selection and crossover operations complete most of the
searching work of the GA. Sometimes the GA may trap in a
local optimum when only selection and crossover operations
are used. To prevent the GA from getting trapped in a lo-
cal optimum, a mutation operation is necessary. Mutation is
an operation that changes one gene of an individual according
to a specific probability of mutation. Similar to the selected
probability of a crossover operation, the probability of a mu-
tation operation should also be appropriately specified. If the
probability of mutation selected is bigger than 0.5, the GA will
degrade to a random search method.

The coordinates of an actuator (xj , yj) are chosen as the op-
timization variables. The binary encoded method is used for
GA. The length of the binary string depends on the searching
scope. The following operations describe how GA works in
this presentation. (a) The GA iteration firstly starts with a ran-
domly selected population. Each individual consists of several
chromosomes corresponding to the actuators. Each chromo-
some represents an actuator’s location, and it is encoded in the
binary form. In this investigation, each individual only has one
chromosome. (b) Two members of the current population are
selected as parents. The selected operation probability is de-
termined by member’s fitness value. Those who have bigger
fitness values have a bigger chance to be selected. (c) New off-
springs are generated by the crossover operation between the
two selected parents. (d) In order to improve the GA’s search
ability, some genes of a child are changed randomly with a
rate, called mutation.

The GA stops if the iteration reaches the predefined value.
Generally speaking, the result obtained from a limited number
of iterations may be a local optimum. Therefore, to get a result
with a high confidence, one has either to run the GA process
several times, each with randomly selected initial condition, or
with an increasing number of iterations.

3.3. Numerical Results of Optimal
Placement for Piezoelectric Patches

In this section, the optimal placement of a clamped-clamped
plate is studied. The length of the plate between the two
clamped edges is 600 mm; the width of the plate is 510 mm;
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Table 1. Material properties of the plate and piezoelectric patch.

Symbol Parameter Unit Piezoelectric patch Plate
E Young’s modulus GPa 63 34.64
ρ Density kg/m3 7650 1840
υ Poisson ratio — 0.3 0.33

d31
Piezoelectric m/V −166×10−12 —strain constant

Figure 3. Coordinates used for optimal placement.

and its thickness is 2 mm. Material properties of the plate
and piezoelectric patch are listed in Table 1. Three dif-
ferent sizes of the piezoelectric patch are employed as sen-
sors and actuators. The size of actuators is of the same
size as 50 mm×15 mm×1 mm. The sizes of sensors are
40 mm×10 mm×1 mm and 20 mm×6 mm×0.5 mm.

Since the piezoelectric patches break easily when placed in
the clamped edges in practical applications, the 68 elements in
the two clamped edges are not suitable to place PZT patches.
When the piezoelectric patch is the same as that of the meshing
element size as meshed in Fig. 2, there are 740 candidate ele-
ments that can be used to place the sensors and the actuators
excluding the 68 elements in the two clamped edges. These
740 elements define the searching space for the GA. The vari-
ables are defined as the numbers of the two nodes decided by
the location of a piezoelectric patch. The nodes are numbered
from 0 to 21 in X direction, and numbered from 0 to 33 in
Y direction, as shown in Fig. 3. Then, they are encoded in a
binary string. The string length is 6 bits, i.e., the location of a
piezoelectric patch is expressed by a 12 bit binary string. The
first six binary strings and the rest of the binary strings corre-
spond to the coordinate of actuator/sensor in x direction and y
direction, respectively. Figure 4 shows the typical encoding of
an actuator/sensor.

When the optimization criterion expressed in Eq. (12) is
used, only the first three modes of vibration are considered.
Only the first mode of vibration is selected as the control mode,
and the other two modes as the non-controlled ones. In view
of minimum energy, the weights of the non-controlled modes
should be negative, while the weight of the first bending mode
is positive.

In the GA operation, the parameters are selected as: the
population size is 20; the probability of crossover is 0.8; the
probability of mutation is set as 0.02; the maximum number of
generations is 100. The genetic operation process stops at the
predefined generation.

Figure 4. Typical encoding of actuator/sensor location.

Figure 5. GA results for optimal displacement.

From Fig. 5(a), it can be seen that the performance index
value converges to a constant value after 62 generations. The
GA can always find the optimal solution despite the existences
of suboptimal solutions. The optimal solution that the GA
works out shown in Fig. 5(b) is 0000000010000, i.e., the coor-
dinates of the optimal solution are x = 0 and y = 16. Since
GA only searches one optimal solution each time. By running
GA for several times, one can get different optimal solutions
due to the symmetry of the system.

In order to verify the validity of the GA, the enumeration
method is used to calculate the performance index value of
every candidate location. The results are displayed in Fig. 6.
In Fig. 6, these elements that have negative performance in-
dex values are unsuitable to place the actuators. Those who
have positive performance index values are more suitable to
place the actuators. Moreover, the bigger the performance in-
dex value is, the more suitable the piezoelectric actuator can be
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Figure 6. Performance index values using the enumeration method.

bonded. Obviously, the roots of the clamped-clamped plate in
X direction have bigger performance index values, and these
values that near the middle of Y direction are almost the same.
However, the numbers of the elements with the best indices
values are located in 51, 52, 765, and 766.

By comparing the optimal solution in the GA with the val-
ues in Fig. 6, it can be seen that the two methods get the same
optimization result. Although there are many suboptimal so-
lutions in this system, the GA still finds the optimal location
of the piezoelectric patch effectively. Furthermore, the GA can
easily get global optimization results while solving complex
problems in comparison with other optimization techniques.

There are some points that need to be emphasized to guar-
antee the robustness of the GA used to search the optimal lo-
cations of actuators/sensors. The GA has good robustness for
solving global optimal problems commonly, while in solving
complex optimization problems, both early maturity and poor
stability may occur in the GA. The GA is likely to converge
to a local optimum in the case of an inappropriate fitness func-
tion. Here, the fitness function is the same as that of equation
of Eq. (12) to achieve the global optimum quickly. The num-
ber of the initial population is also very important. If the initial
population selected is too big, the GA will take a lot of time
to get the global optimum; otherwise if the initial population is
too small, the algorithm is likely to ignore the global optimum.
To meet this condition, the initial population size is set as 20
in this section.

For any specific optimization problems, the GA may con-
verge much faster with the appropriate parameters. These pa-
rameters include the crossover rate and the mutation rate. Too
big of a mutation rate will lead to the loss of the optimal so-
lution, and too small of a mutation rate can cause premature
convergence to the local optimal point. For the selection of
these parameters, there are no practical limits. The crossover
rate is set as 0.8, and the mutation rate is set as 0.02, in this
case. With the appropriate crossover rate and mutation rate,
the GA can always converge to the global optimum in this sec-
tion.

The piezoelectric patches should be placed at the roots of
the two clamped edges in the length direction and close to the

Figure 7. Top and bottom view of the clamped-clamped plate system.

middle in the width direction. Except for the optimal position,
the middle of the clamped-clamped plate in X direction is the
suboptimal position for bonding piezoelectric patches. Fig-
ure 7(a) and Fig. 7(b) show the top view and the bottom view
of the clamped-clamped plate system, respectively.

As shown in Fig. 7, one edge of the clamped end is used as
the primary exciter, and the other is used for control. Actua-
tors 1–4 and 1’–4’ are connected in parallel as a one-channel
piezoelectric actuator is used as the excited actuator to excite
the vibration of the flexible plate. Actuators 5–8 and 5’–8’
in the right clamped edge are connected in parallel as a one-
channel piezoelectric actuator is used as the control actuator
to suppress the excited vibration. Meanwhile, signals of the
top and bottom actuators are reversed-phase connected to get
a bigger control force or excitation force. Also, the two differ-
ent sizes of sensors are placed in the plate. Sensors 9–11 are
only boned on the bottom surface. Sensors 9 and 11 are of the
dimension 40 mm×10 mm×1 mm. The dimension of sensor
10 is 20 mm×6 mm×0.5 mm. In this investigation, only the
sensor 11 in the control end is used.

To simplify the building of the model, only the
50 mm×15 mm×1 mm piezoelectric patch is used in the fi-
nite element method. Since the element meshing size shown in
Fig. 2 is 25 mm×15 mm, the piezoelectric patches are placed
in two elements side-by-side in length and direction, and they
occupy one element in the width direction. When bonding the
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Table 2. Comparison of the first four modal frequencies with PZT patches.

Order Frequencies (Hz) Frequencies (Hz) Relative Error(MATLAB) (ANSYS)
1 25.9038 25.710 0.754%
2 32.5087 32.371 0.425%
3 60.0309 59.462 0.957%
4 71.1375 71.006 0.185%

PZT patches, modal frequencies of the flexible plate system
may be changed slightly. Therefore, the modal analysis and
the modal frequencies calculation for the flexible plate with
the PZT patches are performed.

The model of the clamped-clamped plate is built by using a
calculated program. When the commercial ANSYS software
is applied to build the model, the SHELL 63 element is used
to build the plate element, and the three dimensional SOLID45
element is used to build the piezoelectric element. The calcu-
lated natural frequencies of the first four modes of the plate
with bonded PZT patches are listed in Table 2, respectively,
by using program calculation and ANSYS software. There
are many factors such as the differences of the mesh dividing
method and element types used for PZT patches between the
two methods; the relative errors of a plate with PZT patches is
bigger than a plate without PZT patches. However, the relative
errors are less than 1%.

The comparison results indicate that the relative errors be-
tween the two analysis methods are rather small. Therefore,
the fidelity of the obtained model by finite element calculation
is accurate to a great degree. Thus, it can be used for simula-
tion analysis of the designed control algorithms.

The piezoelectric driving force, sensor output, and the dy-
namical equation of the system are needed in the follow-up
simulation. However, these equations cannot be obtained by
using ANSYS. Therefore, it is necessary to write a program to
get the model of the system.

By using the finite element modelling method, A, Bf, Bu,
and C, the state space equation can be obtained. The sam-
pling period is specified as Ts = 3 ms. By converting the
continuous-time model to the discrete-time one, the coefficient
matrices of the discrete-time system are obtained and used in
the subsequent simulation.

4. LMS AND FILTERED-X LMS FEEDFOR-
WARD CONTROL ALGORITHM

4.1. LMS Algorithm
The adaptive filter is composed of a digital filter and an

adaptive algorithm; x(n), d(n), e(n) and y(n) are the refer-
ence signal, desired response, error signal, and control output
of the filter at the nth sampling instant, respectively. The coef-
ficients of the digital filter are adjusted according to the adap-
tive algorithm so as to minimize the mean square of the error
signal.

The transversal finite impulse response (FIR) adaptive fil-
ter is widely used due to its stability. The property of the
transversal filter is determined by the weights wi(n). The
input signals are multiplied by the weights and summed to
form an output that will be equal to a desired response d(n).
The input signal vector, also called the reference signal at
the nth step, is X(n) = [x(n), x(n − 1), . . . , x(n − N +
1)]T . The weights are written in a vector form W(n) =

Figure 8. Scheme of the feedforward control.

[w1(n), w2(n), . . . , wN (n)]T of length N . It is the kernel of
the algorithm.

Therefore, the so-called Widrow-Hoff LMS can be summa-
rized as follows

y(n) = XT (n)W(n)

e(n) = d(n)−XT (n)W(n)

W(n+ 1) = W(n) + 2µe(n)X(n)

; (13)

where the bounds of the convergence parameter µ is 0 < µ <
1/λmax; λmax is the largest eigenvalue of the autocorrelation
matrix of the input signal.29, 30

4.2. Filtered-X LMS Feedforward Control
Algorithm

The filtered-X LMS feedforwad control is an algorithm that
aims to minimize the mean square value of the vibration at a
measuring point. Figure 8 shows the scheme of the feedfor-
ward control based on the LMS algorithm. In Fig. 8, z(n) is
assumed as the control response of the controlled structure at
the nth sampling instant. H1 and H2 are the primary (error)
path and secondary (control) path of the controlled structure,
respectively. Ĥ2 is the estimation of H2, and it is written as
Ĥ2 = [h1, h2, . . . , hP ]

T , where P is the order.
Let Xr(n) be the reference signal vector; Y(n) is the output

vector of the controller. The so-called filtered-X signal vector
R(n) is R(n) = [r(n), r(n− 1), . . . , r(n−N + 1)]T .

The filtered-X signal at the nth time is expressed by29, 41

r(n) = ĤT
2 Xr(n) =

P∑
k=1

hkx(n− k + 1). (14)

The iterative process of the filtered-X LMS control algo-
rithm can be summarized as follows:29, 41

y(n) = XT (n)W(n)

e(n) = d(n)−RT (n)W(n)

W(n+ 1) = W(n) + 2µe(n)R(n)

. (15)

Comparing Eq. (15) with Eq. (13), one can easily find that
in the filtered-X LMS algorithm, the reference signal X(n) is
replaced with the filtered-X signal R(n). There should be a
measure to compensate for the time delay that is caused by the
secondary path due to the existence of the secondary (control)
path. Therefore, the reference signals should be first taken a
convolution operation with the control path’s estimation Ĥ2,
and the result is used to update the weight vector.
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Figure 9. Schematic diagram of control path identification.

Figure 10. The time-domain response of vibration control under resonant
excitation using PD control.

The filtered-X filtering algorithm is based on the FIR filter to
guarantee the stability of the system. Although the algorithm
has the merits of a simple structure and easy implementation, it
also has to satisfy the following assumptions: a) the reference
signals are highly related to the vibration signal, which cor-
relates with the control effect of the algorithm; b) the control
output of the controller has no influence on the reference, oth-
erwise the stability of the system may be reduced. Therefore,
the filtered-X LMS algorithm may have limitations to some
extent.

Figure 11. Simulating identification of control channel transfer parameters.

4.3. Control Path Identification

As shown in Fig. 9, an estimation model Ĥ2 of the control
path H2 has to be obtained while using the filtered-X LMS
control method. There are mainly two kinds of system iden-
tification methods: adaptive online identification and adap-
tive offline modelling. The model obtained by adaptive online
identification is more accurate than that of offline modelling.
However, the realization of online identification is more com-
plicated than that of offline modelling. The characteristic of
the plate system is almost invariant in the following exper-
iment. Therefore, an adaptive offline modelling method for
system identification is adopted for estimating the model sub-
sequently.
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Figure 12. The time-domain response of vibration control under resonant excitation using filtered-X LMS control.

The working principle of Fig. 9 can be explained as follow-
ing: the system to be identified and the adaptive filter are ex-
cited by the same input x(n). Then, one can get an error signal
between the actual output and the filter’s output. The error sig-
nal is used by the LMS algorithm to adjust the weights of the
filter. Then the control output of the filter gradually gets closer
to the actual output of the system. As soon as the error signal
approaches zero, the filter’s output is almost the same as that of
the actual output. At that time, the model of the adaptive filter
can be used as the estimation model of the identified system.

In the process of system identification, an adaptive FIR filter
is defined as the estimation model of the control path. Accord-
ingly, the adaptive FIR filter works on the basis of the LMS al-
gorithm. During the identification process, the selection of the

FIR filter’s order is important. If the order is selected too low,
the precision of the obtained model will be decreased. Other-
wise, if the order selected is too high, phase difference between
the estimation model and the actual model will be very large.
Thus, the stability of the closed-loop system will be affected.

4.4. Control Simulation

In this section, numerical simulation is carried out to evalu-
ate the effectiveness of two algorithms. The first one is the PD
controller, and the second one is adaptive feedforward control
algorithm with an adaptive FIR controller based on the LMS
algorithm. The model obtained by using the finite element
modelling method in Section 3.3 is used for simulation inves-
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tigation. The excited signal actuated on the actuators is a sinu-
soidal signal with the frequency of 25.9 Hz and the amplitude
of 4 V. The control gains of the applied PD control algorithm
are specified as Kp = 1.0, Kd = 0.001. The control action is
applied at the moment of t = 4.5 s.

The time-domain responses of vibration suppression and
control voltage are shown in Fig. 10(a) and Fig. 10(b), respec-
tively. As depicted in Fig. 10(a), the vibration amplitude atten-
uates more than 70% after the active control is applied.

When using the filtered-X LMS control algorithm, the adap-
tive FIR filter estimation model of the control path has to be
obtained beforehand. The system identification is carried out
by using the LMS algorithm. The sinusoidal signal is imple-
mented in the control path of the model built by FEM, and then
an adaptive FIR filter estimation model can be eventually ob-
tained. The order of the adaptive FIR filter is specified as 12.

Figure 11(a) and Fig. 11(b) are the model’s output and the
filter’s output, respectively. Figure 11(c) shows the identified
model error of the control channel. It can be seen that the error
is almost equal to zero after one second. This means that the
output of the adaptive filter is almost the same as that of the
model’s output. The estimation adaptive FIR filter model of
the control path is obtained.

The estimation model of the control path in the
FIR adaptive filter using in simulation is Ĥ2 =
[0.2636 0.2404 0.1536 0.0261 −0.1082 −0.2139 −0.2630
−0.2425 −0.1579 −0.0314 0.1034 0.2108].

The convergence factor used in the simulation is µ =
0.00002. The order of the adaptive filter is specified as 12.
Once the estimation model of the control path is obtained, the
simulation results of the filtered-X LMS control method are
shown in Fig. 12.

Figure 12(a) depicts the time-domain resonant vibration re-
sponse before and after control using the filtered-X LMS algo-
rithm. Figure 12(b) shows the control voltage applied to the
PZT actuators. The controller weights of the adaptive filter are
shown in Figs. 12(c), 12(d), 12(e), and 12(f).

From Figs. 12(c)–12(f), it can be seen that the controller
voltage is small at first due to the initial small weights values.
As time goes by, the weights are adjusted according to the ref-
erence signal and the vibration signal. It can be seen that the
control voltage is gradually increasing, as shown in Fig. 12(b).
The voltage is stable after 8 s, as shown in Fig. 12(b). The
vibration amplitude is almost suppressed to zero after 8 s, as
shown in Fig. 12(a).

From the simulation results, one can conclude that the
filtered-X LMS algorithm can suppress the resonant vibration
effectively. Although the PD controller attenuates the vibration
in a shorter time, the vibration no longer attenuates after 5.2 s,
as shown in Fig. 10(a). Therefore, the filtered-X LMS algo-
rithm shows a better performance in controlling the vibration
under resonant excitation.

5. EXPERIMENTAL RESULTS

5.1. Experimental Set-up
To validate the feasibility and the performance of the op-

timal placement of sensors/actuators and the applied adap-
tive feedforward control algorithms, an active vibration control

Figure 13. Photograph of the experimental setup.

system of a clamped-clamped flexible plate was developed ac-
cording to the previous analyses. Experiments on the resonant
vibration suppression of the piezoelectric flexible plate were
conducted.

The experimental setup mainly consisted of a piezoelectric
flexible clamped-clamped plate, the resonant excitation sys-
tem, and the measurement and the control system. The photo-
graph of the clamped-clamped plate setup is shown in Fig. 13.
The plate is made up of epoxy resin. The dimensions and ma-
terial properties of the plate and piezoelectric patches are given
in Section 3.3.

A signal generator is used to generate sinusoidal signals.
The measured signal of the PZT sensor is amplified by a
charger amplifier (YE5850). One piezoelectric amplifier (PA-
I) is used to amplify the output control voltages. The output
signal after the D/A converter ranges from −5 V to +5 V, and
after amplifying, the driving voltage for the control actuator
ranges from −260 V to +260 V. The other piezoelectric am-
plifier (PA-II) is used to amplify the generated signal by the
generator in order to excite the resonant vibration of the plate.
It can amplify the excitation sinusoidal signal (from −5 V to
+5 V) to a high voltage (from −130 V to +130 V). An ARM
board and a personal computer (PC) are used as the signal pro-
cessing and the control system with the corresponding A/D
(analog to digital) and D/A (digital to analog) peripheral ex-
pander circuit. The control code is written in C++ language.
The sampling interval is chosen as 3 ms.

5.2. Experimental Identification and Filters
Design

Since there are many factors such as the unknown physical
properties of epoxy resin material, the modal frequencies of
the system have to be identified. A swept sine (chirp) signal
is generated by the signal generator. The starting frequency is
0.5 Hz, and the stop frequency is 50 Hz. The swept time is
50 s.

Figure 14(a) shows the excited swept sinusoidal signal and
the time-domain response signal measured by the PZT sen-
sor when excited by PZT excitation actuators by amplifying
the swept signal using the piezoelectric amplifier (PA-II). Fig-
ure 14(b) depicts the frequency response of the plate by using
FFT for the time domain signal plotted in Fig. 14(a). From
Fig. 14(b), it can be known that the first modal frequency of
the plate is 21.6 Hz.
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Figure 14. Measured swept sine vibration response excited by PZT actuators.

The natural frequency of the first mode obtained from the
FEM model is 25.9 Hz; while in the experiments, the iden-
tified modal frequency is 21.6 Hz. The possible reasons
which may lead to the difference of modal frequencies be-
tween the calculated and the experimental are listed as follow:
(a) The clamped-clamped boundary condition in the simula-
tion is ideal; while in the experiments, the boundaries may not
be totally clamped. (b) The physical parameters of the flexible
plate cannot be known accurately, such as the material density,
Young’s modulus, uniformity, etc. These parameters used in
the simulation are not precisely consistent with those of the
flexible plate used in the experimental material perfectly. This
factor may also lead to the difference between the two modal
frequencies. (c) Moreover, the mass of the glue and the con-
nected signal wires of the PZT patches are not considered in
the calculation. These factors will decrease the modal fre-
quency in the experimental system. Since the calculated modal
frequency is used to get an approximate value in order to ver-
ify the feasibility of the control algorithms, the difference of
modal frequencies between the calculated and the experimen-
tal can be acceptable for this verification.

When the vibration of the first mode of the clamped-

clamped plate is excited, some harmonic frequency compo-
nents are easily excited. High-frequency noise also exists in
the measured signal. Those harmonic frequency components
and high-frequency noises will affect the control performance
of the experiments and sometimes even make the system unsta-
ble. Therefore, the actual vibration signal should be processed
by predefined filters before conducting active vibration control
experiments.

In the experiments, Chebyshev filters are designed to
process the measured vibration signal by the PZT sensor.
The Chebyshev filter attenuates fast in the transitional zone.
Though amplitude fluctuates in its passband, the Chebyshev
filter has the minimum error with an ideal filter frequency re-
sponse curve. There are two kinds of Chebyshev filters. One
is named the Type I Chebyshev filter, with a ripple in the pass-
band; the other is the Type II Chebyshev filter, with a ripple in
the stopband.

The Type I Chebyshev filter is used here. Since only the
vibration of the first mode is considered, a fourth order Cheby-
shev band-pass filter is designed for signal processing. The
central frequency is equal to the first modal frequency of
21.6 Hz. The bandwidth of the passband is set as 30 rad/s.
The ripple of the passband is less than 1 dB.

5.3. Experiments on Resonant Vibration
Suppression using PD Control

The sinusoidal signal is generated by a signal generator.
Its amplitude and frequency are 4 V and 21.6 Hz, respec-
tively. The frequency is the same as that of the first vibra-
tion mode. The time-domain response of vibration suppres-
sion under resonant excitation is shown in Fig. 15(a), using PD
control. Figure 15(b) shows the control voltage. The propor-
tional and derivative control gains are specified as Kp = 0.95,
Kd = 0.001, respectively

It can be seen from Fig. 15(b) that once the control action
is applied, the control voltage reaches saturation abruptly. The
large amplitude vibration is suppressed to a small amplitude
vibration in Fig. 15(a) quickly, and the control voltage is de-
creased due to the fact that the control value under the PD con-
trol is equal to the sum of the vibration signal and its derivative
by multiplying the corresponding control gains.

From Fig. 15(a), it can be seen that the vibration amplitude
is constant after 8 s. The amplitude of the control voltage will
not change after 8 s, as shown in Fig. 15(b). The experimental
results demonstrate the effectiveness of the PD controller. The
PD control experiment results are in good accordance with the
simulation results to some degree.

5.4. Experiments on Resonant Vibration
Suppression using Filtered-X LMS
Algorithm

Similar to the simulation research, an offline identification
of the control path between the actuator and the sensor is
performed. The dimension for the identified model on the
experiment is set as 12. It is required that the dimension
of the identified model should describe the characteristics of
the system accurately. Generally, the dimension should be
set as small as possible provided that it could meet the con-
trol requirements. Because the higher the dimension of the
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Figure 15. The time-domain response of vibration control under resonant
excitation using PD control.

identified model is, the greater the amount of calculation is
required. Then real-time control will be much more diffi-
cult due to the computational burden. Therefore, the dimen-
sion for the identified model should be set appropriately to
meet the experimental conditions. The dimension of 12 is
chosen after many times of experimental testing. It could
not only satisfy the accuracy of the model but also meet the
real-time requirements. The data acquisition of the input si-
nusoidal signal and the output signal measured by the PZT
sensor is carried out by using the ARM controller with the
expander circuit at a sampling frequency of 333 Hz. Fig-
ure 16(a) and Fig. 16(b) are the actual outputs measured by the
PZT sensor and the adaptive filter’s output, respectively. Fig-
ure 16(c) shows that the identified model error is almost zero
after 1 s. The estimated model of the control path is Ĥ2 =
[−0.5128 −0.2873 −0.0149 0.2600 0.4924 0.6443 0.6908
0.6243 0.4558 0.2127 −0.0652 −0.3324].

The convergence factor used in the experiment is chosen as
µ = 0.000018. The order of the adaptive filter is specified
as 12. The results of the filtered-X LMS control method are
shown in Fig. 17.

By comparing Fig. 17(a) with Fig. 15(a), one can find that
the transient response time of the designed filtered-X LMS al-
gorithm is longer than that of the applied PD control. This is
the reason why the corresponding weights are adaptively ad-
justed online. In the process of dynamic adjusting, the control
weights arrive to the best values gradually. Therefore, the con-

Figure 16. Experimental identification of the control channel transfer
parameters.

trol performance of this process is not good enough. However,
the vibration attenuates to a smaller value eventually with the
weights reaching the best scope, as in Fig. 17(a). The vibration
amplitude plotted in Fig. 17(a) is less than 1 V while the vibra-
tion amplitude illustrated in Fig. 15(a) is about 1.5 V. There-
fore, the control performance of the filtered-X LMS is better
than that of PD algorithm in the long run.

Moreover, the control voltage doesn’t reach over saturation,
as depicted in Fig. 17(b). This will not cause damage to the
experimental apparatus. Figures 17(c)–17(f) show the self-
regulating process of the corresponding weights. It should be
emphasized that to view all control weights clearly, the serial
number of control weights in one picture may be discontinu-
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Figure 17. The time-domain response of vibration control under resonant excitation using filtered-X LMS control.

ous. The control voltage in Fig. 17(b) is tuned according to the
controller weights, while the controller weights in Figs. 17(c),
17(d), 17(e), and 17(f) are adjusted according to the reference
signal and the vibration signal.

The actual vibration control result shown in Fig. 17(a) is not
as good as that of the simulation in Fig. 12(a). Actually, the
experimental phenomenon plotted in Fig. 17(a) is caused due
to the inconformity between the physical control path and the
identified control path. Gain error and phase error exist be-
tween the physical control path and the identified control path.
Gain error can be neglected by adjusting gain of the control
path, while the phase error cannot be diminished. The phase
error is first transmitted to the filtered-X signal according to
Eq. (14), and then it is transmitted to the control weights. The

phase errors are accumulated to the control output.
The resonant vibration can still be attenuated to a very small

value due to the robustness to uncertainties of filtered-X LMS
algorithm. From Fig. 17(a), one can see that the vibration
reaches the dynamic balance after several times of adjust-
ment. The vibration amplitude alternates from a little larger
to even smaller. When the vibration amplitude gets bigger in
Fig. 17(a), the controller weights are tuned online according to
the current sensor signal and the latest reference signal, thus
the control voltage becomes larger.

The control performance of the filtered-X LMS algorithm is
related with the selections of the convergence factor µ, the di-
mension for the identified model of the control path, and the
order of adaptive filter. The value of µ is based on the autocor-
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relation matrix eigenvalue of the input signal. The convergence
and convergence rate of the filtered-X LMS algorithm should
be guaranteed. The value range of µ should meet the inequal-
ity: 0 < µ < 1/λmax. Actually, the optimal value can be
selected through experimental tests. The larger value of µ will
lead to a faster convergence rate. However, a value of µ that
is too large should not be chosen in order to avoid divergence
in the control process. The dimension for the identified model
of the control path and the order of the adaptive filter will also
affect the control performance. A higher dimension will lead
to better performance. However, a larger amount of calcula-
tions will also be necessary. Therefore, the dimension for the
identified model of the control path and the order of the adap-
tive filter should be specified appropriately, considering both
the control performance and the real-time requirements.

From the experimental results, it can be concluded that the
resonant vibration of the clamped-clamped plate can be sup-
pressed effectively by using the PD controller and the filtered-
X LMS feedforward controller. In addition, control over satu-
ration is prevented by using the filtered-X LMS control algo-
rithm. Moreover, the control performance is also improved by
using the designed filter-X LMS algorithm.

6. CONCLUSIONS

This paper presents the numerical and experimental re-
sults for resonant vibration control of a piezoelectric clamped-
clamped plate excited by piezoelectric actuators. The dynam-
ics model of the system is obtained by using the finite element
method. Locations of the PZT sensors and actuators are opti-
mized by optimal placement criteria and GA search methods.
A fourth order Chebyshev band-pass filter is designed to elim-
inate the noises from the vibration signal measured by the PZT
sensor. Numerical simulations and experiments are carried out
to verify the effectiveness and feasibility of the optimal place-
ment of piezoelectric sensors/actuators and the designed con-
trol algorithms, including PD control and filtered-X LMS feed-
forward control method. Simulation and experimental results
demonstrated that excited resonant vibration can be suppressed
effectively by the proposed two control methods and the loca-
tion of sensors/actuators. Moreover, the filtered-X LMS al-
gorithm shows better control performance in suppressing the
resonant vibration.
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16 Nestorović, T. and Trajkov, M. Optimal actuator and sensor
placement based on balanced reduced models, Mechanical
Systems and Signal Processing, 36 (2), 271–289, (2013).

17 Qiu, Z. C., Zhang, X. M., Wu, H. X., et al. Optimal place-
ment and active vibration control for piezoelectric smart
flexible cantilever plate, Journal of Sound and Vibration,
301, 521–543, (2007).

18 Darivandi, N., Morris, K., and Khajepour, A. An algo-
rithm for LQ optimal actuator location, Smart Materials
and Structures, 22, 035001, (2013).

19 Bachmann, F., Bergamini, A. E., and Ermanni, P. Optimum
piezoelectric patch positioning: A strain energy–based fi-
nite element approach, Journal of intelligent material sys-
tems and structures, 23 (14), 1575–1591, (2012).

20 Bruant, I., Gallimard, L., and Nikoukar, S. Optimal piezo-
electric actuator and sensor location for active vibration
control, using genetic algorithm, Journal of Sound and Vi-
bration, 329, 1615–1635, (2010).

21 Yang, Y., Jin, Z., and Kiong Soh, C. Integrated optimal
design of vibration control system for smart beams using
genetic algorithms, Journal of Sound and Vibration, 282,
1293–1307, (2005).

22 Warminski, J., Bochenski, M., Jarzyna, W., et al. Active
suppression of nonlinear composite beam vibrations by se-
lected control algorithms, Communications in Nonlinear
Science and Numerical Simulation, 16, 2237–2248, (2011).

23 Shin, C., Hong, C., and Jeong, W. B. Active vibration con-
trol of beam structures using acceleration feedback control
with piezoceramic actuators, Journal of Sound and Vibra-
tion, 331, 1257–1269, (2012).

24 Lin, J. and Liu, W.-Z. Experimental evaluation of a piezo-
electric vibration absorber using a simplified fuzzy con-
troller in a cantilever beam, Journal of Sound and Vibration,
296, 567–582, (2006).

25 Qiu, Z. C., Wu, H. X., and Zhang, D. Experimental re-
searches on sliding mode active vibration control of flexible
piezoelectric cantilever plate integrated gyroscope, Thin-
Walled Structures, 47, 836–846, (2009).

26 Kun, L., Long-Xiang, C., and Guo-Ping, C. An Experimen-
tal Study of Delayed Positive Feedback Control for a Flexi-
ble Plate, International Journal of Acoustics and Vibration,
17, 171–180, (2012).

27 Tong, Z., Long-Xiang, C. and Guo-Ping, C. Experimental
study of H∞ control for a flexible plate, Journal of Vibra-
tion and Control, 18, 1631–1649, (2012).

28 Ji, H., Qiu, J., Badel, A., et al. Semi-active vibration con-
trol of a composite beam by adaptive synchronized switch-
ing on voltage sources based on LMS algorithm, Journal
of intelligent material systems and structures, 20, 939–947,
(2009).

29 Morgan, D. R. History, Applications, and Subsequent De-
velopment of the FXLMS Algorithm [DSP History], Signal
Processing Magazine, IEEE, 30, 172–176, (2013).

30 Widrow, B. and Stearns, S. D. Adaptive Signal Processing,
Prentice Hall, Englewood Cliffs, NJ, (1985).

31 Anderson, E. H. and How, J. P. Adaptive feedforward con-
trol for actively isolated spacecraft platforms, AIAA Struc-
tures, Structural Dynamics, and Materials Conference and
Exhibit, 7–10, (1997).

32 Zhu, X., Gao, Z., Huang, Q., et al. Analysis and imple-
mentation of MIMO FULMS algorithm for active vibration
control, Transactions of the Institute of Measurement and
Control, 34 (7), 815–828, (2011).

33 Ma, K. Vibration control of smart structures with bonded
PZT patches: novel adaptive filtering algorithm and hybrid
control scheme, Smart Materials and Structures, 12 (3),
473–482, (2003).

34 Carra, S., Amabili, M., Ohayon, R., et al. Active vibration
control of a thin rectangular plate in air or in contact with
water in presence of tonal primary disturbance, Aerospace
Science and Technology, 12 (1), 54–61, (2008).

35 Oh, J. E., Park, S. H., Hong, J. S., et al. Active vibration
control of flexible cantilever beam using piezo actuator and
Filtered-X LMS algorithm, KSME International Journal,
12, 665–671, (1998).

36 Carnahan, J. J. and Richards, C. M. A modification to
filtered-X LMS control for airfoil vibration and flutter sup-
pression, Journal of Vibration and Control, 14, 831–848,
(2008).

37 Das, D. P., Moreau, D. J., and Cazzolato, B. S. A com-
putationally efficient frequency-domain filtered-X LMS al-
gorithm for virtual microphone, Mechanical Systems and
Signal Processing, 37 (1–2), 440-454, (2013).

38 Huang, Q., Luo, J., Li, H., et al. Analysis and implemen-
tation of a structural vibration control algorithm based on
an IIR adaptive filter, Smart Materials and Structures, 22,
085008, (2013).

39 Clark, R. L., Saunders, W. R., and Gibbs, G. P. Adap-
tive structures: dynamics and control, Wiley, New York,
(1998).

40 Holland, J. H. Adaption in Natural and Artificial Sys-
tems. An Introductory Analysis with Applications to Bi-
ology, Control, and Artificial Intelligence, University of
Michigan Press, Michigan, (1975).

41 Burgess, J. C. Active adaptive sound control in a duct: A
computer simulation, The Journal of the Acoustical Society
of America, 70 (3), 715–726, (1981).

International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014 239



Control of MR Damper Connected Buildings by
Output Feedback
Gokarna Bahadur Motra and Naresh K. Chandiramani
Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.

(Received 20 February 2013; revised: 14 October 2013; accepted: 14 October 2013)

The control of seismic response of buildings connected by a magnetorheological (MR) damper is studied. The
desired control force is obtained using Linear Quadratic Gaussian (LQG) control based on the feedback of states
estimated via measured outputs or Optimal Static Output Feedback (OSOF) control using the direct feedback
of measured outputs. The damper input voltage is predicted using a Recurrent Neural Network (RNN), which
proves more effective than the Clipped Voltage Law (CVL). Various sensor configurations and state weightings
are considered to obtain effective control. LQG-RNN/OSOF-RNN yield significant reduction in response and base
shear and require much less control effort compared to passive-on control with saturation voltage. Compared to
passive-off control, they are very effective in attenuating maximum-peak/RMS responses and storeywise responses
of the flexible building, except for max-peak accelerations that increase slightly. However, passive-off control is
unable to transfer base shear to the stiffer building. LQG-RNN/OSOF-RNN also yield control at least as effective
as LQR-RNN by deploying much fewer sensors but using a somewhat higher damper force. They are mostly
comparable to each other, but OSOF-RNN requires an order-of-magnitude less CPU time for the control loop.
Effective control is possible using few sensors.

1. INTRODUCTION

An earthquake induced response of adjacent buildings can
be mitigated by connecting them with dampers. Semiactive
devices, such as MR dampers, provide controllable damping
with a low power expenditure.

Modelling of MR dampers is notably due to: Song et al.1

who presented a model of an MR damper using polynomial
functions and a first-order filter; Chang and Zhou2 who pro-
posed a recurrent neural network (RNN) model of an MR
damper, which is appropriate for closed loop control; Spencer
et al.3 who proposed the modified Bouc-Wen model, contain-
ing additional stiffness and damping elements to model ac-
cumulator and low-velocity behavior, respectively; Wang and
Kamath4 who proposed a phase-transition model involving a
nonlinear differential equation for damper force with veloc-
ity as input; and Jimenez and Alvarez-Icaza5 who presented
a modified LuGre friction model by replacing material depen-
dency with voltage dependency.

Predicting applied voltage to produce a desired damper force
is difficult. This is due to the non-invertible force-voltage dy-
namics of hysteritic models for MR dampers. The controllers
considered are notably due to: Xu and Shen6 who used intel-
ligent bi-state control with a Bingham model and on-off cur-
rent law and later Xu and Guo7 who proposed a neuro-fuzzy
controller for damper current; Dyke et al.8 who used the mod-
ified Bouc-Wen model with acceleration feedback LQG con-
trol for desired damper force and proposed an on-off Clipped
Voltage Law (CVL); Yuen et al.9 who used reliability based
robust linear control for desired force and CVL for command
voltage; Karamodin and Kazemi10 who used LQG control for
desired force and a semiactive neural controller (using acceler-
ation/velocity feedback) for damper voltage; and Bahar et al.11

who designed a hierarchical controller with velocity feedback

for the desired force and proposed an inverse Bouc-Wen model
for voltage.

Control of connected buildings with base excitation is no-
tably due to: Aida and Aso12 who used a passive connec-
tor and showed that damping improves when the connector
is placed near the top and the natural frequencies are well
separated; Ni et al.13 who experimentally showed, using an
MR damper connector, that the optimum damper location is at
the top of the shorter building; Zhu et al.14 who considered
passive/active/semiactive connection elements, albeit without
damper dynamics; Qu and Xu15 who used the Bingham MR
model and instantaneous sub-optimal control with the damper
relative displacement as the control input to study the whip-
ping of a tall building connected to a podium; Xu et al.16 and
Jing et al.17 who experimentally verified the results of Qu and
Xu15 using single and multiple dampers, respectively; Chris-
tenson et al.18 who considered a semiactive damper without its
dynamics and a clipped optimal controller that yields applied
force instead of command voltage; and Cimellaro and Lopez-
Garcia19 who performed constrained optimization design, us-
ing multiple passive dampers, to achieve performance equal to
an LQR controller for white noise excitation.

In this study, a five-storey and a three-storey building are
coupled with a single MR damper placed at the top of the
shorter building. The system undergoes earthquake excita-
tion. The objectives of the present study are: (i) Applying
LQG control (with full state feedback and an optimal observer
for state estimation based on measured outputs), and OSOF
control (based directly on measured outputs), to obtain the de-
sired control force. The hysteritic force-velocity behavior is
modelled using the more accurate modified Bouc-Wen model.
The aim here is to study the effectiveness of LQG/OSOF con-
trollers that use fewer measured outputs than LQR control. (ii)
Predicting, via RNN, the damper voltage required to produce
the desired damper force obtained from LQG/OSOF control.
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Figure 1. Buildings connected with MR damper.

The aim here is to compare the effectiveness of semiactive (i.e.,
LQG/OSOF/LQR) controllers based on RNN voltage law, with
that of passive (constant voltage) controllers and semiactive
controllers based on CVL (on-off) voltage law.

2. SYSTEM MODEL

The five- and three-storeyed buildings, B5 and B3, respec-
tively, are assumed to have a symmetric plan, with the mass
concentrated at rigid slabs. They are subject to the same hor-
izontal uniaxial ground acceleration (Fig. 1). Let Ma, Ca,
Ka and Mb,Cb, Kb denote mass, damping, stiffness matri-
ces of B5 and B3, respectively; and cc and kc denote damping
and stiffness coefficients, respectively, of the passive connec-
tor between B5 and B3. The system mass, damping, stiffness
matrices, i.e., Ms, Cs, Ks, respectively, are

Ms = diag
[
Ma Mb

]
; Cs = diag

[
Ca Cb

]
+ Cc;

Ks = diag
[
Ka Kb

]
+ Kc; (1)

Cd =

0 0 0
0 0 0
0 0 cc

 ; Cc =

 Cd 0 −Cd

0 0 0
−Cd 0 Cd

 ;

Kd =

0 0 0
0 0 0
0 0 kc

 ; Kc =

 Kd 0 −Kd

0 0 0
−Kd 0 Kd

 . (2)

The equation of motion for the coupled buildings system is

Msẍ + Csẋ + Ksx = Df −MsLẍg; (3)

where

D=
[
0 0 1 0 0 0 0 −1

]T
; L=

[
1 1 1 1 1 1 1 1

]T
; f =[f ].

(4)
Here, x(t) = [x1 x2 . . . x8]

T is the displacement vector of the
storeys of B5 (i.e., [x1 . . . x5]T ) and B3 (i.e., [x6 . . . x8]T ) mea-
sured relative to the ground, D is the location matrix of MR
damper forces, L is the excitation influence vector, f is the
MR damper force, and ẍg is the ground acceleration. Defining
the mechanical states z(t) = [x ẋ]T , the state equations are

ż = Az + Bf + Eẍg; (5)

where state matrix A, control input location matrix B, earth-
quake excitation location matrix E, and control input vector f
are

A =

[
0 I

−M−1
s Ks −M−1

s Cs

]
; B =

[
0

M−1
s D

]
;

E =

[
0
−L

]
; f =

[
f
]
. (6)

The modified Bouc-Wen model of Spencer et al.,3 involving
voltage dependent parameters, is used to obtain the damper
force, f , as follows:

f = c1ẏ + k1(z8 − z3); (7)

where,

ẏ =
1

(c0 + c1)
{αzd + c0(z16−z11) + k0(z8−z3−y)} ; (8)

żd = −γ|z16−z11−ẏ|zd|zd|n−1 − β(z16−z11−ẏ)|zd|n +

A(z16−z11−ẏ); (9)

u̇ = −η(u−v); (10)

α = αa + αbu; c1 = c1a + c1bu; c0 = c0a + c0bu. (11)

Here z3(= x3), z8(= x8) are the displacements, and z11(=
ẋ3), z16(= ẋ8) are the velocities, of storey three of B5, B3, re-
spectively; y is an internal pseudo-displacement; zd is the evo-
lutionary variable describing damper hysteresis; u is the output
of a first order filter, which models delay dynamics of the cur-
rent driver and of the fluid to reach rheological equilibrium; v
is the command voltage supplied to the damper. Data for hys-
terisis loop parameters (γ, β, A, n), spring stiffnesses (k0, k1),
and viscous damping coefficients (c0, c1), are considered from
Spencer et al.3

3. CONTROLLER DESIGN

Implementation of LQR control requires that all states be
measured for feedback. This is often not possible. Hence,
controllers using measured output to estimate states and then
obtain the control input, or controllers that directly feed back
measured outputs to obtain the control input, are considered.
The control input thus obtained is the desired damper force
fd. Further, inverting damper dynamics to obtain command
voltage v, that is required to produce fd, is a nontrivial task
(Eqs. (7)–(11)). Hence, voltage laws are considered to obtain
v that produces a control input f as close as possible to the
desired control input fd.

3.1. LQG Control
A Kalman filter (optimal observer) is designed to estimate

the states for subsequent use in the LQR controller.20 The
state equations describing plant dynamics, i.e., Eq. (5), contain
ground acceleration ẍg as the plant noise. Measured outputs
are given by

y = Cz + D1f + v. (12)

The measurement noise, v, is assumed uncorrelated with the
plant noise, and both are assumed as zero-mean white noise
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processes. Table 1 shows the combinations of measured out-
puts (comprising storey accelerations, interstorey drifts, and
relative displacement of damper) considered. For example, for
(8A,1ID) sensor configuration the output and direct transmis-
sion matrices are

C =

[
−M−1

s Ks −M−1
s Cs

0 0 −1 0 0 0 0 1 08×1

]
; D1 =

[
M−1

s D
0

]
.

(13)
The estimated state vector, ẑ, is obtained via the observer dy-
namics, i.e.,

˙̂z = (A− L1C)ẑ + (B− L1D1)f + L1y; (14)

in which the optimal observer gain L1 (obtained by minimizing
the covariance of state estimation error z− ẑ) is given as

L1 = P∗CTR∗−1; (15)

where P∗ is the solution of the algebraic Riccati equation

AP∗ + P∗AT −P∗CTR∗−1CP∗ + GQ∗GT = 0. (16)

Here Q∗ and R∗ are spectral density matrices corresponding
to plant noise and measurement noise, respectively. For seis-
mic excitation Q∗ = [Q∗], a scalar. Measurement noise is
assumed identical for all sensors, i.e., R∗ = R∗I, where I is
the identity matrix. Q∗/R∗ = 50 is considered.8 The optimal
state feedback control is obtained by minimizing the quadratic
performance index (PI) J∗ = 1

2

∫∞
0

[zTQz+ fTd Rfd]dt. Here,
Q is the positive semi-definite state weighting matrix and R is
the positive definite control force weighting matrix. The min-
imization, subject to state equations as constraint (i.e., Eq. (5)
without external excitation term), yields the desired control
force as

fd = −R−1BTPẑ = −Kẑ; (17)

where estimated states, ẑ, are used in place of unmeasurable
states, z, and P is the solution of the algebraic Riccati equation

ATP + PA−PBR−1BTP + Q = 0. (18)

3.2. OSOF Control
The desired control input is obtained based on measured

output feedback instead of full state feedback as done in
LQR/LQG control. Thus, OSOF control, like LQG, uses fewer
sensors than LQR. However OSOF, unlike LQG, dispenses
with observer design. Thus OSOF requires less CPU time (due
to fewer on-line computations) as compared to LQG.

The system dynamics represented by state equations (with-
out plant noise, i.e., external excitation), the control input ob-
tained by output feedback (i.e., desired damper force fd), and
the measured output y considered as a combination of states
only (i.e., without feed-through D1f and measurement noise
v), are given as20

ż = Az + Bfd; fd = −Ky; y = Cz. (19)

The matrix of constant feedback gains K (and hence control
input fd) is determined by minimizing the PI, J∗, subject to
closed loop dynamics, Eq. (19), as constraint. In general, if the
controller is effective for random initial conditions, it is also
effective for random input excitations.21 The closed loop sys-
tem matrix is Ac = A−BKC. For asymptotically stable Ac,

it can be shown that J∗ = 1
2 tr(PQ̃), where Q̃ = z(0)zT (0).

Minimizing J∗ yields the design equations20

AT
c P + PAc + CTKTRKC + Q = 0; (20)

AcS + SAT
c + Q̃ = 0; (21)

R−1BTPSCT (CSCT )−1 = K; (22)

with unknowns P (symmetric, positive semi-definite), S (ma-
trix of Lagrange multipliers), and K (optimal gain). The de-
pendency on initial states is eliminated by minimizing the ex-
pected value of PI instead of PI itself.22 For uncorrelated initial
states, E{Q̃} = I, the identity matrix, and the optimal cost is
E{J∗} = J = 1

2 tr[P]. The Moerder-Calise algorithm,23 con-
verging to a local minimum of J , is used to solve Eqs. (20)–
(22) as follows:

Step 1: For iteration counter k = 0, initial gain K0 is chosen
such that Ac is asymptotically stable. K0 = 0 is chosen
since A is stable.

Step 2: Ak ←− (A − BKkC), Ac ←− Ak, K ←− Kk.
Solve Eqs. (20) and (21) for P and S. Then Pk ←− P,
Sk ←− S, Jk = 1

2 tr[Pk]. If k > 0 and |Jk − Jk−1| < ε,
where ε is a small tolerance, the algorithm has converged,
go to Step 4.

Step 3: Kk+1 ←− Kk + α∆K, where ∆K =
R−1BTPkSkCT (CSkCT )−1 − Kk and α is chosen
such that Ak+1 is asymptotically stable, where Ak+1 ←−
(A−BKk+1C). k ←− k + 1. Go to Step 2.

Step 4: K = Kk.

When using acceleration feedback, as done here, the mea-
sured output and the desired control input obtained from output
feedback are

ŷ = Cz + D1fd; fd = −Kŷ; (23)

which yields

fd = −(I + KD1)
−1Ky = −K̂y. (24)

Thus, K̂ is determined using the Moerder-Calise algorithm,23

and K is obtained as

K = K̂(I−D1K̂)−1 (25)

for controller implementation. This modification is neces-
sary when using acceleration output feedback, instead of only
displacement and velocity feedback for determining the de-
sired control input fd. A single damper is considered. Hence
fd = [fd] and R = [R] are scalars in LQG/OSOF controller
design.

3.3. Clipped Voltage Law (CVL)
Using fd and f , the command voltage, v, to the damper is

obtained as follows.8 If fdf < 0, then v = vmin = 0 V; else
v = vmax = 2.25 V when |fd| > |f |, or v = vmin = 0 V
when |fd| < |f |, or v is held at its present value when fd = f .
Here fd is the desired damper force obtained from the con-
troller (Eq. (17) for LQG / Eq. (19b) for OSOF), and f is the
applied damper force (Eq. (7)). Thus, saturation voltage (vmax)
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Figure 2. (a) Implementation of LQG-CVL/RNN, OSOF-CVL/RNN control;
(b) Control law block for RNN.

is applied when the magnitude of the desired damper force ex-
ceeds that of the available damper force and both are in the
same direction; else zero voltage is applied, except when the
desired and applied forces are equal for which case the volt-
age is held at the same value as at the previous time step. The
schematic for implementation of LQG-CVL or OSOF-CVL is
shown in Fig. 2.

3.4. Recurrent Neural Network (RNN)
Voltage Law

A RNN model is considered in order to emulate the inverse
dynamics of the MR damper.2 It contains 12 input-layer neu-
rons, 18 hidden-layer neurons, and 1 output-layer neuron, and
has output fed back to make it suitable for closed loop con-
trol applications (Fig. 3). Model inputs are: relative displace-
ment between the ends of the damper (x∗ = z8 − z3) with de-
lays; damper force with delays (desired force fd from Eq. (17)
/ Eq. (19b) used for the current instant, and applied forces f
from Eq. (7) used for previous instants); and voltages applied
as predicted at previous instants. The delay transfer function is
denoted z−1. Delayed inputs are provided to model hysteretic
effects in the MR damper. The model generates the command
voltage as

v̂(t) = T2

(
W2T1

(
W1L̃ + b1

)
+ b2

)
; (26)

L̃ =
[
v̂(t−1) . . . v̂(t−nv) x∗(t) . . . x∗(t−nx) fd(t) . . .

. . . f(t−nf )
]T
. (27)

The number of delays are nv = 5, nx = 2, and nf = 3 for
voltage, relative displacement, and damper force, respectively;
L̃ (12 × 1) is the input; W1 (18 × 12) and W2 (1 × 18) are
the matrices of weights for the hidden layer and output layer,
respectively; b1 (18 × 1) and b2 (1 × 1) are the bias vectors

Figure 3. RNN architecture.

for the hidden layer and output layer, respectively; T1 and T2
are the transfer function for the hidden layer and output layer,
respectively, chosen as the tanh function and linear function
with unit slope, respectively. The RNN was modelled using
MATLAB.

The network is trained using Gaussian white noise (GWN)
data generated for 8 s at a 0.004 s interval, with ±3 cm ampli-
tude for damper relative displacement, and ±1.25 V for tar-
get voltage with a bias of 1.25 V. The damper force is ob-
tained from the Bouc-Wen model Eqs. (7)–(10) using central
differencing for relative velocity and MATLAB ode45. Train-
ing data are normalized to lie in the interval [−1, 1]. Using
small random initial weights and biases, Eq. (26) is simulated
over an epoch of 8 s. Trained weights and biases are obtained
by minimizing the mean square error between output and tar-
get voltages over the epoch, using the train function of MAT-
LAB (Levenberg-Marquardt (LM) algorithm with backpropa-
gation). The learning rate is chosen as 0.001. Fig. 4 shows
predicted and target voltages after training over 30 epochs. The
error lies in the range [−0.42, 0.45] volts, and the mean square
error is 0.00988.

The trained network is validated for the following data sets:
(I) x = sin(6πt) cm, v = 1.5 V; (II) x = sin(6πt) cm, v is
GWN with amplitude ±0.75 V and bias 1.5 V; (III) x is GWN
with amplitude ±2 cm and v = 1.5 + 0.75 sin(6πt) V. Using
RNN inputs as x and the target force (obtained from Eqs. (7)–
(10) for the chosen data set), the command voltages are pre-
dicted via the trained RNN. Then, using x and the predicted
voltages, the available damper force is obtained via Eqs. (7)–
(10). Target and available forces match extremely well for data
set I and II, and quite well for set III (Fig. 5). RMS difference
between the target and available forces is 73.97, 73.44, and
126.46 N, for data I, II, and III, respectively. These differences
are small compared to the force range (around 2300 N for data
I and II, and 3700 N for data III).

The MR constraint filter is used for controller implemen-
tation.2 Neglecting stiffness terms in Eqs. (7) and (8), with
steady state u = v from Eq. (10), yields the approximate
bounds of damper force as,

f ≈
(c1a + c1bv)

[
(αa + αbv)zu + (c0a + c0bv)ẋ

∗][
(c0a + c1a) + (c0b + c1b)v

] ; (28)
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Figure 4. Target and predicted voltages, training data.

Figure 5. Target and predicted forces, validation data III.

where zu = ± (A/ (γ + β))
1
n are the limits of zd obtained

from Eq. (9). Here, x∗ = z8 − z3 and ẋ∗ = z16 − z11,
i.e., relative displacement and relative velocity of the damper,
respectively. Equation (28) yields limiting straight lines (in
f—ẋ∗ plane) when v = 0 V and v = 2.25 V, for which the
damper force is minimum (fmin) and maximum (fmax), respec-
tively. The region between these straight lines is the realizable
zone. This lies in the first and third quadrants for positive and
negative values, respectively, of zu. The desired force, fd, ob-
tained from LQG/OSOF control, and the measured relative ve-
locity ẋ∗, are provided to the MR constraint filter, which then
generates the command voltage as follows:

i) If ẋ∗fd > 0 and fd lies outside the realizable zone, then
the control voltage is set to the appropriate limiting value.
Thus, if |fd| > |fmax|, then v = vmax = 2.25 V, else if
|fd| < |fmin|, then v = vmin = 0 V.

ii) If ẋ∗fd > 0 and fd lies within the realizable region, i.e.,
|fmin| ≤ |fd| ≤ |fmax|, then the control voltage to be ap-
plied is obtained from the RNN model. The inputs to the
RNN are fd(t), x∗(t), and the time histories of f (actual
damper force), x∗ (relative displacement), and v (applied
voltage), i.e., as per Eq. (27).

iii) If ẋ∗fd < 0 then v = vmin = 0 V.

3.5. Controller Implementation
The schematic for actual implementation and simulation

of LQG/OSOF control using RNN/CVL is shown in Fig. 2.
Structure and MR damper equations (comprising the plant) are
integrated using applied voltage v and states (z, y, zd, u) at
the beginning of each time step. The applied damper force f ,
computed via Eq. (7), and the states are thus obtained at the
end of each time step. Measured outputs (y, damper relative
displacement x∗, and damper relative velocity ẋ∗) are then ob-
tained as shown and fed to the controller along with measured
f . For LQG control, the desired damper force fd is computed
based on estimated states (obtained by integrating the observer,
using measured outputs and the damper force as inputs to the
observer). For OSOF control, fd is computed directly using
measured outputs. Then fd and all measured quantities are fed

Table 1. Sensor configurations.

Sensor Configuration (◦ Accelerometer ×LVDT)
Storey 8A,1ID 8A 5A 3A 1A,2ID 1A 5ID 3ID

3b ◦ ◦ ◦ ◦ ×
2b ◦ ◦ ◦
1b ◦ ◦ × × ×
5a ◦ ◦ ◦ ◦ ◦ ◦ ×
4a ◦ ◦ ◦
3a ◦× ◦ ◦ ◦ × ×
2a ◦ ◦
1a ◦ ◦ × × ×

to the CVL/RNN control laws to obtain v at the start of the
next time step. Measured quantities are f for CVL, and f , x∗,
ẋ∗ for RNN. Although x∗, ẋ∗ are measured outputs, they are
not included in y since they are not used to obtain fd herein.
However, this does not preclude them from being part of y in
future applications.

Thus, both OSOF-RNN and LQG-RNN require measure-
ments of the same quantities, i.e., f , x∗, ẋ∗, and y, for their
implementation. However, OSOF-RNN dispenses with the
observer dynamics since it is based on direct output feed-
back, whereas LQG-RNN requires the time-intensive online-
simulation of observer dynamics since it is based on the feed-
back of all estimated states. The on-line CPU times required
for both controllers are compared in section 4.1.

4. RESULTS AND DISCUSSIONS

The mass, damping and stiffness coefficients (Fig. 1) con-
sidered are: m1a = m2a = m1b = m2b = m3b = 100 kg,
m3a = 95 kg, m4a = m5a = 90 kg; c1a = 125Ns/m, c2a =
c3a = c4a = c5a = c2b = c3b = 50Ns/m; c1b = 100Ns/m;
k1a = 1.7 × 1006 N/m, k2a = k3a = k4a = k5a = 2.9 ×
106 N/m, k1b = 3.3× 106 N/m, k2b = k3b = 4.25× 106 N/m;
cc = 10Ns/m; kc = 100N/m. These are adapted from the
experimental model of Dyke et al.8 so as to yield natural fre-
quencies that are well separated, i.e., 7.13, 21.16, 34.74, 45.79,
53.17 Hz for B5 and 13.56, 39.24, 58.46 Hz for B3.

Equation (5) and Eqs. (7)–(10) are integrated for zero initial
conditions using MATLAB ode45. The N-S component of the
El-Centro ground motion data measured at Imperial Valley is
used after suitable time-scaling.8 The following responses are
obtained: (i) Uncontrolled, i.e., without coupler; (ii) Passive-
off control, i.e., with applied voltage v = 0V; (iii) Passive-on
control with v = vmax = 2.25V (damper saturation voltage);
(iv) Semi-active control using LQG-CVL, LQG-RNN, OSOF-
CVL, and OSOF-RNN controllers.

Various sensor configurations (Table 1) using accelerome-
ters (◦) and LVDT sensors (×) have been considered in order
to obtain a well-distributed measurement of response for feed-
back to the controller. Various state weightings Q (Table 2),
and control weightings R in the interval [10−16, 1001], have
been considered in order to achieve better control.

4.1. Controller Evaluation
Performance criteria defined by Ohtori et al. are evaluated.24

Quantities J1–J8 are controlled responses normalized with the
corresponding uncontrolled response. The responses consid-
ered are: Maximum peak displacement, J1; Maximum peak
interstorey drift, J2; Maximum peak absolute acceleration, J3;
Peak base shear of the combined system, J4; Maximum RMS
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Figure 6. Performance criteria for effective controllers: (a) LQG-CVL,
(b) LQG-RNN.

Figure 7. Performance criteria for effective controllers: (a) OSOF-CVL,
(b) OSOF-RNN.

displacement, J5; Maximum RMS interstorey drift, J6; Maxi-
mum RMS acceleration, J7; RMS base shear of the combined
system, J8. J9 is the maximum peak damper force normalized
with the combined weight of the connected buildings. J10 is
the maximum peak damper stroke normalized with the maxi-
mum peak uncontrolled displacement. The maximum for J1,
J2, J3, J5, J6, J7, is taken across all storeys of the intercon-
nected system. For J9 and J10, the maximum is taken across
all dampers. A single damper is considered in the present case.
Lower values of the performance criteria corresponds to better
control.

Since earthquake induced vibrations occur for small dura-
tions, their control is essential mainly for maintaining struc-
tural integrity. Hence, interstorey drift and base shear are more
critical than displacement and acceleration. Further, base shear
is more critical than interstorey drift, since controlling the for-
mer is essential for maintaining the integrity of the overall
structure. Hence, the indices based on peak values are ranked
(J4, J2, J3, J1), and those based on RMS values are ranked
(J8, J6, J7, J5) in decreasing order of importance. Low val-
ues of damper force and stroke imply less power expended for
control. Hence, J9 and J10 are also important in determining
control effectiveness.
J1–J10 for effective controllers, obtained by varying sen-

sor configurations, state weighting and control weighting,
as shown in Tables 1 and 2, are compared in Fig. 6 and
Fig. 7. The controllers are labeled LQG-CVL-1(8A, Q2, R =
10−11), LQG-CVL-2(3A, Q2, 10−09), LQG-CVL-3(1A, Q2,
10−10); LQG-RNN-1(3A, Q2, 10−08), LQG-RNN-2(8A,1ID,
Q2, 0.5 × 10−08), LQG-RNN-3(1A, Q2, 10−08), LQG-
RNN-4(5ID, Q5, 10−14); OSOF-CVL-1(5A, Q3, 10−06),
OSOF-CVL-2(8A,1ID, Q1, 10−04), OSOF-CVL-3(8A,8ID,
Q4, 0.5 × 10−11); OSOF-RNN-1(5ID, Q4, 10−13), OSOF-
RNN-2(8A,1ID, Q1, 0.75 × 10−03), OSOF-RNN-3(8A,8ID,
Q4, 0.5 × 10−11). It is concluded, from the values obtained
for J1–J10, that LQG-CVL-1, LQG-RNN-2, OSOF-CVL-1,
OSOF-RNN-1 yield most effective control.

Amongst LQG-CVL controllers, LQG-CVL-1 is the most
effective since it affords the lowest J3, J4, J5, J6, J8, with J3
and J4 being at least 15% and 7% lower, respectively, than the

Table 2. Response quantities weighted in PI, corresponding state weight-
ing Q.

Notation Response weighted Q

Q1 5a, 1b, accelerations CTQ̂C,
Q̂ = diag[0 0 0 0 1 20 0 0 0]

Q2 all states I16×16

Q3 4a, 5a, 2b, accelerations CTQ̂C,
Q̂ = diag[0 0.06 2.1 0.1 0]

Q4 5a, 1b, displacement 016×16, except Q5,5=Q6,6=1
Q5 5a, displacement 016×16, except Q5,5=1

Table 3. Peak base shear (N).

Buil- Uncon- Passive- Passive- LQG OSOF LQR
ding trolled Off On CVL RNN CVL RNN CVL RNN
B5 7116 2593 2695 2018 1868 2019 1856 2060 1908
B3 3907 1709 3721 2695 3005 2857 2876 2873 2801

LQG-CVL-2/LQG-CVL-3 controllers. Amongst LQG-RNN
controllers, LQG-RNN-2 appears the most effective since it
affords the lowest J4, J5, J6, J7, J8. However, LQG-RNN-1
is comparable to LQG-RNN-2, except J4 for which it is 5%
higher. Thus LQG-RNN-1 is chosen as the most effective con-
troller since it requires fewer sensors than LQG-RNN-2 (i.e.,
3A instead of 8A,1ID). Note that LQG-RNN-3 is also compa-
rable to LQG-RNN-1, except for J7 and J8, i.e., it is possible
to realize quite effective control using a single accelerometer
feedback. LQG-RNN-4 is the least effective of the four LQG-
RNN controllers.

Amongst OSOF-CVL controllers, OSOF-CVL-1 is the most
effective. It affords the lowest J1, J2, J4, J7, J8, J9; and J5,
J6 comparable to OSOF-CVL-2/OSOF-CVL-3; and J3 8%
lower[higher] than OSOF-CVL-2[OSOF-CVL-3]. Amongst
OSOF-RNN controllers, OSOF-RNN-1 and OSOF-RNN-2
yield comparable results, and both are better than OSOF-RNN-
3. OSOF-RNN-1 requires fewer sensors than OSOF-RNN-2
(i.e., 5ID compared to 8A,1ID), and it affords the lowest J1,
J2, J3, J4, J8. Hence it is chosen as the most effective OSOF-
RNN controller. Thus very effective control is possible using
few sensors, as in LQG-RNN-1 (3A), OSOF-CVL-1 (5A), and
OSOF-RNN-1 (5ID).

Henceforth only the most effective controllers, i.e., LQG-
CVL-1, LQG-RNN-1, OSOF-CVL-1, and OSOF-RNN-1, se-
lected on the basis of performance criteria J1–J10 and the
effective usage of sensors, are considered. They are de-
noted LQG-CVL, LQG-RNN, OSOF-CVL, OSOF-RNN. On-
line CPU time required by LQG-CVL, LQG-RNN is 22.12 s,
30.15 s, and for OSOF-CVL, OSOF-RNN it is 1.76 s, 2.96 s,
respectively. Thus, time taken by OSOF controllers is an order
of magnitude less than LQG controllers. This is expected since
OSOF, unlike LQG, dispenses with running observer dynamics
for state estimation.

Peak base shear for various controllers (including the four
most-effective semiactive LQG/OSOF controllers) is shown
in Table 3. Reduction, vis-a-vis passive-on control, in peak
base shear of building B5[B3] is 25%[28%] with LQG-CVL,
31%[19%] with LQG-RNN, 25%[23%] with OSOF-CVL, and
31%[23%] with OSOF-RNN. Thus all four semiactive con-
trollers provide considerable reduction in peak base shear vis-
a-vis passive-on control, with the RNN controllers being more
effective in reducing the peak base shear of B5. Semiactive and
passive-on controllers result in a re-distribution of base shear
from flexible B5 to stiffer B3, thus yielding a higher base shear
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Figure 8. Performance of passive controllers versus applied voltage.

for B3 compared to B5. This is re-confirmed from storeywise
acceleration responses in Fig. 12. Although passive-off control
provides the lowest maximum peak base shear, it is unable to
re-distribute it to the stiffer building.

Performance criteria for passive controllers are shown in
Fig. 8. The constant applied voltage is varied in the range
[0, 2.25]V. The performance criteria increase/decrease almost
monotonically with voltage, i.e., there is no distinct minima
indicating an optimal passive-on voltage. J1 and J10 are min-
imum for passive-on with saturation voltage (2.25V). J2, J3,
J4, and J9 are minimum for passive-off (0V). J7 and J8
are minimum for 0.05V and 0.25V, respectively (i.e., almost
passive-off voltage), their minimum values being respectively
2% and 1% lower than the corresponding passive-off values.
J5 and J6 are minimum for 0.95V and 1.15V, respectively,
their minimum values being respectively 7% and 5% lower
than the corresponding passive-on values. If v = 1.05V is
chosen as the optimal passive-on voltage, the performance in-
dices J3–J9 reduce by 15%, 19%, 7%, 5%, 12%, 13%, and
32%, respectively, compared to the passive-on values. How-
ever, in that case, the passive-on controller is quite ineffective
in re-distributing base shear to B3, i.e., it acts almost like the
passive-off controller. Thus, for future comparisons, passive-
on control is considered with the saturation voltage (2.25V)
applied.

4.2. Peak/RMS Response
Maximum and storeywise values of peak/RMS responses

are compared (the maximum across all storeys of the con-
nected system is considered). The maximum drifts and dis-
placements occur in B5, at storey one and five, respectively, for
all controllers. Maximum accelerations occur at storey-five B5
for uncontrolled and passive control, and at different storeys of
B3/B5 for semiactive control.

Performance criteria are shown in Fig. 9 for passive con-
trollers and the most effective LQG/OSOF/LQR semiactive
controllers. Figure 9 shows that passive controllers yield 37–
62% reduction in max-peak responses and 72–85% reduc-
tion in max-RMS responses, when compared with the uncon-
trolled case. Compared to passive-off control, passive-on con-
trol provides comparable max-peak drift/displacement and at
least 15% reduction in the corresponding max-RMS values,

Figure 9. Performance of passive and semiactive LQG/OSOF controllers.

but an increase of 35%/25% in max-peak/max-RMS accelera-
tion. Thus passive-on control is effective in drift/displacement
control, but very ineffective in attenuating accelerations, vis-
a-vis passive-off control. This is also evident from storeywise
responses in Figs. 10–12.

For LQG/OSOF semiactive control, Fig. 9 shows that the
RNN controllers outperform the corresponding CVL ones.
Thus only LQG-RNN and OSOF-RNN are chosen for further
comparisons.

Passive-off versus LQG/OSOF semiactive control
Figure 9 shows that the overall performance of LQG-

RNN/OSOF-RNN semiactive controllers is superior to
passive-off control. However, passive-off control provides
the lowest max-peak acceleration, peak base shear, and peak
damper force. Note that passive-off control does not reduce
the base shear in the flexible buidling (B5) by re-distributing
it to the stiffer building (B3). Compared to passive-off con-
trol, LQG-RNN/OSOF-RNN afford: a reduction of 28–30%
in max-peak displacement/drift, but an increase of up to 7%
in max-peak accelerations; a reduction of 34–36% in max-
RMS displacement/drift, and 13–18% in max-RMS accelera-
tion. Thus, compared to passive-off control, LQG/OSOF con-
trol is very effective except for max-peak accelerations, which
increase slightly. Figures 10–12 show that compared to passive
off control, LQG/OSOF provide an attenuation of the storey-
wise responses of B5 but not B3.

Passive-on versus LQG/OSOF semiactive control
Figure 9 shows that, except for the damper stroke, passive-

on control performs the worst. Compared to passive-on con-
trol, LQG-RNN/OSOF-RNN afford a reduction of: 24% in
max-peak displacement, 31% in max-peak drift, and 20–25%
in max-peak acceleration; 23–25%, 19–22%, and 30–34%,
in the corresponding max-RMS values; and 7–8% in peak
damper force. Simulations show that LQG-RNN/OSOF-RNN
also yield a reduction of around 36% in RMS damper forces
compared to passive-on control. Thus the LQG/OSOF con-
trollers require less control effort and provide better response
attenuation, i.e., they are very effective compared to passive-on
control.

Figures 10, 11, and 12 show storeywise comparison of dis-
placement, drift, and acceleration. The LQG-RNN and OSOF-
RNN controllers yield comparable peak drifts, with the former
somewhat better for RMS drifts. They yield substantial re-
duction in drift vis-a-vis passive-on control (reduction of up
to 41% in peak drift and 38% in RMS drift). Attenuations
for B5 are somewhat higher than for B3. They also outper-
form passive-on control in displacement control (reduction of
19–31% in peak displacement and 15–32% in RMS displace-
ment). When compared to passive-on control, LQG/OSOF at-
tenuate peak acceleration by 23–55% and RMS acceleration
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Figure 10. Storey displacements: (a) Peak, (b) RMS.

Figure 11. Interstorey drifts: (a) Peak, (b) RMS.

by up to 36% across B5. However, there is an increase in peak
and RMS accelerations across B3, i.e., up to 37% and 35%,
respectively. Thus, semiactive LQG-RNN/OSOF-RNN con-
trollers yield considerable attenuation in storeywise peak/RMS
responses of both buildings, except accelerations of B3, which
increase considerably.

Comparison of LQR/LQG/OSOF semiactive controllers
LQG/OSOF controllers require fewer sensors compared to

LQR. The latter requires that all states be measured. Per-
formance criteria in Fig. 9 show that LQR-RNN is either
more effective or comparable vis-a-vis LQR-CVL. Various
combinations of Q and R, as considered for LQG/OSOF,
were also considered for LQR. The most effective LQR con-
trollers, whose performance criteria are shown in Fig. 9,
were obtained for (Q2, R = 0.5 × 10−8) for LQR-CVL
and (Q3, R = 0.25 × 10−4) for LQR-RNN. Hence, LQG-
RNN/OSOF-RNN/LQR-RNN controllers, being the most ef-
fective, are compared. They yield comparable max-peak re-
sponses, while LQG-RNN/OSOF-RNN yield up to 8% at-
tenuation in max-RMS responses as compared to LQR-RNN.
OSOF-RNN and LQR-RNN yield somewhat lower max-peak
acceleration and peak base shear, as compared to LQG-RNN.
LQR-RNN yields the lowest peak damper force amongst semi-
active (and passive-on) controllers (Fig. 9).

LQG-RNN is now compared with LQR-RNN for storeywise
responses. Figures 10–12 show that LQG-RNN is as effec-
tive or better in reducing RMS responses (especially acceler-
ations) of B3/B5. It is also effective in reducing peak accel-
erations of B5 to some extent, but it is not effective in reduc-
ing peak drifts/accelerations of B3, vis-a-vis LQR-RNN. For
B5 the peak-displacements and peak-drifts from LQG-RNN
are comparable with LQR-RNN (except storey five where the
peak-drift increases 14%). However, across B3 the peak-
displacements increase 6–7% and the peak-drifts increase up

Figure 12. Storey accelerations: (a) Peak, (b) RMS.

to 25%, when using LQG-RNN. Peak accelerations reduce up
to 33% across B5 (except storey five where it increases 14%),
but they increase up to 9% across B3. RMS-displacements re-
duce 7–8% and RMS-drifts reduce up to 10% across B5, and
are comparable across B3. RMS accelerations reduce up to
12% across B5, and 8–15% across B3.

Next, OSOF-RNN is compared with LQR-RNN for storey-
wise responses. Figures 10–12 show that OSOF-RNN is more
effective in reducing RMS-accelerations of B3 and to some
extent peak-accelerations of B5, but it is somewhat less effec-
tive in reducing peak-drifts of B3. It is comparable to LQR-
RNN for other peak/RMS responses. For B5 the peak-drifts
lie within −7% (attenuation) and 15% (accentuation), and the
RMS-drifts lie within −5% and 10% of LQR-RNN values.
For B3, OSOF-RNN yields an increase of up to 17% in peak-
drifts, while RMS-drifts are comparable to LQR-RNN. The
peak/RMS displacements are comparable across B5 and B3.
For B5 the peak-accelerations lie within −27% and 16%, and
the RMS-accelerations lie within −13% and 11% of LQR-
RNN values. For B3, OSOF-RNN yields an attenuation of up
to 7% in peak-accelerations and 9–19% in RMS-accelerations.

Table 3 shows that all three semiactive controllers yield
a comparable peak base shear (LQG-RNN is 7% higher
than LQR-RNN for B3). The damper forces from LQG-
RNN/OSOF-RNN are around 18% higher in peak value and
8% higher in RMS value when compared with LQR-RNN.

LQG-RNN and OSOF-RNN yield comparable max-
peak/max-RMS responses (OSOF-RNN yields 6%
lower[higher] max-peak[max-RMS] acceleration). They are
now compared for storeywise responses. Figures 10–12 show
that they yield comparable peak-displacements/peak-drifts.
LQG-RNN yields somewhat lower RMS-displacements/RMS-
drifts for B3/B5, and significantly lower peak/RMS accel-
erations for B5. OSOF-RNN yields a peak-drift between
−6% to 8% higher and RMS-drift up to 10% higher, as
compared to LQG-RNN. For B5, OSOF-RNN yields peak
accelerations up to 11% higher and RMS accelerations up to
20% higher than LQG-RNN. For B3, OSOF-RNN attenuates
peak accelerations up to 13%.

Summarizing, the three semiactive controllers are compa-
rable in peak drift and peak displacement control. OSOF-
RNN and LQG-RNN are somewhat more effective in the peak-
acceleration control of B3 and B5, respectively. LQG-RNN
is somewhat more effective in RMS response control. The
three semiactive controllers yield comparable peak base shear,
but the peak damper force is lower for LQR-RNN control.
Thus, OSOF-RNN/LQG-RNN controllers are quite effective in
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Figure 13. Time history of interstorey drift, storey-one: (a) B5, (b) B3.

Figure 14. Time history of absolute acceleration: (a) Storey-two B3,
(b) Storey-five B5.

attenuating storeywise/max-peak/max-RMS responses, when
compared with LQR-RNN.

4.3. Time History
Figure 13 shows the time history of interstorey drift at

storey-one B5 (where the max-peak/max-RMS drift occurs for
all passive/semiactive controllers). The response at storey-one
B3 is also shown. LQG-RNN and OSOF-RNN provide a sig-
nificant control of drift, as seen by the early attenuation (i.e.,
for t < 1.1s), when compared with passive-on control. Fig-
ure 14 shows the time history of accelerations at storey-two
B3 and storey-five B5 where max-peak acceleration occurs for
OSOF-RNN and passive-on controllers, respectively (note that
OSOF-RNN yields lower max-peak acceleration than LQG-
RNN). It is clear that both semiactive controllers attenuate the
acceleration of B5 but not B3.

Figure 15 shows the time history of applied voltage result-
ing from OSOF-RNN and OSOF-CVL controllers. The volt-
age is ‘off’ (v = 0) for around 81% of the duration and ‘on’
(v = 2.25 for CVL and 0 ≤ v ≤ 2.25 for RNN) for the
remainder. Thus the CVL and RNN semiactive controllers af-
ford power savings while also providing effective control vis-
a-vis passive-on control (for which the voltage is always ‘on’,
v = 2.25 V).

The time history of applied and desired damper forces, re-
sulting from LQG-RNN and OSOF-RNN, are compared in
Fig. 16. Both semiactive controllers produce applied forces

Figure 15. Time history of command voltage: (a) OSOF-RNN, (b) OSOF-
CVL.

Figure 16. Time history of desired, applied damper forces: (a) LQG-RNN,
(b) OSOF-RNN.

that closely follow the desired forces. The RMS of differ-
ence between the applied and desired forces is 278.12 N for
OSOF-RNN and 231.89 N for LQG-RNN. The difference be-
tween applied and desired forces is mainly due to three rea-
sons. Firstly, inverting damper dynamics (i.e., predicting the
command voltage for a given force) is difficult. Thus one
has to resort to ‘approximate’ voltage laws like CVL/RNN.
Secondly, damper saturation occurs at v = 2.25 V. This lim-
its the maximum damper force generated, irrespective of the
force desired. Thirdly, the damper constitutive law (Eqs. (7)–
(11)) yields applied-force versus velocity lying predominantly
in the 1st and 3rd quadrants (Fig. 17(a) and Fig. 17(d)). How-
ever, LQG-RNN and OSOF-RNN controllers yield desired-
force versus velocity lying in all quadrants (Fig. 17(b) and
Fig. 17(e)). Hence desired forces in the 2nd and 4th quad-
rants are unrealizable. Thus, differences in applied and desired
forces would occur even if a more accurate force-voltage law
is devised. LQG-RNN appears somewhat better than OSOF-
RNN in producing damper forces close to the desired ones
(Fig. 17(c) and Fig. 17(f)).

4.4. Controller Effectiveness—Performance
for Other Base Excitations

The results presented so far pertain to the El-Centro exci-
tation. Now, in order to assess the effectiveness of the semi-
active controllers, their performance is evaluated and com-
pared with that of passive controllers for the following excita-
tions: (i) Gaussian White Noise (GWN), (ii) Hachinohe—N-S
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Figure 17. Applied/Desired force versus velocity: (a,b,c) LQG-RNN,
(d,e,f) OSOF-RNN.

Table 4. Peak base shear (N).

Ground Build- Uncon- Passive- Passive- LQR- LQG- OSOF-
Excitation ding trolled off on RNN RNN RNN
GWN B5 3034 1203 982 904 964 851

B3 2817 923 1243 1088 1071 997
Hachinohe B5 2534 643 562 559 579 486

B3 596 567 720 596 589 599
Managua B5 19597 5805 3924 3205 3121 3672

B3 5383 2559 4682 3630 3543 3293
Northridge B5 7100 3672 3427 3024 3013 3378

B3 3691 2698 3463 2807 2711 2716
Kobe B5 22416 8094 4897 5659 5873 6566

B3 8873 6748 5505 5223 5076 5152

component, Japan, 1968, (iii) Managua, Nicaragua, 1972, (iv)
Northridge—N-S component, Sylmar County Hospital, Cali-
fornia, 1994, and (v) Kobe—N-S component, Kobe Japanese
Meterological Agency station, 1995. The excitations in (ii)–(v)
are time-scaled by a factor of 19.2, 2.6, 11, and 2.5, respec-
tively, in order to excite the fundamental mode of the experi-
mental building. The sensor configurations, state weighting Q,
and control weighting R are considered the same as those ob-
tained for the most effective controllers during the El-Centro
study.

Table 4 shows the peak base shear obtained using passive
controllers and semiactive controllers. The uncontrolled case
generally yields the highest peak base shear. When compared
to the passive controllers, the semiactive controllers mostly
yield a lower peak base shear for the flexible building (B5). In
fact, when compared with passive-on control, the semiactive
controllers afford marginal to substantial reductions in peak
base shear for both buildings, except for B5 in the case of the
Kobe excitation. Semiactive and passive-on controllers mostly
result in a re-distribution of base shear from B5 to B3. Passive-
off control yields the lowest peak base shear for B3, except in
the case of the Kobe excitation. However, it is unable to re-
distribute the base shear.

The performance criteria obtained from the five controllers
are shown in Fig. 18.

Max-peak displacement (J1): Passive-off control is the least
effective. Compared to passive-on control, the performance
of semiactive controllers is 9–25% better for the El-Centro,
Hachinohe, and Managua excitations, but 18–29% worse for
the Kobe excitation. For the GWN and Northridge excitations,
the performance of LQR-RNN/LQG-RNN is comparable with
passive-on control, while that of OSOF-RNN is 11–15% worse
than that of passive-on control.

Max-peak drift (J2): Passive-off control is the least effec-
tive. Compared to passive-on control, the performance of

Figure 18. Performance of passive and semiactive controllers: (a) El-Centro,
(b) Gaussian white noise (GWN), (c) Hachinohe, (d) Managua, (e) Northridge,
and (f) Kobe excitations.

semiactive controllers is up to 31% better, except for the Kobe
excitation for which it is 16–34% worse.

Max-peak acceleration (J3): Passive-on is the least effec-
tive, except in the case of the Kobe excitation for which it
is comparable to semiactive control. Compared to passive-
off control, the performance of semiactive controllers is 6–
31% better for the Managua, Northridge, and Kobe excitations,
comparable for the El-Centro and Hachinohe excitations, but
up to 15% worse for the GWN excitation.

Peak combined base shear (J4): Passive-on is the least ef-
fective, except in the case of the Kobe excitation for which it
is comparable to semiactive control. Compared to passive-off
control, the performance of semiactive controllers is up to 34%
better for GWN, Hachinohe, Managua, and Kobe excitations,
comparable for the Northridge excitation, but 16–27% worse
for the El-Centro excitation.
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Max-RMS displacement (J5): Passive-off control is the least
effective. Compared to passive-on control, the performance of
semiactive controllers is up to 24% better, except in the case
of the Kobe excitation for which it is comparable when using
LQR-RNN and LQG-RNN, but 20% worse when using OSOF-
RNN.

Max-RMS drift (J6): Passive-off control is the least effec-
tive. Compared to passive-on control, the performance of
semiactive controllers is up to 22% better, except in the case
of the Kobe excitation for which it is comparable when using
LQR-RNN and LQG-RNN, but 24% worse when using OSOF-
RNN.

Max-RMS acceleration (J7): Semiactive controllers per-
form up to 40% better than passive-off control and up to 34%
better than passive-on control.

RMS combined base shear (J8): Passive-on is the least ef-
fective, except in the case of the Kobe excitation for which it
is comparable to semiactive control. Compared to passive-off
control, the performance of semiactive controllers is up to 36%
better for the Hachinohe, Managua, Northridge, and Kobe ex-
citations, comparable for the El-Centro excitation, but up to
10% worse for the GWN.

Peak damper force (J9): As expected, passive-off control
yields the lowest peak damper forces. However, it is unable
to reduce the base shear of the flexible building B5 by re-
distributing it to the stiffer building B3. Passive-on control and
semiactive controllers yield comparable peak damper forces.

Peak damper stroke (J10): Passive-on control is the most
effective in reducing the peak damper stroke, while passive-off
control is the least effective in this regard.

Thus, for the range of ground excitations considered, the
performance of semiactive controllers is generally superior to
that of passive controllers. The exceptions are in the case of
the Kobe excitation for which passive-on yields the lowest
max-peak/max-RMS displacement/drift, the GWN excitation
for which passive-off yields the lowest max-peak acceleration
and RMS combined base shear, and the El-Centro excitation
for which passive-off yields the lowest peak combined base
shear. However, passive-off control is unable to redistribute
the base shear from the flexible B5 to the stiffer B3. In general
LQG-RNN performs somewhat better than OSOF-RNN.

5. CONCLUSIONS

Seismic control is studied for a five-storey flexible build-
ing coupled by an MR damper to a three-storey stiff building.
LQG/OSOF control determines the desired damper force, fol-
lowing which CVL/RNN determine the command voltage re-
quired to produce this force. Various sensor configurations and
state/control weightings are considered so as to obtain the most
effective controllers on the basis of performance criteria J1–
J10. Semiactive and passive controllers are compared. This
permits the following conclusions:

(i) When compared to passive-on control, LQG/OSOF pro-
vide a significant reduction in responses, base shear,

damper force, and ‘on’ duration of applied voltage. Only
the storeywise accelerations of the B3 increase signifi-
cantly, thus resulting in the re-distribution of base shear
from the flexible to stiff building. Thus semiactive con-
trollers require considerably less control effort and power
and yet provide better response attenuation.

(ii) Semiactive controllers using RNN outperform those us-
ing CVL. All three semiactive RNN controllers are
comparable in max-peak response control (LQG-RNN
yields somewhat higher max-peak accelerations). LQG-
RNN/OSOF-RNN yield somewhat better attenuation (up
to 8%) in max-RMS responses compared to LQR-
RNN. Storeywise peak displacements/drifts are compa-
rable across the three semiactive controllers. LQG-RNN,
and to an extent OSOF-RNN, are more effective in atten-
uating storeywise peak-accelerations compared to LQR-
RNN. LQG-RNN is the most effective in storeywise RMS
response control. All three semiactive controllers yield a
comparable peak base shear. LQG-RNN/OSOF-RNN re-
quire somewhat higher damper forces (peak value 18%
higher than LQR-RNN) to achieve comparable control.
Thus, using much fewer sensors, LQG-RNN/OSOF-RNN
yield control that is as at least as effective as LQR-RNN,
albeit by using a somewhat higher damper force.

(iii) LQG-RNN and OSOF-RNN yield comparable max-
peak/max-RMS responses and storeywise peak displace-
ments/drifts. LQG-RNN yields somewhat lower storey-
wise RMS displacements/drifts than OSOF-RNN. For
the flexible building, B5, LQG-RNN yields significantly
lower peak/RMS accelerations, while for the stiffer build-
ing, B3, OSOF-RNN yields substantially lower peak ac-
celerations. Both controllers yield comparable peak base
shears. However, OSOF requires an order-of-magnitude
lesser online computation time. Thus, both LQG-RNN
and OSOF-RNN provide effective control, but OSOF-
RNN is quicker.

(iv) For the range of ground excitations considered, the per-
formance of semiactive controllers is generally superior to
that of passive controllers. However, in the case of Kobe
excitation, passive-on yields the lowest max-peak/max-
RMS displacement/drift. In general LQG-RNN performs
somewhat better than OSOF-RNN.

(v) Choice of feedback and state weighting is crucial in
obtaining effective control. For example LQG-RNN
with only drift feedback and Q2 state weighting, or
OSOF-RNN with only acceleration feedback andQ4 state
weighting, yield ineffective control since desired and ap-
plied forces have opposite signs, i.e., the desired force
cannot be realized.

(vi) Effective control is possible using few sensors. For
example LQG-RNN with (8A,1ID), (3A), (1A), sensor
configurations are comparable. Also, OSOF-RNN with
(8A,1ID), (5ID), (5A) sensor configurations are compa-
rable. Thus an effective controller can even be designed
using a single accelerometer (at storey-five of B5).
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In this investigation, by introducing a relatively comprehensive acoustic equations system, the possibility of a more
precise time and spatial pattern for sound wave propagation in fluid was revealed. Since the conservation equa-
tion is known as a fundamental equation for obtaining the wave equation, initially, by using scale analysis, the
differential terms and weight coefficients are converted into the dimensionless form. Then, by assuming the ampli-
tudes of the sound sources are small and by utilizing the perturbation technique, these dimensionless equations are
converted into different orders based on the order of acoustical fluctuations. Consequently, it was shown that the
obtained first order equations are representative of acoustical equations. Also, the results are indicative of the first
order equations being coupled with the leading order ones. Comparison of the obtained acoustic the equations of
the present study are capable of considering velocity, viscosity, and density changes of the background fluid flow.
In the end, the effects of the flow velocity with a different Mach number on the acoustical distribution pattern that
stemmed from different sound sources have been studied for several benchmarks.

1. INTRODUCTION

The linear equation of the wave was founded on the basis
of the linear constitutive theory in fluid mechanics and the as-
sumption of sound waves with a small amplitude.1 Linear con-
stitutive theory of the fluid medium being used in the formu-
lation of the linear equation of the wave includes the assump-
tion of non-viscous and stationary background fluid flow with
constant density. In light of these assumptions, linear wave
equations in many fields of hydrodynamics and aerodynam-
ics related to sound wave propagation are valid. Studies con-
ducted on the noise generated by a hydrodynamic or aerody-
namic occurrence in a time domain could be categorized into
three groups.2 The first group is based on the suggested acous-
tic analogy by Lighthill.3 The linear acoustic wave which is
placed on the left side of the Lighthill model is capable of
evaluating wave propagation under the effect of sound sources
placed on the right side of model. Ffowcs Williams and Hawk-
ings (FWH) extended this analogy by adding the effects of
unsteady surface pressure.4 Seol and Salvator’s studies are
amongst those related to the FWH model in the investigation
of the underwater propeller’s noise.5–8 Although by using such
models it is possible to identify patterns of wave propagation
and directivity in the far field, this type of noise estimation
methodology presents many assumptions such as those consid-
ered in linear acoustics, a low Mach number, and compressed
sound sources.2

Another group of noise estimation viewpoints includes re-
search utilizing Direct Numerical Simulation (DNS) to model
and simulate the hydrodynamics of fluid with its acoustic

noise, directly and simultaneously. The advantage of using
this method is in its limitless capability by which noise gen-
erated by all fluid flow such as a low Mach flow or a flow
with a high Reynolds number could be obtained.2 At the same
time, scaled use in aerodynamics and hydrodynamics simula-
tions have much difference with scaled use in acoustic simu-
lation. This inequality of scales has caused the utilization of
DNS in aerodynamic and hydrodynamic fields to be very dif-
ficult.9 Moreover, using the DNS method is very time con-
suming. Seo, et.al chose the DNS method to find the noise
of the cloud cavitation.10 They used the compressible Navier-
Stokes equations and a homogeneous equilibrium model based
on fluctuating density to simulate noise generation in a flow
field.

The third point of view is, in fact, a hybrid method between
the two fields of hydrodynamics and acoustics or between the
two fields of aerodynamics and acoustics. Some of these hy-
brid methods are formed based on dividing the flow field into
compressible hydrodynamic and compressible acoustic pertur-
bation equations (or Perturbed Euler Equations).11–13 Seo and
Moon present a set of revised Perturbed Euler Equations ca-
pable of calculating the effects of compressibility in the near
field.14 They also developed a set of linearized, perturbed,
compressible equations to overcome the occurred instability in
numerical calculations caused by perturbed vorticity.9, 15 Ewert
and Schröder formulated several acoustic perturbation models
based on the different sound sources derived from compress-
ible flow simulation.3 They initially simulated the compress-
ible flow and generated acoustic sources. Then on the basis of
the type of formed sound sources, by using the suitable acous-
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tic perturbation equation, they analysed the time and spatial
wave propagation pattern. By using this hybrid method, Ewert
also simulated the trailing edge noise of a propeller.16

Alongside studies mentioned thus far, some investigated the
nonlinear effects caused by a high sound pressure level. Walsh
and Torres presented a weak formulation of nonlinear acous-
tic equations.1 They discretized and solved these governing
equations by using the finite element method. Kuznetsov in-
troduced classic wave equations containing the second order
effects of nonlinearity.17 Söderholm has developed these equa-
tions by using the precise state equation.18 Also, Hoffelner, et
al. demonstrated the effects of nonlinearity in high frequency
such as ultrasonic increases, and as a result, considering these
effects in high frequency is highly important.19

Considering the points discussed, in light of the need for the
presentation of precise mathematical models for the estimation
of sound wave propagation, in this investigation, attempts have
been made to present a complete and, at the same time, precise
model to estimate the time and spatial pattern of sound wave
propagation. This has been done by decomposing the conser-
vation equations of mass, momentum, and energy including
the state equation of a different order. This order separation
is based on the fluctuation of acoustic sources and is done by
using the perturbation method. Hence initially, by utilizing
scale analysis, differential terms, and their coefficients, equa-
tions of conservation are converted into a dimensionless form.
Then, by assuming the amplitude of sound source fluctuations
as very small and utilizing the perturbation method, equations
would decompose into different orders based on the order of
acoustic fluctuations. Results show that first order equations
are coupled with leading order equations. Comparing the ob-
tained acoustic model with linear acoustic equations reveals
that the presented equations in this study are capable of con-
sidering velocity, viscosity, and density variations of the fluid
flow and the effects on wave propagation. Finally, the effect
of flow velocity with different Mach numbers on the pattern
of wave propagation for different sound sources has been anal-
ysed and studied during several benchmarks.

2. MATHEMATICAL FORMULATION OF
ACOUSTIC MODEL

Since acoustics are an ingredient of fluid flow dynamics, it
would be possible to describe and model the sound radiated
from different events in a fluid medium in addition to the hy-
drodynamics of them. This is done by using the governing
conservation laws including conservation of mass, momentum,
and energy for elementary particles of the fluid. Equations (1)
through Eq. (3) represent general dimensional forms in the
conservation of mass (continuity), momentum, and a combi-
nation of energy and state equations.20

∂ρ

∂t
+∇ · (ρ~u) = ρQ; (1)

∂(ρ~u)

∂t
+ (~u · ∇)(ρ~u) = −∇p+

µ

[
∇2~u+

((
1

3
+
µv
µ

)
∇
(
div(~u)

))]
+ ρ~uQ; (2)

∂p

∂t
+ (~u · ∇)p = c2 [−ρdiv(~u)] +(

c2β

cp

)[
µv(∇ · ~u)2 + 2µ

{
eijeji −

1

3
e2ii

}]
. (3)

In these equations, ρ(X, t) is the density, ~u(X, t) is the veloc-
ity, Q(X, t) is the rate of fluid volume fluctuations, p(X, t) is
the pressure of fluid, µ is the viscosity , µv is the bulk viscos-
ity, eij is the tensor of strain rate, c is the speed of sound , cp
is the heat capacity at constant pressure, T is the temperature,
and β = 1

ρ

(
∂ρ
∂T

)
p0

is the constant. Since in the present study

the objective is to present an applied acoustic formulation for
different problems in the fluid environment, it is necessary to
convert all equations into a dimensionless form. In this way,
depending on the problem, it is possible to disregard the less
important terms by comparing the weight of each term.

2.1. Scale Analysis (Dimensional Analysis)
To make the governing equations dimensionless, the follow-

ing relations are used:

p = P̃ p∗; ~u = Ũ~u∗; ρ = ρ̃ρ∗; t =
t∗

ω̃
; Q = Q̃Q∗;

X,Y, Z = L̃x, L̃y, L̃z ⇒ ∇ =
∂

∂x
=

∂

L̃∂x
. (4)

In the above relations, terms containing the star index (∗) are
the order of one. Also, terms shown by the index of (˜) are
scale parameters in need of being selected from available phys-
ical parameters in the studied problem. Finally, by applying the
above relations in Eq. (1) through Eq. (3), differential terms are
made dimensionless. Then by conducting several mathemati-
cal operations, coefficients of these differential terms become
dimensionless. Equation (5) through Eq. (7) are indicative of
the dimensionless form of conservation equations.

St
∂ρ∗

∂t∗
+∇ · (ρ∗~u∗) =

(
LQ̃

Ũ

)
ρ∗Q∗; (5)

St

[
∂(ρ∗~u∗)

∂t∗

]
+
[
~u∗∇ · (ρ∗~u∗)

]
= Eu [−∇p∗] +

1

Re

[
∇2~u∗ +

(
1

3
+
µv
µ

)(
∇div(~u∗)

)]
+

(
LQ̃

Ũ

)
ρ∗~u∗Q∗;

(6)

(St)(Eu)

[
∂p∗

∂t∗

]
+ (Eu)

[
(~u∗ · ∇)(p∗)

]
=(

c

Ũ

)2 [
− ρ∗div(~u∗)

]
+(

c2β

cp

)[
1

Rev
(∇ · ~u∗)2 + 1

Re
2

{
e∗ije

∗
ji −

1

3
e∗2ii

}]
; (7)
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where, (Re), (St), and (Eu) are Reynolds, Strouhal, and Eu-
ler dimensionless numbers. Now, in order to separate and de-
compose these equations that are dimensionless into two or-
ders related to hydrodynamics and the acoustics of fluid flow,
the Perturbation method will be used.

2.2. Decomposition of Governing Equations
by Using the Perturbation Method

In light of the inequality between the time and spatial scales
in the hydrodynamic solution of fluid flow with scales of its
acoustic solution, using Direct Numerical Solution (DNS) in
research for both aeroacoustics and hydroacoustics is very dif-
ficult and cumbersome. Moreover, using the DNS method is
usually very time-consuming. On the other hand, considered
assumptions in linear acoustics do not provide the possibil-
ity of considering effects like velocity, viscosity, and density
changes of the background flow. Therefore, in the present
study, it was attempted that by using the perturbation method,
the governing equations of the hydrodynamics of flow became
separated from equations governed in acoustics induced by that
flow. Then, each one of these equations could be analysed and
studied in the related computational domain.

In general, volume fluctuations in the fluid lead to the prop-
agation of acoustic noise. On the other hand, the propagated
sound waves from most phenomena in fluid with the exception
of explosions or shock waves have fluctuations with small am-
plitude. Thus, it could be stated that the changes of volume
sound sources in the fluid also have very small amplitude. The
order of the governing equation in the acoustics of the fluid
flow is from the same order of the volume fluctuations. So,
if wave propagation in the fluid flow is viewed as the pertur-
bation approach, then the order of the equations used in the
modelling of the flow is much larger than the acoustic equa-
tions of the flow. As a result, by using the perturbation method
and based on the order of acoustic fluctuations, conservation
equations could be converted into different orders. In the per-
turbation method, the perturbed term is shown with (ε). This
term must be selected from the parameters of the considered
problem. In light of the points mentioned and the objective
of present research, which is separating equations on the ba-
sis of acoustic fluctuations, for the present study, ε = Q̃Ũ

L is
considered. The following assumptions exist in equations:

p∗(X, t, ε) = h0(ε)p0(X, t) + h1(ε)p1(X, t) + o (h1(ε)) ;

~u∗(X, t, ε) = f0(ε)~u0(X, t) + f1(ε)~u1(X, t) + o (f1(ε)) ;

ρ∗(X, t, ε) = g0(ε)ρ0(X, t) + g1(ε)ρ1(X, t) + o (g1(ε)) ;

Q∗(X, t, ε) = m0(ε)Q0(X, t) +m1(ε)Q1(X, t) + o (m1(ε)) .

(8)

In these relations, p0, ~u0, ρ0, Q0 are dimensionless forms of
pressure, velocity, density, and volume fluctuations in the lead-
ing order. Moreover, p1, ~u1, ρ1,Q1 are dimensionless forms of
pressure, velocity, density, and volume fluctuations in the first
order. Terms h0, h1, . . . ,m0,m1 are indicative of the weight

of dimensionless parameters. On the basis of the above defini-
tions, in this study, only the separating of the equations in the
two orders of the leading and the first order has taken place.
After placing the relationships of Eq. (8) into Eq. (5) through
Eq. (7), the resulting equations need to be decomposed into
different orders. This calls for obtaining the relationships of
each of the weighting terms (h0, h1, . . . ,m0,m1) with the per-
turbed parameter (ε) from the stand point of order. Also, it
needs to be considered that based on the applied definition
in this study, it is presumed that the leading order equations
must satisfy the conditions governing flow dynamics, and the
first order equations must satisfy the conditions governing the
acoustics of flow. In other words, relations between weighting
terms of dimensionless parameters and perturbed terms have
to be obtained such that after the decomposition of equations
in different orders, the leading order equations can be capable
of solving the flow field precisely. Moreover, the obtained first
order equations should be indicative of linear wave equations
after applying assumptions of linear acoustics (including non-
viscos and static fluid). Alongside these points, the definition
of xn+1(ε) = o (xn(ε)) and the concept of minimum possible
conditions has been used. Eventually, after simplification, the
only condition agreeable with the physical parameters of ve-
locity, density, pressure, and volume source fluctuations would
be obtained as following:

p∗ = p0 + εp1;

~u∗ = ~u0 + ε~u1;

ρ∗ = ρ0 + ερ1;

Q∗ = Q0 + εQ1. (9)

Finally, these forms of parameters are applied in Eq. (5)
through Eq. (7). Then, the obtained equations would be de-
composed based on the order of the weight of the differen-
tial terms. Equations that are in the order of one {O(1)} in-
dicate leading order equations. Also, equations of the order
of {O(ε)} are first order or acoustic equations. The group of
equations, Eq. (10) through Eq. (12), are indicative of leading
order equations:

(St)
∂ρ0
∂t

+∇ · (ρ0~u0) = 0; (10)

(St)

[
∂(ρ0~u0)

∂t

]
+
[
~u0∇ · (ρ0~u0)

]
= (Eu) [−∇p0] +

1

Re

[
∇2~u0 +

(
1

3
+
µv
µ

)(
∇div(~u0)

)]
; (11)

(St)(Eu)
∂p0
∂t

+ (Eu)(~u0 · ∇)p0 =

(
c

Ũ

)2

ρ0(∇ · ~u0) +(
c2β

cp

)[
1

Rev
(∇ · ~u0)2 +

1

Re
2

{
e0ije

0
ji −

1

3
(∇ · ~u0)2

}]
.

(12)

As it can be observed, leading order equations are, in fact,
the most general form of governing equations on the hydro-
dynamics of viscous and compressible fluid flow.21, 22 Also,
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Eqs. (13) through Eq. (15) are indicative of the obtained acous-
tical model.

(St)
∂ρ1
∂t

+∇ · (ρ0~u1) +∇ · (ρ1~u0) = ρ0Q0; (13)

(St)

[
∂(~u0ρ1)

∂t

]
+ (St)

[
∂(ρ0~u1)

∂t

]
+
[
(~u0)∇(~u0ρ1)

]
+[

(~u0)∇(~u1ρ0)
]
+
[
~u1∇(~u0ρ0)

]
= (Eu)

[
−∇(p1)

]
+

1

Re

[
∇2(~u1) +

(
1

3
+
µv
µ

)(
∇div(~u1)

)]
+ ρ0~u0Q0; (14)

(St)(Eu)
∂p1
∂t

+ (Eu)(~u0 · ∇)p1 + (Eu)(~u1 · ∇)p0 =

−
(
c

Ũ

)2

ρ0(∇ · ~u1)−
(
c

Ũ

)2

ρ1(∇ · ~u0) +(
c2β

cp

)[
1

Rev
· 2 · (∇ · ~u0)(∇ · ~u1) +

1

Re
2

{
1

4

∂u0i
∂xj

∂u1j
∂xi

+
1

4

∂u0i
∂xj

∂u1i
∂xj

+
1

4

∂u1i
∂xj

∂u0j
∂xi

+

1

4

∂u0j
∂xi

∂u1j
∂xi

− 1

3
· 2 · (∇ · ~u0)(∇ · ~u1)

}]
. (15)

Considering the present terms in Eq. (13) through Eq. (15), it
could be concluded that the obtained acoustic equations system
is coupled with the leading order ones. The observed coupling,
in fact, is a kind of static coupling and is unilateral. In other
words, the solving of the acoustic equations is only in need
of determining the terms of the leading order like ~u0, ρ0, p0,
Q0. Also, there is no need to solve the leading and first or-
der equation simultaneously. Generally, it would be possible
to find these terms from an individual solution of the leading
order equations. By applying the assumptions of linear acous-
tics in Eqs. (13) through Eq. (15), it could be shown that these
equations will also end up as a linear wave formulation. This
point can be considered as validity of the obtained acoustic
model. Despite everything discussed, in proceeding, first, the
validation of the obtained acoustic model will take place for a
benchmark problem. Then, during the two other benchmarks,
this acoustic model will apply for different sound sources, in-
cluding dipole and quadrupole. Finally, the effect of the back-
ground fluid velocity on the sound wave propagation pattern in
several benchmark problems will be reviewed and studied.

3. NUMERICAL RESULTS OBTAINED FROM
ACOUSTIC MODEL

Benchmark problems considered in the present study in-
clude the presence of the spherical sound sources, which are
located along the fluid flow with different velocities. In light
of the existing symmetry in the problem, to present the numer-
ical solution, it was attempted to use cylindrical axisymmetric
coordination. Also, in order to solve the acoustical system of
equations, the finite element method has been used. So, first,

the momentum equation must be decomposed into two equa-
tions along (r) and (z) based on the velocity axis in the form
of ~u1 = u1r~er + v1z~ez . Then, by disregarding terms along
(θ), acoustic equations in cylindrical axisymmetric coordinates
will be in the following forms:

∂ρ1
∂t

+

(
u1r

∂ρ0
∂r

+ u1z
∂ρ0
∂z

)
+ ρ0

(
∂u1r
∂r

+
u1r
r

+
∂u1z
∂z

)
+(

u0r
∂ρ1
∂r

+ u0z
∂ρ1
∂z

)
+ ρ1

(
∂u0r
∂r

+
u0r
r

+
∂u0z
∂z

)
= ρ0Q0;

(16)

(
ρ1
∂u0r
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+ u0r
∂ρ1
∂t

+ rho0
∂u1r
∂t

+ u1r
∂ρ0
∂t

)
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)
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= ρ0u0rQ0; (17)
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= ρ0u0zQ0; (18)
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∂p1
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∂p1
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+

(
u1r

∂p0
∂r

+ u1z
∂p0
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+
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)2(
∂u1r
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+
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+
∂u1z
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+

ρ1

(
C

U

)2(
∂u0r
∂r

+
u0r
r

+
∂u0z
∂z

)
= 0. (19)

3.1. Validation of the Acoustic Model
As mentioned earlier, by placing the assumptions of linear

acoustics in the presented acoustic models, the linear wave
equation could be found. Nevertheless, in order to validate
the equations and the algorithm of the solution, initially, a sim-
ple benchmark problem is used. This problem contains single
frequency oscillations of a spherical sound source in a static
fluid flow. In the proposed benchmark problems in this study,
the scale parameters used are based on water as the background
fluid with the following properties in the form of L = 130 mm,
ω̃ = L/Ũ , Ũ = 1500 m/s, ρ̃ = 1000 kg/m3, P̃ = ρ̃Ũ2 with
the given values. The oscillating sphere and the computational
domain shape in the cylindrical axisymmetric coordinate is as
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Figure 1. View of the cylindrical axisymmetric computational domain.

a half-circle. Figure 1 depicts a view of the computational do-
main beside the oscillating sphere in the cylindrical axisym-
metric coordinate.

To prevent the effects of wave reflection and return, the
computational domain extends to the point where, in light of
sound wave velocity, during the time of the numerical anal-
ysis of the problem, the sound wave won’t reach the end of
the computational domain. Also, in order to prevent numer-
ical instability, the Laplace of acoustic pressure and density
will be considered zero on the end boundary of the compu-
tational domain. The boundary condition on the oscillating
sphere with a dimensionless radius of radious = 0.035 (m)/L
is ~u ·~n = 0.005

Ũ
∗ sin

(
2π ×

(
515
ω̃

)
t∗
)
. This problem is a model

of a monopole sound source in the static fluid oscillating in
the sinusoidal form with a frequency of f = 515 Hz. More-
over, in order to review independence from the mesh grid, the
above problem was repeated for four different mesh grids. In
the selected mesh grid, the number of applied elements in the
finite element solution is equal to 104,880. The dimensionless
acoustic pressure obtained from this mesh grid compared to
those obtained from a mesh grid containing 152,600 elements
presented 0.3% relative error. Therefore, to reduce the calcula-
tion time, the mesh grid with the lower number of elements was
chosen as a final mesh grid. Figure 2(a) is indicative of the time
history of dimensionless acoustic pressure for the two sensors
located within the distances r̃1 = 7 (m)/L and r̃2 = 21 (m)/L.
Figure 2(b) depicts the frequency response of dimensionless
acoustic pressure for the same sensors.

According to Fig. 2(a), considering the sinusoidal pattern of
the sound source fluctuations, the time response also possesses
a sinusoidal form. On the other hand, in light of the results
of the frequency response in Fig. 2(b), and based on the fre-
quency response being dimensionless, if the obtained dimen-
sionless value of f = 0.28 was returned to the dimensional
form, this value would be f = 514.19 Hz. This number is
indicative of the overlapping of stimulation and response fre-
quency. Furthermore, it could be observed that the sound wave
intensity at distance r̃2 from the source is decreased substan-
tially compared to the distance due to divergence losses. In
order to study the accuracy of the point mentioned, the Root
Mean Square (RMS) of dimensionless pressure, which is in-
dicative of effective sound pressure, would be compared to the

Figure 2. (a) Time response of dimensionless acoustic pressure for 2 sensors
located at r̃1 = 7 (m)/L and r̃2 = 21 (m)/L; (b) Frequency response of
dimensionless acoustic pressure for 2 sensors located at r̃1 = 7 (m)/L and
r̃2 = 21 (m)/L.

results obtained from an analytical relation. According to the
Distance Law, the following relation exists for a point source:
According to Fig. 2(a), considering the sinusoidal pattern of
the sound source fluctuations, the time response also possesses
a sinusoidal form. On the other hand, in light of the results
of the frequency response in Fig. 2(b), and based on the fre-
quency response being dimensionless, if the obtained dimen-
sionless value of f = 0.28 was returned to the dimensional
form, this value would be f = 514.19 Hz. This number is
indicative of the overlapping of stimulation and response fre-
quency. Furthermore, it could be observed that the sound wave
intensity at distance r̃2 from the source is decreased substan-
tially compared to the distance due to divergence losses. In
order to study the accuracy of the point mentioned, the Root
Mean Square (RMS) of dimensionless pressure, which is in-
dicative of effective sound pressure, would be compared to the
results obtained from an analytical relation. According to the
Distance Law, the following relation exists for a point source:

p2 = p1 ·
r1
r2

;

20 · log
(
p2
)

dB = 20 · log
(
p2
)

dB + 20 · log
(
r1
r2

)
dB
. (20)

The above equations are indicative of the relationship of ef-
fective acoustic pressure p1, p2 between 2 points at distances
r1 and r2 from the sound source, in terms of pressure unit and
decibel. Now, if in light of simulation results, effective pres-
sure p1 at distance r̃1 = 7 (m)/L be presumed as known, then,
by using the distance law, effective pressure at distance r̃2 =

21 (m)/L could be estimated. So, for comparing a numeri-
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Table 1. Comparison of results of obtained effective pressure from numerical
and analytical solutions at distance r̃2 = 21 (m)/L.

Numerical results of obtained effective pressure level
-336.707

at distance of r̃2 = 21 (m)/L and in dB unit
Analytical results of obtained effective pressure level

-349.099
at distance of r̃2 = 21 (m)/L and in dB unit

Relative error 3.550%

cal model presented here with the analytical model, it is as-
sumed that the effective pressure p1 at distance r̃1 = 7 (m)/L
is known. Then, from the numerical model that is introduced in
this paper and the analytical model referred to as Distance Law,
effective pressure p2 at distance r̃2 = 21 (m)/L would be pre-
dicted. For this goal, initially, the effective pressure at the dis-
tance of r̃1 = 7 (m)/L must be specified. In this investigation,
it is chosen from numerical results and from time series pres-
sure data. The Root Mean Square (RMS) of these dimension-
less time pressures, which is indicative of effective sound pres-
sure at distance r̃1 = 7 (m)/L, is obtained. For analytical re-
sults, this value is considered as p1 in Distance Law and is used
for calculating p2. On the other hand, by calculating RMS of
the sound pressure time series data at distance r̃2 = 21 (m)/L,
numerically and directly, p2 is estimated. Results of the ob-
tained effective pressure directly from the present study are
compared with results of the analytical solution at a distance
of r̃2 = 21 (m)/L and are presented in Table 1.

It is noteworthy that the obtained values are based on di-
mensionless results. Comparing the numerical and analytical
results of the effective pressure level of sound in the problem
shows that the acoustic model used in this study has been capa-
ble of modelling divergence losses of sound energy, effectively.
Figure 3 and Fig. 4 are indicative of a sound wave propagation
pattern at the dimensionless time of t∗1 = 400 and t∗2 = 600.

Figure 3(a) and Fig. 4(a) are indicative of the spatial pattern
of sound wave propagation at axisymmetric coordinates. After
solving the problem at axisymmetric coordinates and display-
ing the wave pattern in axisymmetric coordinates, the complete
view of the wave propagation must be obtained. This has been
done through an 180o rotation of the computational domain
around the r-axis. By this rotation, the half sphere will be gen-
erated. Presented patterns in Fig. 3(b) and Fig. 4(b) are 2D
views of this half sphere from the front view. It is obvious that
the results indicate the spherical (can be circular in 2D figure)
propagation of sound waves produced by the oscillation of a
monopole sound source. It is noteworthy that during these di-
mensionless problems, the wave velocity is equal to one. So,
according to the figures, at a time of t∗1 = 400, sound waves
have reached the dimensionless distance r∗1 ≈ 400, and at the
time of t∗2 = 600, sound waves have reached the dimensionless
distance r∗2 ≈ 600.

3.2. Modelling of Dipole and Quadrupole
Sound Sources

After the validation of the acoustic model, the above prob-
lem is considered for the dipole and quadrupole sources. In
order to do that, two and four semi-circle sources with the

Figure 3. (a) Spatial wave propagation pattern of acoustic pressure around
monopole sound sources at axisymmetric coordination and at a dimensionless
time of t∗1 = 400, (b) Spatial wave propagation pattern of acoustic pressure
around spherical monopole sound sources after 180o rotation around the r-axis
at a dimensionless time of t∗1 = 400.

Figure 4. (a) Spatial wave propagation pattern of acoustic pressure around
monopole sound sources at axisymmetric coordination and at a dimensionless
time of t∗2 = 600, (b) Spatial wave propagation pattern of acoustic pressure
around spherical monopole sound sources after 180o rotation around the r-axis
at a dimensionless time of t∗2 = 600.

radious = 0.035 (m)/L are used in axisymmetric cylindri-
cal coordinates. It is important to note that in dipole mod-
elling, two spheres (two semi-circles in axisymmetric coordi-
nates) with equal frequency (f = 515 Hz) and 180o phase
differences are oscillating, simultaneously. Also, in the lin-
ear quadrupole sound source model, all four spheres (four
semi-circles in axisymmetric coordinates) that are stranded
in a line are oscillating together with the same frequency of
(f = 515 Hz). The oscillation of the two inside spheres is
considered to have the same phase, and they have 180o phase
differences with the two side spheres. The spatial wave propa-
gation pattern produced by sinusoidal oscillation of dipole and
quadrupole sound sources is shown in Fig. 5 and Fig. 6, re-
spectively. The amplitude of the oscillations is also considered
depending on the oscillation phase of each source in the form
of ~u · ~n = ±

[
0.005
Ũ
∗ sin

(
2π ×

(
515
ω̃

)
t∗
)]

.

Figure 5(a) and Fig. 6(a) are indicative of the spatial prop-
agation pattern of the sound wave pressure in axisymmet-
ric coordinates. After solving the problem in axisymmetric
coordinates and the 180o rotating of the computational do-
main around the r-axis, the presented pattern in Fig. 5(b) and
Fig. 6(b) can be obtained. Also, for better comparison be-
tween the dipole and quadrupole sound sources model, Fig. 7

International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014 257



M. Riahi, et al.: USE OF A NEW MODIFIED ACOUSTIC MODEL TO INVESTIGATE MEAN FLOW EFFECTS ON UNDERWATER SOUND. . .

Figure 5. (a) Spatial wave propagation pattern of acoustic pressure around
dipole sound sources at axisymmetric coordination and at a dimensionless time
of t∗1 = 400, (b) Spatial wave propagation pattern of acoustic pressure around
dipole sound sources after 180o rotation around the r-axis at a dimensionless
time of t∗1 = 400.

Figure 6. (a) Spatial wave propagation pattern of acoustic pressure around
quadrupole sound sources at axisymmetric coordination and at a dimensionless
time of t∗1 = 400, (b) Spatial wave propagation pattern of acoustic pressure
around quadrupole sound sources after 180o rotation around the r-axis at a
dimensionless time of t∗1 = 400.

and Fig. 8 display the directivity pattern due to the dipole and
quadrupole sound source.

In these figures, the oscillating spheres were located at the
centre of these polar plots, and the main axes are horizontal
(between 0 and 180o). These directivity patterns are those ex-
pected from the dipole and linear quadrupole sound sources at
the far field. So, by the consideration of the spatial patterns
of Fig. 5 and Fig. 6 besides the far field directivity patterns
of Fig. 7 and Fig. 8, it is obvious that the results indicate the
acoustic model introduced in this investigation is capable of
modelling and solving different sound sources. At the same
time, this model is also capable of considering parameters like
velocity and viscosity of the background fluid flow. The effects
of the background fluid flow will be analysed later on.

3.3. Study of Flow Velocity Effects on the
Spatial Pattern of Sound Wave

In the previous problem, the background flow velocity was
considered to be equal to zero. Here, attempts are made to in-
vestigate the sound wave pattern produced by monopole sound
sources and in a flow with a different Mach number. It is im-
portant to point out that placement of a fixed sound source
in a dynamic fluid flow, from the point of view of a sound

Figure 7. Far field directivity pattern of dipole sound source with a frequency
of f = 515 Hz at a dimensionless time of t∗1 = 400.

pattern, is equivalent and similar to assuming that the flow
is stationary and the oscillating source in the fluid flow is
moving. The patterns shown in Fig. 9 and Fig. 10 are in-
dicative of the presence of a monopole sound source in the
fluid flow with different velocities. In Fig. 9, the frequency
of oscillation is equal to 5510 Hz. Also, the boundary con-
dition on the wall of the oscillating source is in the form of
~u · ~n = 0.005

Ũ
∗ sin

(
2π ×

(
5510
ω̃

)
t∗
)
. It is necessary to point

out that the results have been obtained based on equations and
parameters being non-dimensional.

Similarly, the results are obtained on the basis of another
monopole source oscillated with a frequency of 75 Hz. The
boundary condition imposed on the wall of the oscillating
source is in the form of ~u · ~n = 0.005

Ũ
∗ sin

(
2π ×

(
75
ω̃

)
t∗
)
.

These results are shown in Fig. 10.
As it is evident from Fig. 9 and Fig. 10, the results were

compared for three background flow velocities. The relation
of the Mach number is Ma = u/c. In light of all of the re-
lations and the analysis in this study being dimensionless and
the independent of the nature of the fluid flow, the velocity of
the background flow in this investigation is considered such
that the Mach numbers of Ma = 0.067, 0.133, 0.267 are pro-
duced. Based on the obtained results, by any increase in the
Mach number that was caused by the background flow velocity
increase, the spherical pattern of the sound wave propagation
would be dissipated. In order to precisely observe the outcome,
some concentric circles centred on the monopole sound source
are drawn, virtually. By comparing the pattern of propagation
with these circles, it becomes evident that through increasing
the Mach number, the sound propagation pattern shows more
tendencies to exit from the spherical form. Also, it is obvi-
ous that acoustic pressure contours are more compressed at the
downstream of the sound source, whereas, at the upstream, the
flow is more rarefaction. This situation, in particular at the
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Figure 8. Far field directivity pattern of linear quadrupole sound source with
a frequency of f = 515 Hz at a dimensionless time of t∗1 = 400.

Mach number of Ma = 0.267, is more vividly noticeable. The
reason for this is that at the downstream of the source, the flow
direction is opposite to the direction of the sound wave prop-
agation. Consequently, this causes the pressure contours to be
more concentrated. This concentration, in return, leads to an
increase in the intensity of the acoustic pressure in this region.

4. DISCUSSION AND CONCLUSIONS

Conservation equations of mass, momentum, energy, and
the equation of state are considered the fundamental equations
in the formulation of a linear acoustic equation or a wave equa-
tion. Recognition and analysis of acoustic noise stemmed from
the occurrence of a hydrodynamic phenomenon in a fluid flow
depends on these equations being studied completely in the en-
tire computational domain. Inequalities of time and space hy-
drodynamical and acoustical scale and the resulting time cost
of the computational processes make this analysis very cum-
bersome or even impossible . On the other hand, many simpli-
fying assumptions involved in the conservation equations used
to obtain the wave equation are sometimes not suitable. There-
fore, in the present study, by utilizing scale or dimensional
analysis and the perturbation method, governing equations on
the fluid flow dynamics are separated from governing equa-
tions of acoustics. Then, each one of these equations should
be analysed and studied in a suitable domain. This means each
equation is governed in a domain where the other equation is
not to be able to affect it. So, separation of the equation at dif-
ferent orders and using each group of equations in the related
computational domain leads to an enormous reduction in the
computational processing for the hydrodynamic and hydroa-
coustic simulation. Based on the obtained results, the acoustic
model of the present study is capable of modelling different
kinds of acoustic sources effectively. Furthermore, the ability

Figure 9. Spatial wave propagation pattern of acoustic pressure caused by the
oscillation of a monopole sound source with a frequency of f = 5510 Hz and
the presence of a background flow with different velocities.

of this acoustic model in the recognition and the prediction of
a pattern of wave propagation that stemmed from the presence
of oscillating sound sources with desired frequency in the fluid
flow with a different speed were proven and demonstrated.
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This note deals with the free transverse vibration of a beam with two arbitrarily located internal hinges, four
intermediate elastic restraints, and ends elastically restrained against rotation and translation. The method of
separation of variables is used for the determination of the exact frequencies and mode shapes. New results are
presented for different boundary conditions and restraint conditions in the internal hinges.

The mathematical model is also used to study the influence on the frequencies and mode shapes of varying
intermediate supports that are located at the nodal points of higher modes. A detailed numerical study on the
effects of the locations of intermediate translational restraints and their stiffness on the natural frequencies and
mode shapes is performed for different boundary conditions. The effect of the presence of the internal hinges is
also analysed. Graphs and tables of the non-dimensional frequencies and the corresponding mode shapes are given
in order to illustrate the behaviour of frequency parameters and the presence of mode shape switching.

1. INTRODUCTION

There has been extensive research into the vibration of
Euler–Bernoulli beams with elastic restraints. It is not pos-
sible to give a reasonable and detailed account of this great
amount of information; nevertheless, some relevant references
will be cited. Particularly, several investigators have stud-
ied the influence of elastic restraints at the ends of vibrating
beams.1–16 Exact frequency and normal mode shape expres-
sions have been derived for uniform beams with elastically
restrained ends against rotation and translation.17 Excellent
handbooks have appeared in the literature giving frequencies,
tables and mode shape expressions.18, 19

The problem of the vibrations of beams that are elastically
restrained at intermediate points has also been extensively
treated. One of the earliest works was performed by Lee and
Saibel who analysed the problem of free vibrations of a con-
strained beam with intermediate elastic supports.20 Rutemberg
presented eigenfrequencies for a uniform cantilever beam with
a rotational restraint at an intermediate position.21 Lau ex-
tended Rutemberg’s results with an additional translational re-
striction.22 Maurizi and Bambill analysed the transverse vibra-
tions of clamped beams with an intermediate translational re-
straint.23 Rao analysed the frequencies of a clamped-clamped
uniform beam with intermediate elastic support.24 De Rosa
et al. studied the free vibrations of stepped beams with in-
termediate elastic supports.25 Ewing and Mirsafian analysed
the forced vibrations of two beams joined with a non-linear
rotational joint.26 Arenas and Grossi presented exact and ap-
proximate frequencies of a uniform beam, with one end spring-

hinged and a rotational restraint in a variable position.27 Grossi
and Albarracı́n determined the exact eigenfrequencies of a uni-
form beam with intermediate elastic constraints.28

The minimum stiffness of an elastic traslational restriction
that raises a natural frequency of a beam to its upper limit has
been investigated by several researchers. Courant and Hilbert
have demonstrated that the optimum location of a rigid sup-
port should be at the nodal points of a higher vibration mode.29

Akesson and Olhoff showed that in the case of elastic supports
the optimum locations are the same as that of rigid supports,
and there exists a minimum stiffness of an additional elastic
support whenever the fundamental frequency of a uniform can-
tilever beam is increased to its maximum.30 Wang determined
the minimum stiffness of an internal elastic support to maxi-
mize the fundamental frequency of a vibrating beam.31 Wang
et al. derived the closed-form solution for the minimum stiff-
ness of a simple point support that raises a natural frequency of
a beam to its upper limit.32 Albarracı́n et al. detected a rather
curious situation of changes in frequency values and mode
shapes when an intermediate translational restraint is placed
in a beam that is simply supported at both ends.33

There is only a limited amount of information for the vibra-
tion of beams with internal hinges. Wang and Wang studied
the fundamental frequency of a beam with an internal hinge
with an axial force.34 Chang et al. investigated the dynamic
response of a beam with an internal hinge, subjected to a ran-
dom moving oscillator.35 Grossi and Quintana investigated the
natural frequencies and mode shapes of a non homogeneous
tapered beam subjected to general axial forces, with an arbi-
trarily located internal hinge and elastic supports and ends that
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are elastically restrained against rotation and translation.36

The above review of the literature reveals that many efforts
have been devoted to the analysis of the influence of elastic re-
straints parameters, located at the ends and intermediate points,
on the dynamics characteristics of beams. However, the influ-
ence on the frequencies and mode shapes of varying interme-
diate supports located at the nodal points of higher modes has
been studied only for classical end conditions. There is no pa-
per that presents a complete analysis of the mentioned effects
of intermediate elastic supports in a beam generally restrained
at both ends. Also, in this subject the presence of internal
hinges has not been treated.

The aim of the present note is to investigate the natural
frequencies and mode shapes of a beam with two arbitrar-
ily located internal hinges, four intermediate elastic restraints
and ends elastically restrained against rotation and translation.
Adopting the adequate values of the rotational and transla-
tional restraints parameters at the ends, all the possible com-
binations of classical end conditions, (i.e., clamped, simply
supported, sliding and free) can be generated. The presence
of the two hinges and the intermediate elastic restraints in par-
ticular, allows for the inclusion of a hinge located at an inter-
mediate point and a translational restraint located at a differ-
ent point. This property will prove to be valuable in studying
the influence of a translational restraint located at a node of a
higher mode of vibration. The existence of a critical value of
the dimensionless restraint parameter which determines the in-
terchange of roles of the corresponding modal shapes of two
consecutive non-dimensional frequency parameters is demon-
strated. More specifically, whenever there is no internal hinge
and the beam is simply supported, it is demonstrated that some
frequencies increase as the stiffness of the intermediate support
increases; if this parameter assumes a critical value, the sym-
metric modes shift to anti-symmetric modes and vice versa.
The existence of an analogue phenomenon in the case of other
boundary conditions is established; this also exits when there
is an internal hinge.

The classical method of the separation of variables has been
used for the determination of the exact frequencies and mode
shapes. The algorithm developed can be applied to a wide
range of elastic restraint conditions. The effects of the vari-
ations of the elastic restraints on the switching of the mode
shape order and the influence of the internal hinges are inves-
tigated. Tables and figures are given for frequencies, and two-
dimensional plots for mode shapes are included. A great num-
ber of problems were solved and, since the number of cases is
prohibitively large, results are presented for only a few cases.
The present note is organized first by the brief history stated
above. In Section 2, a rigorous treatment of techniques of the
calculus of variations to obtain the governing differential equa-
tions, the boundary conditions and the transitions conditions is
presented. In Section 3, the method of the separation of vari-
ables is used for the determination of the exact frequencies and
mode shapes. In Section 4, the influence of intermediate trans-
lational restraints is considered, and the analyses of the most
important cases are included. Finally, Section 5 contains the
conclusions of this note.

Figure 1. Mechanical system under study.

2. THE BOUNDARY VALUE PROBLEM

Let us consider a beam of length l, which has elastically
restrained ends, is constrained at two intermediate points and
has two internal hinges, as shown in Fig. (1). The beam system
is made up of three different spans, which correspond to the
intervals [0, c1], [c1, c2] and [c2, l] respectively. It is assumed
that the ends and the internal hinges are elastically restrained
against translation and rotation. The rotational restraints are
characterised by the parameters rL, rR, rci , i = 1,2 and the
translational are characterized by tL, tR, tci = 1,2. Adopting
the adequate values of the parameters rL, rR and tL, tR, all
the possible combinations of classical end conditions can be
generated. By using tc, rci , i = 1,2, the effects of the internal
hinges and intermediate restraints are taken into account.

In order to analyse the transverse planar displacements of
the system under study, we suppose that the vertical position
of the beam at any time t is described by the function u =

u(x, t), x ∈ [0, l]. It is well known that at time t, the kinetic
energy of the beam can be expressed as

Tb =
1

2

3∑
i=1

ci∫
ci−1

(ρA)i(x)

(
∂u

∂t
(x, t)

)2

dx; (1)

where (ρA)i = ρiAi denotes the mass per unit length of the
i− th span and c0 = 0, c3 = l.

The total potential energy due to the elastic deformation of
the beam, the elastic restraints at the ends and the intermediate
elastic restraints, is given by:

U =
1

2


3∑

i=1

ci∫
ci−1

(EI)i(x)

(
∂2u

∂x2
(x, t)

)2

dx

+

3∑
i=0

(
rci

(
∂u

∂x
(c+i , t)−

∂u

∂x
(c−i , t)

)2

+ tciu
2(ci, t)

)}
;

(2)

where (EI)i = EiIi denotes the flexural rigidity of the i− th
span, rc0 = rL, tc0 = tL, rc3 = rR, and tc3 = tR. The
notations 0+, c+i , c−i and l− imply the use of lateral limits and
lateral derivatives and in consequence in Eq. (2), it is assumed
that ∂u

∂x (0
−, t) = 0, ∂u

∂x (l
+, t) = 0.

Hamilton’s principle requires that between times ta and tb,
at which the positions are known, the motion will make station-
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F (u) =
1

2

tb∫
ta

 3∑
i=1

ci∫
ci−1

(
(ρA)i(x)

(
∂u

∂t
(x, t)

)2

− (EI)i(x)

(
∂2u

∂x2
(x, t)

)2
)
dx

 dt
−1

2

tb∫
ta

3∑
i=0

[
rci

(
∂u

∂x
(c+i , t)−

∂u

∂x
(c−i , t)

)2

+ tciu
2(ci, t)

]
dt. (3)

D =

{
u;u(x, •) ∈ C2([ta, tb]), u(•, t) ∈ C([0, l]), u(•, t)|[ci−1,ci] ∈ C

4([ci−1, ci]), i = 1, 2, 3,

u(x, ta), u(x, tb) predescribed ∀x ∈ [0, l]

}
. (5)

Da =

{
v; v(x, •) ∈ C2([ta, tb]), v(•, t) ∈ C([0, l]), v(•, t)|[ci−1,ci] ∈ C

4([ci−1, ci]), i = 1, 2, 3,

v(x, ta) = v(x, tb) = 0, ∀x ∈ [0, l]

}
. (6)

ary the action integral F (u) =
tb∫
ta

Ldt on the space of admissi-

ble functions, where the Lagrangian L is given by L = Tb−U .
In consequence, the energy functional to be considered is given
by Eq. (3).

The stationary condition for the functional given by Eq. (3)
requires that

δF (u; v) = 0, ∀v ∈ Da; (4)

where δF (u; v) is the first variation of F at u in the direc-
tion v and Da is the space of admissible directions at u for the
space D of admissible functions. In order to make the mathe-
matical developments required by the application of the tech-
niques of the calculus of variations, we assume that (ρA)i ∈
C([ci−1, ci]), (EI)i ∈ C2([ci−1, ci]), i = 1, 2, 3. The space
D is the set of functions u(x, •) ∈ C2([ta, tb]), u(•, t) ∈
C([0, l]), u(•, t)|[ci−1,ci] ∈ C4([ci−1, ci]), i = 1, 2, 3.

In view of all these observations and since Hamilton’s prin-
ciple requires that at times ta and tb the positions are known,
the space D is given by Eq. (5).

The only admissible directions v at u ∈ D are those for
which u + εv ∈ D for a sufficiently small ε and δF (u; v) ex-
ists. In consequence, and in view of Eq. (5), v is an admissible
direction at u for D if, and only if, v ∈ Da where Da is given
by Eq. (6).

The definition of the first variation of F at u in the direction
v, is given by

δF (u; v) =
dF (u+ εv)

dε
|ε=0. (7)

The application of Eq. (7) with the expression of F given by
Eq. (3) leads to Eq.(8).

The integration by parts of the procedure and the well-
known application of the fundamental lemma of the calculus
of variations leads to the following boundary value problem:

∂2

∂x2

(
(EI)i(x)

∂2u

∂x2
(x, t)

)
+ (ρA)i(x)

∂2u

∂t2
(x, t) = 0,

∀x ∈ (ci−1, ci), i = 1, 2, 3, t ≥ 0; (9)

rL
∂u

∂x
(0+, t) = (EI)10

+ ∂
2u

∂x2
(0+, t); (10)

tLu(0
+, t) = − ∂

∂x

(
(EI)1(0

+)
∂2u

∂x2
(0+, t)

)
; (11)

w(c−i , t) = w(c+i , t), i = 1, 2; (12)

rci

(
∂u

∂x
(c+i , t)−

∂u

∂x
(c−i , t)

)
=

(EI)i(c
−
i )
∂2u

∂x2
(c−i , t), i = 1, 2; (13)

rci

(
∂u

∂x
(c+i , t)−

∂u

∂x
(c−i , t)

)
=

(EI)i+1(c
+
i )
∂2u

∂x2
(c+i , t), i = 1, 2; (14)

tciu(ci, t) =
∂

∂x

(
(EI)i(c

−
i )
∂2u

∂x2
(c−i , t)

)
−

∂

∂x

(
(EI)i+1(c

+
i )
∂2u

∂x2
(c+i , t)

)
, i = 1, 2; (15)

rR
∂u

∂x
(l−, t) = −(EI)3(l−)

∂2u

∂x2
(l−, t); (16)

tRu(l
−, t) =

∂

∂x

(
(EI)3(l

−)
∂3u

∂x3
(l−, t)

)
where t ≥ 0.

(17)
Different situations can be generated by substituting values

and/or limiting values of the restraint parameters rc and tc.
When we consider rci = ∞, tci = 0, i = 1, 2, there are
no internal hinges. Now if we consider rci = 0, tci = 0,
i = 1, 2, there are internal hinges located at c1 and c2 and the
articulations are perfect. Finally if we have 0 < rci < ∞,
0 < tci <∞, i = 1, 2, there are internal hinges elastically re-
strained against rotation and supported by the respective trans-
lational restraints.
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δF (u; v) =

tb∫
ta

 3∑
i=1

ci∫
ci−1

(
(ρA)i(x)

∂u

∂t
(x, t)

∂v

∂t
(x, t)− (EI)i(x)

∂2u

∂x2
(x, t)

∂2v

∂x2
(x, t)

)
dx−

−
3∑

i=0

(
rci

(
∂u

∂x
(c+i , t)−

∂u

∂x
(c−i , t)

)(
∂v

∂x
(c+i , t)−

∂v

∂x
(c−i , t)

)
+ tciu(ci, t)v(ci, t)

)]
dt. (8)

It is worth noting that this mathematical model allows the
inclusion of a hinge located at a point ci and a translational
restraint located at a different point cj . As stated above this
property will prove to be valuable for studying the influence of
a translational restraint located at a node of a higher vibration
mode.

3. NATURAL FREQUENCIES AND MODE
SHAPES

Using the well-known method of the separation of variables,
when the mass per unit length and the flexural rigidity at the
spans are constant, we assume as solutions of Eq. (9) the func-
tions given by the series

ui(x, t) =

∞∑
n=1

ui,n(x) cosωt, i = 1, 2, 3; (18)

where ui,n are the corresponding nth nodes of natural vibra-
tion, and ω is the radian frequency. Introducing the change of
variable x = x/l into Eqs. (9) through (17), the functions ui,n
are given by

ui,n(x) = Ai coshλx+Bi sinhλx+ Ci cosλx+

+Di sinλx, ∀x ∈ [ai, bi] ; (19)

where ci = ci/l, a1 = 0, b1 = c1, a2 = c1, b2 = c2,
a3 = c2, b3 = 1, and

λ4 =
ρA

EI
ω2l4; (20)

where ρA = (ρA)1 = (ρA)2 = (ρA)3 and EI = (EI)1 =

(EI)2 = (EI)3. Substituting Eq. (19) into Eq. (18), and then
in the boundary conditions given by Eqs. (10), (11), (16), (17)
and transition conditions defined by Eqs. (12) to (15), ex-
pressed in the new variable x, we obtain a set of twelve ho-
mogeneous equations in the constants Ai, . . . , Di. Since the
system is homogeneous, in order to obtain a non-trivial solu-
tion, the determinant of coefficients must be equal to zero. This
procedure yields the frequency equation:

G(TL, RL, TR, RR, Tci , Rci , λ, ci) = 0, i = 1, 2; (21)

where

TL =
tLl

3

EI
,RL =

rLl

EI
, TR =

tRl
3

EI
,

RR =
rRl

EI
, Tci =

tci l
3

EI
,Rci =

rci l

EI
, i = 1, 2. (22)

The values of the frequency parameter λ =(
(ρA/EI)ω2

) 1
4 l, were obtained with the classical bisec-

tion method and rounded to eight decimal digits.
In order to describe the corresponding boundary conditions

the symbolism SS identifies a simply supported end, C a
clamped end, F a free end and ER identifies an elastically
restrained end. Since the number of cases which can be anal-
ysed by the developed algorithm is prohibitively large, results
are presented only for a few cases.

Table 1 and Table 2 depict the first three exact values of
the frequency parameter λ of a beam with two internal hinges.
Different boundary conditions and values of the parameters
ci, i = 1, 2 are considered. The corresponding mode shapes
are also included. It is worth noting that in order to avoid zero
frequencies and to obtain mode shapes, which clearly show
the effect of the hinges, a relative small value of the restraint
parameters Tc1 and Tc2 has been adopted. Table 1 contains
symmetrical boundary conditions, and Table 2 includes non-
symmetrical boundary conditions. In the case ER − ER, the
values TL = RL = 1000, TR = RR = 100 have been adopted.
It is worth pointing out that u(•, t) ∈ C [0, 1], i.e. the deflec-
tion function is only continuous), but it has corner points that
only exist at the hinges locations. This property can be ob-
served in the mode shapes included in Tables 1 and 2.

Table 3 depicts the first six exact values of the frequency
parameter λ of a beam with two free internal hinges, different
boundary conditions, and different values of the restraint pa-
rameters Tc1 and Tc2 , where c1 = 1/3 and c2 = 2/3. In the
caseER−ER, the values TL = RL = 1000, TR = RR = 100
have been adopted.

4. THE INFLUENCE OF INTERMEDIATE
TRANSLATIONAL RESTRAINTS

As stated in Section 1, in the determination of an addi-
tional translational restraint required to maximize a natural fre-
quency, Courant and Hilbert have demonstrated that the opti-
mum location of a support should be at the nodal points of a
higher vibration mode, and Akesson and Olhoff have demon-
strated the same for elastic supports.29, 30 For this reason in all
the described cases in this study, the restraint locations coin-
cide with the nodal points of some higher modes.

First the case of an SS − SS beam without hinges and
with one flexible support at the mid-point is considered (c1 =

0, c2 = c, c = 0.5). Fig. 2 the first two exact values of the fre-
quency parameter λ are plotted against the restraint parameter
Tc. It is observed that thecurves have a contact point denoted
by P1, and to this point it corresponds with a value, namely
T (1,2) of Tc, such that over it the values of λ1 cannot be raised

264 International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014



J. L. Raffo, et al.: A NOTE ON THE INFLUENCE OF INTERMEDIATE RESTRAINTS AND HINGES IN FREQUENCIES AND MODE SHAPES. . .

BC c1 c2 λ1 λ2 λ3

F − F 0.2 0.6 1.375081 1.643200 9.362790

0.25 0.75 1.337032 1.618163 8.120665

1/3 2/3 1.414102 1.638014 10.669474

0.5 0.75 1.445185 1.681667 8.680980

SS − SS 0.2 0.6 1.342282 1.583975 8.273242

0.25 0.75 1.315682 1.565026 7.855269

1/3 2/3 1.377333 1.564958 9.424777

0.5 0.75 1.390513 1.608228 7.173072

C − C 0.2 0.6 3.772331 6.656591 9.738941

0.25 0.75 4.686472 6.031293 8.680536

1/3 2/3 4.248089 4.958357 10.740080

0.5 0.75 3.324057 6.124616 8.655705

Table 1. Values λ1, λ2 and λ3 of the frequency coefficient λ and mode shapes of a beam with two internal hinges with different symmetrical boundary conditions
and values of the parameters ci, i = 1, 2. (Tc1 = Tc2 = 1).

Figure 2. Variation of the first two exact values of the frequency parameter λ
as a function of the translational restraint parameter Tc, which corresponds to
an SS − SS beam with c = 0.5.

further whereas the values of the coefficient λ2 increases. This
phenomenon suggests the possibility of a change in the corre-
sponding mode shapes, and it can also be observed in the case
of the upper eigenvalues.

Based on the concepts presented, a numerical procedure

Tc λ1 λ2
0 3.14159265 6.28318531

T (1,2) − ε 6.28318520 6.28318531

T (1,2) = 995.9135 6.28318531 6.28318531
T (1,2) + ε 6.28318531 6.28318541

Table 4. Values λ1, λ2 of the frequency coefficient λ and mode shapes of an
SS − SS beam with T (1,2) = 995.9135 and c = 0.5.

has been developed with the purpose of determining the crit-
ical value T (1,2) of Tc, which consists in the replacement of
the values of λ2 and c into Eq. (21). In this case the value
T (1,2) = 995.9135 has been obtained.

Table 4 depicts the first two exact values of the frequency co-
efficient λ and the corresponding mode shapes of an SS − SS
beam with c = 0.5, for different values of the restraint stiffness
Tc. It is observed that the modes which correspond to λ1 for
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BC c1 c2 λ1 λ2 λ3

C − F 0.2 0.6 1.438556 6.609714 9.735284

0.25 0.75 1.444605 5.385415 8.439022

1/3 2/3 1.505427 4.639534 10.705621

0.5 0.75 1.616772 3.382267 8.626570

SS −AA 0.2 0.6 1.391308 6.521151 8.583106

0.25 0.75 1.413622 5.353031 8.319202

1/3 2/3 1.456066 4.624047 9.810502

0.5 0.75 1.564002 3.375018 8.611874

ER− ER 0.2 0.6 3.200393 5.459548 6.224496

0.25 0.75 3.661568 5.060301 7.209206

1/3 2/3 3.508990 4.478442 6.445352

0.5 0.75 3.266975 4.056564 7.364875

Table 2. Values λ1, λ2 and λ3 of the frequency coefficient λ and mode shapes of a beam with two internal hinges with different non-symmetrical boundary
conditions and values of the parameters ci, i = 1, 2. (Tc1 = Tc2 = 1). The case ER− ER is defined by TL = RL = 1000, TR = RR = 100.

Tc = 0 and Tc = T (1,2) − ε are symmetric while the second
mode are anti-symmetric. Nevertheless, when Tc = T (1,2)+ε,
the first mode is anti-symmetric, and the second mode is sym-
metric. Obviously ε assumes a small value. It can also be
observed that as Tc increases, the first modal shape presents
inflection points as it is illustrated by the figure which corre-
sponds to the case T (1,2)− ε. The corresponding mode shapes
are analog until Tc = T (1,2). In this process we have that
λ1 → λ2 from the left Tc increases in the interval

[
0, T (1,2)

]
.

When Tc > T (1,2) there is a change: the values of λ1 remain
constant meanwhile the values of λ2 increase as Tc increases,
and the original second mode (Tc) = 0 becomes the new first
mode, (i.e., the mode shape which corresponds to λ1 when
Tc > T (1,2), is identical to the mode shape which corresponds
to λ2 when Tc = 0.).

The described phenomenon can be generalized by arguing
that there exists a critical value T (i,i+1) of Tc where λi =

λi+1,∀i. The equality of eigenvalues can be explained through
the existence of roots of multiplicity of the frequency Eq. (21).
The procedure to obtain the values T (i,i+1), is analogous to
that used for T (1,2).

In order to analyse the variation of the parameters λ2 and

Tc λ2 λ3
0 6.28318531 9.42477796

T (2,3) − ε 9.42477792 9.42477796

T (2,3) = 3354.9547 9.42477796 9.42477796
T (2,3) + ε 9.42477796 9.42477800

Table 5. Values λ2, λ3 of the frequency coefficient λ and mode shapes of a
SS − SS beam with T (2,3) = 3354.9547 and c = 1/3.

λ3, it must be noted that the elastic restraint must be located
at the point which coincides with the node of the modal shape
which corresponds to λ3. In consequence, it is necessary to
adopt c = 1/3. By applying the procedure described above the
value T (2,3) = 3354.9547 has been obtained. Table 5 depicts
the corresponding values and mode shapes.

In the cases that correspond to a beam that is clamped
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BC Tc1 Tc2 λ1 λ2 λ3 λ4 λ5 λ6
SS − SS 1 100 1.45611719 4.64282187 9.42477796 10.70691056 12.94235190 18.84955592

100 100 4.31972616 4.90844437 9.42477796 10.74621939 12.98905869 18.84955592
1000 100 4.55718873 7.66530463 9.42477796 11.07323213 13.48364215 18.84955592
1000 1000 7.16349829 8.01393524 9.42477796 11.58970605 13.81448359 18.84955592

C − SS 1 100 4.28396838 4.93096581 9.81676729 11.83889375 13.76143072 19.22906792
100 100 4.49969419 5.68516462 9.83627402 11.83894768 13.81211148 19.23144015
1000 100 4.55795734 8.20313432 10.08227546 11.83943444 14.30200370 19.25413332
1000 1000 7.28320226 8.44540826 10.19995164 12.40106641 14.46057634 19.26220167

ER− ER 1 100 4.25888244 4.74542202 6.69509498 8.93580767 11.66964943 15.09815518
100 100 4.53063529 5.41229247 6.74864331 8.96276595 11.70947787 15.09913507
1000 100 4.57054340 6.49115080 7.96847577 9.35593518 12.12807968 15.10746783
1000 1000 5.57262634 7.47074935 8.42342470 9.99835788 12.28490310 15.24185358

Table 3. First six exact values of the frequency coefficient λof a beam with two internal hinges, different boundary conditions, and intermediate points elastically
restrained against translation located at c1 = 1 / 3 and c2 = 2/ 3. The case ER− ER is defined by TL = RL = 1000, TR = RR = 100.

Tc λ1 λ2
0 3.42004348 5.03505659

T (1,2) − ε 5.03483553 5.03505659

T (1,2) = 302.4782 5.03505659 5.03505659
T (1,2) + ε 5.03505659 5.03540105

Table 6. Values λ1, λ2 of the frequency coefficient λ and mode shapes of an
ER − ER beam (TL = RL = 1000, TR = RR = 100) with a free hinge
located at c1 = 0.5. (T (1,2) = 302.4782, c2 = 0.617515).

at x = 0 and simply supported at x = l and to a beam
with ends elastically restrained against rotation and translation
(TL = RL = 1000, TR = RR = 100), the pairs λ1, λ2, λ2,
λ3 and λ3, λ4 show the same features as those cases described
previously. For brevity, the corresponding tables and figures
are not included.

It is possible here to use the property of the boundary value
problem described in Section 2 which allows to include one
hinge located at c1 and an elastic restraint located at a different
point c2. Table 6 depicts the exact values λ1 and λ2 of the
frequency coefficient λ and the corresponding mode shapes of
anER−ER beam (RL = TL = 1000,RR = TR = 100) with
a free hinge located at c1 = 0.5 and the elastic restraint located
at c2 = 0.617515 with T (1,2) = 302.4782. The phenomenon
of change of frequencies and mode shapes is analogous to the
case that corresponds to a beam without hinge.

5. CONCLUSIONS

Hamilton’s principle has been rigorously applied to obtain
the boundary value problem and particularly the transition con-
ditions, of a beam with two arbitrarily located internal hinges,
four intermediate elastic support and ends elastically restrained
against rotation and translation. Also a simple and accurate
approach has been developed for the determination of natural
frequencies and the mode shapes of free vibration. The math-
ematical model allows the inclusion of a hinge located at a
point ci and a translational restraint located at a different point

cj . This property permits to study the influence on frequencies
and mode shapes of varying intermediate supports, located at
the nodal points of higher modes. It has been demonstrated
that the existence of a critical value of the dimensionless re-
straint parameter, which determines a particular behaviour of
frequency parameters and the presence of mode shape switch-
ing. It has also been demonstrated that the eigenvalues and
mode shapes show some of the same features when there are
internal hinges.
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Compliant mechanisms have been designed for various types of applications to transmit desired forces and motions.
In this paper, we explore an application of compliant mechanisms for passive vibration isolation systems. For this,
a compliant isolator is used to cancel undesired disturbances, resulting in attenuated output amplitude. A compliant
mechanism is equipped with an isolator, while a compliant mechanism also functions as a transmission of force and
controls the amount of displacement that is transmitted from it. It can be used as passive vibration isolation. Here,
by introducing compliance into the connection, the transmission of applied forces is reduced at some frequencies
at the expense of increasing transmission at other frequencies. While transmitted force is the key parameter from
the receiver’s perspective, motion at the isolated machine is uninteresting. The force transmissibility is numerically
identical to the motion transmissibility. The structural optimization approach is focused on the determination of
the topology, shape, and size of the mechanism. The building blocks are used to optimize a structure for force
transmission. The flexible building blocks method is used for the optimal design of compliant mechanisms. This
approach is used to establish the actuator model of the block and its validation by commercial finite element
software. A library of compliant elements is proposed in FlexIn. These blocks are limited in number, and the
basis is composed of 36 elements. The force transmitted to the rigid foundation through the isolator is reduced
in order to avoid the transmission of vibration to other machines. The preliminary results of FEA from ANSYS
demonstrate that compliant mechanism can be effectively used to reduce the amount of force transmitted to the
surface.

1

2

3

NOMENCLATURE

δst Static deflection, mm
k Stiffness, N/m2
m Applied mass, kg
X Displacement amplitude, mm
c Damping coefficient
ω Forcing frequency, rad/sec
ωn Natural frequency, rad/sec
I area moment of inertia, mm4

L Length of strip, mm
R Frequency ratio
η Isolation efficiency
Tr Transmissibility ratio
FT Force transmitted, kN
E Young’s modulus, N/m2

1. INTRODUCTION

1.1. Compliant Mechanism

Compliant mechanism is the mechanism that relies on its
own elastic deformation to transfer or transform motion or
force.1 Common compliant mechanisms function under the
application of force at certain location (input) and generate a
desired force or deflection at another location (output). Com-
pliant mechanism is designed for passive vibration isolation
system (PVIS). In this system, the existing element (i.e., the
coil spring isolator) is replaced with the new designed element
in order to reduce the amount of force transmitted to the ground
or to the foundation of the machine, which tends continuously
to damage the base over a longer period of time. This happens
because the initial starting machine gives rise to huge ampli-
tude up to the frequency ratio one. This region is identified
as the amplification region, and during this, a large amount of
vibration force is transmitted. By reducing the force transmit-
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Figure 1. Directly mounted.

ted to the surface, one can increase the life of the base or the
foundation of machine.

1.2. Topology Optimization

Homogenization based topology optimization is the basis
for the design technique proposed in this research.2–4 Topol-
ogy and size optimization methods are used to design compli-
ant mechanisms, and the design procedure followed is based
on the size optimization of the beam-element abstraction de-
rived from the continuum topology solution.5 The topology
optimization problem is formulated as a problem of finding the
optimal distribution of materials in an extended fixed domain
where some structural cost function is maximized.6, 7 This
work of topology optimization is carried out using ANSYS;8, 9

by this, the optimum material distribution is obtained.10 Then
the structural optimization11 is done using flexible building
blocks12 designed by FlexIn Corporation. These elements are
arranged in such a manner that to reduce the amount of force
transmitted the trial and approximation method is used. Sta-
bility analysis in compliant mechanism design is of utmost im-
portance. From a practical point of view, a CM that is unstable
is of no significance. A stable system is defined as a system
with a bounded system response. That is, if the system is sub-
jected to a bounded input or disturbance, and the response is
bounded in magnitude, the system is said to be stable.

1.3. Vibration Isolation

Vibrations are produced in machines that have unbalanced
masses. These vibrations will be transmitted to the foundation
upon which the machines are installed (see Fig. 1). This is usu-
ally undesirable. To diminish the transmitted forces, machines
are usually mounted on springs or dampers as seen in Fig. 2, or
on some other vibration isolation material. Vibration isolation
reduces the level of vibration transmitted to or from a machine,
building, or structure from another source.

Figure 2. Mounted through isolators.

For damped system transmissibility

T =

√√√√ 1 + R2

Q2

(1−R2)
2
+ R2

Q2

; (1)

R =
fe
fn

; (2)

Q =
1

2C/CC
. (3)

1.4. Problem Formulation

Compliant mechanism is the focus of active research be-
cause of the stability, robustness, and ease of manufacturing
endowed by their unitized construction. In this paper, we ex-
plore an application of compliant mechanism for a vibration
isolation system with a rigid foundation. The structural opti-
mization approach is focused on the determination of the topol-
ogy, shape, and size of the mechanism. The building blocks are
used to optimize a structure for force transmission.

1.5. Methodology

The displacement amplitude of the coil spring isolator is ob-
tained for varying frequency ratios R (1.5–5). For the corre-
sponding displacement amplitude, the force transmitted to the
rigid foundation is determined. Then by using topology opti-
mization and flexible building blocks, the vibration isolator is
designed. The design is subjected to harmonic analysis using
ANSYS software. For this design displacement amplitude and
for the corresponding amplitude, the force transmission is cal-
culated. For the coil spring isolator and compliant mechanism,
isolation efficiency is determined and compared.

2. DESIGN OF COMPLIANT MECHANISM
USING TOPOLOGY OPTIMIZATION AND
BUILDING BLOCKS FOR VIBRATION ISO-
LATION

Topological optimization is a form of “shape” optimization
sometimes referred to as “layout” optimization. The goal of
topological optimization is to minimize/maximize the criteria

270 International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014



V. Vijayan, et al.: PASSIVE VIBRATION ISOLATION BY COMPLIANT MECHANISM USING TOPOLOGY OPTIMIZATION

Figure 3. Meshed design domain.

Figure 4. After 10% of volume reduction.

selected (minimize the energy of structural compliance, maxi-
mize the fundamental natural frequency, etc.), while satisfying
the constraints specified (volume reduction, etc.).

The topology optimization predicts the optimal distribution
of the material in the design domain. It is very promising for
the systematic design of compliant mechanism because topo-
logical design is automated by the given prescribed boundary
conditions.

The problem is defined for linear-elastic analysis. Then it
is defined for material properties (Young’s modulus, Poisson’s
ratio, and possibly the material density). Then the two types of
element 2D planes for topological optimizations to generate a
finite element model are selected. Load and boundary condi-
tions for a single load case linear structural static analysis are
shown in Fig. 3.

Figure 4 and Fig. 5 illustrate the volume constraints for the
specific load of 85 kN, and the force transfer path is identi-
fied for structural size of 500 mm width and 165 mm height.
The optimized path for the transfer of the maximum force is
obtained using topology optimization.

Figure 5. After 50% of volume reduction.

2.1. Topology Optimization for Vibration Iso-
lator Using FEA

In this example the boundary condition specified as all the
corners of the design domain is fixed, and a point load is ap-
plied at the middle of the bottom face. The material property
and the design variable and the domain dimension are given
below in Table 1.

2.2. Compliant Building Blocks

The optimal design of compliant mechanisms made of an
assembly of basic building blocks is chosen in a given library.
A library of passive compliant elements is proposed in FlexIn.
These blocks are limited in number: the basis is composed of
36 elements as shown in Fig. 6.

2.3. Creation of Building Blocks Library

A library of passive compliant elements made of piezoelec-
tric beams has been implemented in FlexIn. As for passive
blocks, a block stiffness matrix is constituted by the assembly
of beams stiffness matrices in the global coordinate system.
The blocks present some various topologies. Their advantage
is that they can furnish multiple coupled degrees of freedom
(Dofs), thus generating more complex movements with only
one building block.

They are sufficient to constitute a high variety of topologies,
and it has been verified that they can describe many existing
compliant structures of the literature. Moreover, the block fea-
sibility related to fabrication process constraints can also be
taken into account at this stage, which is not the case for clas-
sical beam-based optimization approaches. From the library of
passive compliant building blocks, the structure formed for the

Table 1. Specifications for topology optimization.

Design domain 500 mm × 305 mm × 165 mm
Young’s modulus 200×109 N/m2

Poisson’s ratio 0.29
Input force 85 kN

Upper limit of design variable 10 mm2

Lower limit of design variable 0.1 mm2
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Figure 6. Library of compliant building blocks for planar compliant mecha-
nisms synthesis using FlexIn.

Figure 7. Structural optimization of isolator using flexible building blocks.

optimal distribution of the material distribution path for force
transmission is determined using topology optimization. Fig-
ure 7 illustrates the use of flexible passive compliant building
blocks in the path that maximum force transmissibility occurs.

2.4. Proposed Approach of Compliant Mech-
anism in Passive Vibration Isolation

We propose compliant mechanisms as a means to provide
efficient and low cost vibration isolation. Due to their mono-
lithic (jointless) construction, compliant transmissions offer
many inherent benefits including low cost, zero backlash, ease
of manufacture, and scalability. Although leaf springs and
cantilever beams employed in previous research are in effect
of “compliant mechanisms”, the motion amplification mecha-
nism proposed in this research offers a more effective solution.

The scope of this study is limited to low-frequency isolation
because the use of compliant mechanisms in active vibration
isolation systems has the greatest advantage in the low fre-
quency range.5 Since many passive systems are effective and
sufficient for high-frequency isolation, the need of active sys-
tems for high-frequency isolation is less than that needed for
low frequency isolation. We also focus on understanding the
effects of the compliant design parameters and attempt to solve
problems systematically. The preliminary results of FEA from

Figure 8. Models illustrating the concept of using a compliant mechanism in
vibration isolation.

ANSYS demonstrate that compliant mechanism can be effec-
tively used to reduce the amount of force transmitted to the
surface. Figure 8 illustrates how compliant mechanism can be
integrated into a vibration isolation system.

To achieve efficient vibration isolation, it is necessary to use
a resilient support with sufficient elasticity so that the natural
frequency of the isolated machine is substantially lower than
the disturbing frequency, fe, of vibration. The ratio R should
be greater than 1.4 and ideally greater than 2 to 3 in order to
achieve a significant level of vibration isolation. Damping pro-
vides energy dissipation in a vibrating system. It is essential
to control the potential high levels of transient vibration and
shock, particularly if the system is excited at, or near, its res-
onant frequency. When it is not possible to prevent or suffi-
ciently lower the transmission of shock and vibration from the
source, a resiliently supported foundation block can be used
for the passive isolation of sensitive equipment.

2.5. The Existing Coil Spring Isolator (FSL
Coil Spring Isolator)

Farrat Isolevel Ltd. (FSL) coil spring isolation systems are
used to provide both active and passive vibration isolation with
natural frequencies down to 3 Hz in order to isolate the disturb-
ing frequencies down to 6 Hz. Table 2 shows the existing coil
spring isolator specification.

In this preliminary study, the existing coil spring isolator is
used to reduce the force transmitted from or to the machine.
A compliant mechanism is designed to reduce the force trans-
mitted to the foundation by reducing the displacement trans-
missibility of various frequency ratios. The model shown in

Table 2. Properties of the model used in finite element analyses.

Element type 2D elastic beam, 2D mass

Number of elements
37 elastic beam elements,

1 mass element attached at 17th node
Young’s modulus 200×109 N/m2

Poisson’s ratio 0.3
Density 7860 kg/m3

Cross section 305 mm width × 4 mm thickness
Overall dimension 500 × 165 mm
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Figure 9. A finite element model of compliant mechanism.

Fig. 9 is designed with the load ranges from 85 kN–28 kN and
constant K ranges from 3.4 kN/mm to 1.12 kN/mm; the free
height of the structure is 165 mm, and the static deflection due
to the self-weight of the load is δst = 25 mm and 8 mm for the
corresponding maximum and minimum load.

The compliant mechanism is assumed to be made of struc-
tural steel. The gravity and structural damping are ignored
for these preliminary analyses. The motion of output is con-
tributed by displacement controlled input.

2.6. Material Selection for Compliant Mech-
anism

Material for this compliant mechanism is selected based on
the Young’s modulus, which includes natural frequency and
the area moment of inertia, mass, and also the cross sectional
area of a compliant beam. The following equations are used
for material selection:

Natural frequency of compliant mechanism ωn =

√
k

m
; (4)

Material constant k =
192EI

l3
= mω2

n; (5)

Young’s modulus of the material is E =
mω2

nl
3

192I
; (6)

Area moment of inertia I =
bh3

12
; (7)

The size of the designed isolator is 500 mm × 305 mm ×
165 mm.

From the given maximum load of 85 kN, the maximum mass
acting on the isolator is m = 8500 kg, and the material con-
stant is k = 3400 N. By varying the dimension of the width
and height of the isolator using the area moment of inertia, the
thickness of the compliant beams are determined. In this the
width of the isolator is 305 mm. Table 3 shows the selection of
material using Young’s modulus.

Here the optimum range of dimension is 305 mm × 4 mm
which is having a Young’s modulus of 209×109 N/m2. The
required range of E value is around 200 Gpa. Figure 10 and
Fig. 11 show the two dimensional and three dimensional re-
spectively for the suggested optimum range of dimensions.

Figure 10. 2D compliant isolator design.

Figure 11. 3D compliant isolator design.

3. HARMONIC ANALYSIS

The harmonic response analysis solves the time-dependent
equations of motion for linear structures undergoing steady-
state vibration. The entire structure has constant or frequency-
dependent stiffness, damping, and mass effects. All loads and
displacements vary sinusoidally at the same known frequency.
The element loads are assumed to be real (in-phase) only.

3.1. Harmonic Response of FSL Coil Spring
Isolator

Initially the displacement amplitude shown in Fig. 12 is
calculated for various frequency ratios from (1.5–5) for the
damping ratio ζ = 0.3 of the coil spring isolator. The forces
transmitted in Fig. 13 for the corresponding amplitude and fre-
quency ratios are also calculated.

3.1.1. Displacement Amplitude

The displacement amplitude is calculated by using the static
displacement Eq. (8), the frequency ratio, and the damping ra-
tio;

X

δst
=

1√
(1−R2)

2
+ (2ζR)

2
. (8)

Table 3. Selection of material using Young’s modulus.

S. No Dimension, mm Young’s modulus E, N/m2

1 305 × 3 278×109

2 305 × 4 209×109

3 305 × 5 107×109

4 305 × 6 60×109

5 305 × 7 35×109
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Figure 12. Amplitude for a different frequency ratio with a constant damping
ratio ζ = 0.3.

Figure 13. Force transmitted for the corresponding frequency ratio, R.

3.1.2. Force Transmitted

The force transmitted for the corresponding displacement
amplitude is calculated by using the known material constant
and the damping coefficient; it is taken as ζ = 0.3 for the
maximum value and the natural frequency of the coil spring
isolator;

FT = X
√

(k2 + c2ω2). (9)

3.2. Harmonic Response of Compliant Isola-
tor

3.2.1. Displacement Amplitude

The displacement amplitude is calculated for compliant
mechanism for various frequency ratios ranging from (1.5–5)
with the damping ratio ζ = 0.3 by using ANSYS as shown in
Fig. 14.

3.2.2. Force Transmitted

The force transmitted (Fig. 15) for the corresponding ampli-
tude and frequency ratios are also calculated by using Eq. (9).

4. RESULTS AND DISCUSSION

4.1. Transmissibility Ratio
The force transmitted by using compliant mechanism is

compared with the existing isolator with the constant damping
ratio ζ = 0.3 as shown in Fig. 16. The sinusoidal foundation

Figure 14. Displacement amplitude for corresponding frequency ratio ranges
from R, (1.5–5) for compliant mechanism.

Figure 15. Force transmitted for varying frequency ratio.

motion at amplitude x and the absolute value of the mass re-
sponse amplitude y expressed as a ratio |y/x| is the Tr. Trans-
missibility Ratio Tr = (Force transmitted in kN/ Disturbing
force in kN).

4.2. Isolation Efficiency

Isolation efficiency η in percent transmission is related to
transmissibility as

η = 100(1− Tr)%. (10)

Isolation efficiency of the existing isolator and designed com-
pliant mechanism is compared in Fig. 18.

5. CONCLUSION

Compliant mechanisms are proposed to provide cost effec-
tive and high performance vibration isolation systems. Their
function is to transmit the force for various displacement am-
plitudes of corresponding frequency ratios. The preliminary
results from FEA using ANSYS show that compliant mecha-
nism can provide effective vibration isolation from a sinusoidal

274 International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014



V. Vijayan, et al.: PASSIVE VIBRATION ISOLATION BY COMPLIANT MECHANISM USING TOPOLOGY OPTIMIZATION

Figure 16. Force transmission of coil spring isolator with compliant
mechanism.

Figure 17. Displacement transmissibility for various frequency ratios.

disturbance with known frequency ratios. Both force transmis-
sibility and amplitude transmissibility are discussed, as both of
them have same results for validation purpose only.

In this research, we demonstrated, through harmonic anal-
yses, that the disturbance of 0.01 m amplitude, the isolation
efficiency of 56% is 1.5 Hz (for the coil spring isolator, the
isolation efficiency for the corresponding amplitude and fre-
quency ratio is 30%), and by 98%, it is at 5 Hz for the am-
plitude of 0.001 m (for the coil spring isolator, the isolation
efficiency for the corresponding amplitude and frequency ratio
is 93%), using compliant mechanism.
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Without any information on the mixing system, the blind source separation (BSS) technique efficiently separates
mixed signals. The approach called evolutionary algorithms was used for the BSS problem in this paper. The
fitness function based on the feature distance and kurtosis was proposed to measure the degree of the separated
signals in this paper. Compared with the traditional algorithm in the BSS problem, the mathematical calculation
and the physical significance of the separated signals are both taken into consideration in the proposed method.
Therefore, the separated signals could have great correlation with the original individual signal and could be used
in the additional signal processing step with good signal property. Experimental results on mixed spoken signals
indicated that the established evolutionary algorithm of particle swarm optimization (PSO) and genetic algorithm
(GA) could effectively solve the BSS problem from the signal feature distance and independence measurement.
The study in this paper was implemented with MATLAB language.

1. INTRODUCTION

Without knowing the mixing processing and sources, blind
source separation (BSS) deals with recovering a set of under-
lying sources from observations. The BSS problem is widely
used in the fields of: image processing, acoustics signal sepa-
ration, vibration signal separation, medical signal processing,
biomedical data analysis, telecommunications, stock analysis
and fault recognition.1–3

In the literature, the theory of BSS has been approached in
several ways and various algorithms have been proposed. For
example, the methods were originally introduced in the context
of neural network (NN) modelling, independent component
analysis (ICA), principle component analysis (PCA), singular
value decomposition (SVD), high order statistical cumulants
and others. The most important and simplest of the methods
mentioned above is ICA which has the goal of finding a suit-
able representation of non-Gaussian sources with all the most
independent components as possible. Lots of ICA algorithms
for BSS problems are proposed, including the minimization
(or maximization) of a contrast function (for example Mutual
Information and non-Gaussianity). ICA works with differ-
ent algorithms, including FastICA algorithm, JADE (Joint An-
gle and Delay Estimation) algorithm, extended Infomax algo-
rithm, and mean field approach ICA. The ICA method differs
from other similar methods in that the components are both
statistically independent and non-Gaussian. BSS is used for
recovering unobserved signals from a known set of mixtures.
Therefore, ICA and BSS are equivalent when the mixtures are

assumed to be linear up until possible permutations and invert-
ible scalings.2–7

In the past, the NN model was the popular architecture for
separation, but its performance depends strongly on the initia-
tion of weight. In a previous study, the authors used the genetic
algorithm (GA) for optimizing the weights of the NN system
in order to enhance global convergence.8 In another study, a
support vector machine (SVM) methodology is applied to ICA
in the search for the separating matrix.5

According to a previous paper, through finding optimum and
accurate coefficients of the separating matrix, the evolutionary
algorithms can be the best solution for solving BSS problems.
In this approach, the new population can be created where in-
dependence among its components is maximized if a suitable
fitness function is used. There are two types of contrast func-
tions of BSS: information theory and high order statistics. In
this paper, the authors used two evolutionary algorithms, GA
and PSO, for BSS, and the novel fitness function is based on
the mutual information and high order statistics.2

In another paper the authors present a novel GA-ICA
method which converges to the optimum.9 The new method
uses GA to find the separating matrices, which are based on-
the contrast function to minimize a cumulant. In reference 10
the authors used the kurtosis of the mixed signal to the target
function, by modifying PSO to replace the steepest gradient
descent method. In reference 11 the learning rate of the BSS
method is selected adaptively by using PSO. In reference 12
the authors introduce the evolution speed and the aggregation
degree to update the dynamic inertia weight in PSO. In refer-

276 (pp. 276–281) International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014



Y. Yang, et al.: BLIND SOURCE SEPARATION RESEARCH BASED ON THE FEATURE DISTANCE USING EVOLUTIONARY ALGORITHMS

ence 13, for blind deconvolution and the deblurring of images,
the method is based on a non-Gaussian measure of ICA along
with the GA for optimization in the frequency domain.

In this paper, the BSS approach for linear mixed signals is
studied to get the coefficients of the separating matrix by us-
ing evolutionary algorithms (PSO and GA). The operation of
these algorithms principally depends on the fitness function by
using the kurtosis and the feature distance, which will be de-
fined later. We first constructed two mixed signals using two
spoken word signals. The objective is to separate the signals
from the mixed ones and this is a typical BSS problem. Then
we used evolutionary algorithms to separate the mixed matrix.
The simulation results showed that a good result can be ob-
tained by using the feature distance combined with kurtosis as
the fitness function. Kurtosis is a simple and necessary crite-
rion for estimation dependency among signals. The proposed
method not only uses the mathematical way to find the opti-
mal matrix, but it also takes into consideration the signals’ own
characteristics, as can be seen in the feature distance definition.
When the feature distance and the independence of estimated
signals are at a maximum, the two signals are separated well.
Other simulation results also showed that the proposed method
is valid and can be used in the similar field.

2. BLIND SOURCE SEPARATION AND EVO-
LUTIONARY ALGORITHMS

2.1. BSS Problem Description
A series of observed signals is given, and BSS aims at re-

covering the underlying sources by using the assumption of
their mutual independence. BSS can be classified as linear or
nonlinear based on the type of mixing of the sources.

The BSS model considered in this paper is a linear simulta-
neous mixture in Eq. (1).

x = As; (1)

where x = [x1, x2, . . . , xm]
T ∈ R is a vector containing mea-

sured signals xi, s = [s1, s2, . . . , sn]
T ∈ Rn is a vector con-

taining original sources (m ≥ n), and A ∈ Rm×n is an un-
known mixing matrix with full column rank.1 The linear model
can also be expressed as in Eq. (2):

xj(t) = aj1s1 + aj2s2 + · · ·+ ajnsn ∀j = 1 . . . n. (2)

Assume that the number of sources n is equal to that of mix-
tures m. For simplicity, the discussion here is restricted to the
case of m = n = 2. In the experiment we will construct two
mixed signals using two original spoken signals. Certain as-
sumptions about sources are also needed in the BSS problem.
The most general ones are:1

1. Sources are mutually independent;

2. Sources are non-Gaussian or one Gaussian signal at most;

3. The mixing matrix is a full unknown column rank.

With the above assumptions, the BSS result has two inherent
ambiguities:1

1. The order of the estimated sources cannot be decided;

2. Original variances (energies) of sources are unknown.

Therefore, all the sources are generally assumed to have unit
variances.1

The matrix W (the separating matrix) whose output can be
an estimate of the sources s(t) is given in Eq. (3):

y = Wx (3)

In ICA, a solution that maximizes the non-Gaussianity of
the recovered signals is needed. Therefore, some ways to mea-
sure the non-Gaussianity are also required including negen-
tropy and kurtosis.

Negentropy is used as a measure of distance to normality in
information theory. The entropy of a discrete signal is equal
to the negative sum of the products of the probability of each
event and the log of those probabilities. Kurtosis is a classical
method of measuring non-Gaussianity which is equal to the
fourth moment of the data if the data is pre-processed with
unit variance. In an intuitive sense, kurtosis is used to measure
the ”spikiness” of a distribution or the size of the tails. It is
extremely simple to calculate but sensitive to outliers in the
data set at the same time.13 Mathematically kurtosis, is defined
in Eq. (4).:13

Kurt(y) = E{y4} − 3
(
E{y2}

)2
. (4)

If y has unit variance, we can obtain Kurt(y) = E{y4} −
3. If x1 and x2 are random variables, Kurt(x1 + x2) =

Kurt(x1) +Kurt(x2) and Kurt(ax) = a4Kurt(x) are sat-
isfied.

2.2. Particle Swarm Optimization (PSO)
The PSO method was developed by Eberhart and Kennedy

in 1995.14 It simulates social behaviour to a promising position
in order to achieve precise objectives in a multi-dimensional
space. The PSO method has been applied in a wide variety
of highly complicated optimizations in real-world problems.
Like other evolutionary algorithms, PSO performs searches us-
ing a population (called a swarm) of individuals (called parti-
cles) that are updated from iteration to iteration. Each particle
changes its search direction based on two factors to discover
the optimal solution. The first one is its own best previous ex-
perience and the other one is the best experience of all other
members.14–16

The basic process of the PSO algorithm is initialization, fit-
ness, update, construction, and termination. The process of
PSO is finished if the termination condition is satisfied. The
details are given as follows:16

1. Generate initial particles randomly;

2. Measure the fitness of each particle in the population;

3. Compute the velocity of each particle;

4. Move to the next position for each particle;
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5. Stop the algorithm if the termination criterion is satisfied;
otherwise, return to Step 2.

The position vector and the velocity vector of i th parti-
cle in an m-dimensional search space can be represented as
xi(i = 1, 2, . . . , N) and vi(i = 1, 2, . . . , N) respectively; N
represents the number of particles.

In the PSO algorithm, the new velocities of other particles
are updated by Eqs. (5) and (6).

vi(t+ 1) = ωvi(t) + c1r1 (pi(t)− xi(t))
+c2r2 (pg(t)− xi(t)) ; (5)

xi(t+ 1) = xi(t) + vi(t+ 1); (6)

where vi is the velocity of the i th particle of the swarm, xi is
the position in the search space. pi is the best position of the i
th particle, pg is the global best particle, ω is the inertia weight
of velocity, c1 and c2 are the acceleration coefficients, and r1
and r2 are two different, uniformly distributed random num-
bers in the range of [0, 1]. The potential of the solution is mea-
sured by the fitness function in our paper. More details about
the PSO algorithm can be seen in the reference section.8, 17–19

2.3. Genetic Algorithm (GA)

The GA is one of the most popular stochastic optimization
techniques nowadays. The GA method is inspired by the nat-
ural genetics and biological evolutionary process. Three basic
operators are used to manipulate the genetic composition of
a population: reproduction, crossover and mutation. The GA
evaluates a population and generates a new one iteratively with
each successive population (generation).6

The goal is to solve the optimization problem. Here, the
chromosome is written as an array with an n-dimensional op-
timization problem and can be seen in Eq. (7).20

chromosome = [p1, p2, p3, . . . , pn]. (7)

Each chromosome has a cost found by evaluating the fitness
function f at the variables p1, p2, p3, . . . , pn.

f(chromosome) = f(p1, p2, p3, . . . , pn) (8)

The GA algorithm is characterized as follows:6

1. Encodes solutions to a problem in the form of a chromo-
some;

2. Initializes the population for the chromosomes procedure;

3. Evaluates fitness function;

4. Manipulates the composition of the population using ge-
netic operators;

5. Provides the initial settings of the population size and
probabilities employed by the genetic operators.

3. EXPERIMENTS

In the experiment, two spoken word signals (kiss1 and
love1) were used as the individual signals.21 Suppose that
y1 is the name of the kiss1 signal and y2 is the name of the
love1 signal. We know that two spoken word signals do not
have the same length most of time. Therefore, we add sev-
eral zero values at the end of the short signal to make their
length same. Then two mix signals were constructed, which
aremix1 = 0.3∗y1+0.5∗y2 andmix2 = 0.4∗y1+0.3∗y2.
The mixed signals are the weighted sums of the original spo-
ken signals; the weights depend upon the distances between the
source signals and the microphones. Here the mixing matrix
was chosen randomly.The unknown matrix is square, and the
mixing can be characterized by a linear scenario. The objec-
tive is to separate the individual signals from the mixed ones,
and this is a typical BSS problem. The recovered signals are
called ys1 and ys2 in this paper.

3.1. Fitness Evaluation-Kurtosis
Kurtosis is used to measure the degree of the non-Gaussian

property of the signals. The common evolutionary algorithm
in the BSS problem is based on the kurtosis calculation. Pre-
processing of the BSS data is needed before using kurtosis as
the fitness function which contains two steps: centring and
whitening.2

The fitness function is defined as follows in Eq. (9):

F (ys) = |kurt(ys1)|+ |kurt(ys2)|
fitness = −F (ys) (9)

The kurtosis of a distribution in MATLAB 7.0 is defined in
Eq. (10):

k =
E(x− µ)4

σ4
(10)

where µ is the mean of x, σ is the standard deviation of x, and
E(t) represents the expected value of the quantity t.

3.2. Fitness Evaluation- Feature Distance
As signal has its own characteristic and features vectors that

can help distinguish speech signals. There is more than one
way to choose the feature vectors. For the spoken signals, DFT
coefficients were used as features.2 Other popular alternatives
include the parameters from an AR modelling of the speech
segment and the ceptstral coefficients (the inverse DFT of the
logarithm of the magnitude of the DFT coefficients). In the
experiment, the AR modelling method was selected as the fea-
ture. When the feature distance of two recovered signals is at
its maximum, the two signals are separated well by the algo-
rithm.

The feature distance is defined in Eq. (11):

F (ys) =
m∑
j=1

(|f(ys1)| − |f(ys2)|) ; (11)

where f is the feature function, and m is the number of the
feature vectors. The fitness function is defined in Eq. (12).

fitness = −F (ys) (12)
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3.3. Fitness Evaluation– kurtosis and fea-
ture distance

With the advantage of kurtosis and feature distance as the fit-
ness function, the separated signal can have both physical sig-
nificance and the independence property. Therefore, we pro-
posed a new fitness function combined with kurtosis and fea-
ture distance to improve the algorithm; it is defined in Eq. (13):

F (ys) = |k(ys1)|+ |k(ys2)|+
m∑
j=1

(|f(ys1)| − |f(ys2)|)

fitness = −F (ys);
(13)

where f is the feature function and m is the number of the
feature vectors.

3.4. Simulation Result
We individually used Particle Swarm Optimization (PSO)

and the Generic Algorithm (GA) to settle the BSS problem.
In the PSO method, the particles were used in the separating

matrix. Here we chose the learning factor synchronization of
the PSO algorithm to separate the mixed spoken signals in the
experiment. Three fitness functions were used to test the algo-
rithm. The waveforms of the source signals and the recovered
signals can be seen from Fig. 1 to Fig. 3.
Kurtosis(y1)=26.9992
Kurtosis(y2)=30.4246
Kurtosis(ys1)=30.4824
Kurtosis(ys2)= 27.0729
Fitness function value= -57.4238 (expected value)
Fitness function value= -57.5553 (experimental value)
Fitness function value = -6.6461 (expected value)
Fitness function value = -6.6728 (experimental value)
Fitness function value = -64.0699(expected value)
Fitness function value = -64.1792 (experimental value)

In the GA method, the program was written with the Genetic
Algorithm Tool in MATLAB. The population size was 40, the
variable number which used in the separating matrix was 4 and
the other parameters were by default. Three fitness functions
were also used to test the algorithm we proposed in the paper.
Kurtosis(y1)= 26.9992
Kurtosis(y2)= 30.4246
Kurtosis(ys1)= 27.0767
Kurtosis(ys2)= 30.4782
Fitness function value = -57.4238 (expected value)
Fitness function value = -57.5548 (experimental value)
Fitness function value = -6.6461(expected value)
Fitness function value = -6.6439 (experimental value)
Fitness function value = -64.0699(expected value)
Fitness function value = -64.1792 (experimental value)

The recovered signals ys1 and ys2 were obtained by using
the optimal separating matrix, whose figures can be seen in
Figs. 4 to 6. Compared with the classical ICA algorithm 2
(FastICA, Hyvarinen’s fixed-point algorithm). The signals can
be seen in Fig. 7.

In order to evaluate and compare the performance of BSS,
the correlation analysis and the source to distortion ratio (SDR)

Figure 1. PSO-kurtosis

Figure 2. PSO-feature distance

were used to verify the similarity between the source signals yi
and separated signals ysi with N samples. SDR is defined as
in Eq. (14).

SDR(yi, ysi) = 10log

 N∑
t=1

[yi(t)]2

N∑
t=1

[ysi(t)− yi(t)]2

 ; (14)

where the larger the SDR is, the better the effect of separated
signals is.

The experimental results of the PSO, GA, and FastICA
method were given for comparison in Table 1.

From Table 1 we can see that, the proposed algorithm with
the fitness of kurtosis and the feature distance has good re-
sults that are similar with FastICA. The key point in the per-
formance of the evolutionary algorithm is the definition of the
fitness function. The separated method in the paper uses not
only the mathematical way to find the optimal matrix, but also
takes into consideration the signals’ own characteristics. After
doing the similarsimulation, the simulation result of the pro-
posed method is still effective.
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Table 1. Result analysis between the signals recovered and the source signals

Signals Source Signals
Recovered y1 y2 SDR algorithm

ys1 0.0259 0.9998 SDR(y1,ys2)= 31.7390 PSO
ys2 0.9997 0.0209 SDR(y2,ys1)= 33.6021 f: kurtosis
ys1 0.9592 0.3271 SDR(y1,ys2)= 10.8874 PSO
ys2 0.0447 1.0000 SDR(y2,ys1)= 53.7254 f: feature distance
ys1 0.0369 1.0000 SDR(y1,ys1)= 28.6550 PSO
ys2 0.9993 0.0099 SDR(y2,ys2)= 40.1285 f: feature distance& kurtosis
ys1 -0.9996 -0.0185 SDR(y1,ys2)= 30.9869 GA
ys2 0.0282 0.9998 SDR(y2,ys1)= 34.6346 f: kurtosis
ys1 0.0576 0.9999 SDR(y1,ys1)= 9.0815 GA
ys2 -0.9382 -0.3895 SDR(y2,ys2)= 39.2657 f: feature distance
ys1 0.0364 0.9999 SDR(y1,ys1)= 28.7721 GA
ys2 0.9993 0.0103 SDR(y2,ys2)= 39.7033 f: feature distance& kurtosis
ys1 0.0094 0.9993 SDR(y1,ys2)= 40.5799 FastICA
ys2 1.0000 0.0374 SDR(y2,ys1)= 28.5384

Note: f means fitness function.

Figure 3. PSO-kurtosis and feature distance

Figure 4. GA-kurtosis

4. CONCLUSION

BSS is a good method for dealing with mixed signals. Indi-
vidual source signals can be obtained if the separating assump-
tions are satisfied. By introducing the evolutionary method
with the feature distance and kurtosis as the fitness function
in the experiment, the separated signals can have both physical
significance and the independence property. It can be widely
used in the BSS problem, evolution algorithm, signal process-

Figure 5. GA-feature distance

Figure 6. GA-kurtosis and feature distance

ing, and similar research. Our further study will be the evolu-
tionary algorithm on the nonlinear mixing models in the BSS
problem.

ACKNOWLEDGEMENT

The authors thank the support of Education Department of
Liaoning Province, China. The project number is L2010006.

280 International Journal of Acoustics and Vibration, Vol. 19, No. 4, 2014



Y. Yang, et al.: BLIND SOURCE SEPARATION RESEARCH BASED ON THE FEATURE DISTANCE USING EVOLUTIONARY ALGORITHMS

Figure 7. Fast-ICA
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The behaviour of mechanical structures in low frequencies is strongly affected by the existence of the boundary
conditions. It is not usually possible to provide ideal boundary conditions, i.e. simply supported or clamped,
for structures. Therefore the real structures are mostly constrained by elastic supports. Constructing an accurate
mathematical or numerical model for a structure requires the knowledge of the support parameters. In this paper,
a new method is proposed for the parameter identification of a rectangular plate constrained by elastic support.
The method relies on the free vibration solution of the plate dynamics subjected to elastic boundary conditions and
employs the optimization toolbox of MATLAB.

1. INTRODUCTION

The supports, or boundary conditions, play an important
role in a structure’s dynamic behaviour and must be considered
carefully when constructing mathematical or numerical mod-
els. In reality, the supports of structures are not rigid enough,
and they show flexibility to some degree. The flexibility of the
supports can be modelled as elastic boundary conditions. In
order to have an accurate model of a structure, the knowledge
of the support parameters is essential. The support parameters
can be identified by using experimental results.

The sensitivity method is one of the most widely used ap-
proaches in determining boundary condition parameters.1 In
this method the difference between model predictions and test
observations is defined as an objective function. An iterative
process is then adopted, and the objective function is mini-
mized by using the sensitivity approach. It should be noted
that the sensitivity of higher natural frequencies to support pa-
rameters is low, which results in convergence problems in the
optimization procedure.2

In the characteristic equation method the boundary support
parameters are identified by solving the nonlinear characteris-
tic equations. In this method, which was adopted by Ahmadian
et al., the number of characteristic equations formed is equal
to the number of measured natural frequencies. The bound-
ary condition parameters are then identified by simultaneously
solving the characteristic equations.3

Waters et al. and Wang and Yang adopted the static flex-
ibility measurements and identified the boundary conditions
of a tapered beam.4, 5 They modelled the beam as a uniform
rigid beam that was constrained by collocated equivalent trans-

lational and rotational springs. The boundary conditions are
identified by quasi-static stiffness measurements obtained from
impact tests.

This paper deals with the support parameter identification
of a rectangular plate constrained in its edges by an elastic
boundary condition. The boundary condition contains struc-
tural damping. The solution method proposed by Li et al. is
adopted to analyse the free vibration of the beam.6 The analy-
sis leads to obtaining the natural frequencies and damping ra-
tios of the plate. An identification approach is proposed based
on the solution presented by Li et al. and by using the mea-
sured modal properties (i.e. natural frequencies and damping
ratios).6 The proposed method is verified by using simulated
and experimental results. The next section considers the free
vibration analysis of an elastically supported plate.

2. PLATE DYNAMICS ON ELASTIC
SUPPORT6

Figure 1 shows an elastically supported rectangular plate,
which is constrained by lateral and torsional springs. It is con-
sidered that the elastic boundary condition contains structural
damping.

The governing differential equation for the free vibration of
the rectangular plate is expressed in Eq. (1):

D∇4w(x, y)− ρhω2w(x, y) = 0; (1)

where ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4, and w(x, y)

is the lateral displacement function, ω is the angular frequency
and ρ, h and D are mass density, thickness, and bending rigid-
ity of the plate, respectively. The above governing equation is
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Figure 1. Rectangular plate with elastic boundary condition in all edges

subjected to the following boundary conditions, at x = 0 and
x = a:

kww(x, y) = −D (wxxx + (2− v)wxyy) ; (2)

kθwx = (−1)x/aD (wxx + vwyy) ; (3)

at y = 0 and y = b:

kww(x, y) = −D (wyyy + (2− v)wyxx) ; (4)

kθwy = (−1)y/bD (wyy + vwxx) ; (5)

where kw = kw(1 + iη). kw and kθ are respectively the lateral
and torsional stiffness coefficients of the boundary condition
and η is the structural damping coefficient. The above bound-
ary conditions represent the shear forces and bending moments
introduced at the plate edges by its movements. By consid-
ering a displacement field for the free vibration of the plate,
substituting it into the governing equation and boundary con-
dition relations, i.e. Eqs. (1)-(5), the resulting equation can be
expressed as:6 (

[K]− ρhω2

D
[M ]

)
{a} = 0. (6)

Equation (6) can be used for obtaining the natural frequencies
of an elastically supported rectangular plate, provided that the
parameters of the elastic boundary condition are known. The
natural frequencies are calculated by solving the characteristic
equation, i.e. |K − (ρhω2/D)M| = 0. Since kw is complex
the calculated natural frequencies are a complex conjugate and
of the form ωn = −ζnωn ± iωn, n = 1, 2, . . . . The real
part represents the damping ratio, and the imaginary part is a
measure of the free oscillation frequency of each mode.

Equation (6) can also be effectively used for parameter iden-
tification of the plate boundary support when the natural fre-
quencies and damping ratios are known from experimental or
simulated results. The parameter identification method is dis-
cussed in the next section.

3. PARAMETER IDENTIFICATION METHOD

Consider that N natural frequencies and damping ratios of
an elastically restrained plate are known,

{Ωe} = [ωe1ω
e
2 · · ·ωeN ]T ; (7)

{Ze} = [ζe1ζ
e
2 · · · ζeN ]T ; (8)

where {Ωe} and {Ze} are the vectors of measured or simulated
natural frequencies and damping ratios, respectively. The aim
of this section is to identify the support parameters, i.e. kw,
kθ and η by using the known vectors of modal properties in-
troduced in Eq. (7) and Eq.(8). The support parameters are
estimated by minimizing the differences between known and
predicted modal characteristics as is described in the follow-
ing. The predicted modal parameters are calculated by using
the numerical method presented in the previous section.

In order to start the optimization algorithm, first a set of ini-
tial values for the support parameters are considered, i.e. k0w,
k0θ and η0. The initial values are updated in subsequent itera-
tions until the optimum support parameters are obtained. By
substituting the initial parameters into Eq. (6) and solving the
characteristic equation a set of predicted natural frequencies
and damping ratios are obtained,

{Ωa} = [ωa1ω
a
2 · · ·ωaN ]T ; (9)

{Za} = [ζa1 ζ
a
2 · · · ζaN ]T ; (10)

where {Ωa} and {Za} are the vectors of the predicted natural
frequencies and damping ratios, respectively. The optimum set
of the support parameters can be obtained by minimizing the
following objective function:

OBJ = ||1− {Ωa}
{Ωe}

||+ ||1− {Za}
{Ze}

|| (11)

In Eq. (11) OBJ represents the sum of the norm of the dif-
ferences between the known and predicted natural frequencies
and damping ratios. Different optimization algorithms can be
used to minimize the objective function of Eq. (11) and hence
estimate the optimum support parameters. In sensitivity based
approaches, the optimization problem in each iteration is cast
in the following first order sensitivity equation: [S]{∆} = {ε}.
Here, [S] is the sensitivity matrix, {∆} = [δkw, δkθ, δη]T is
the vector of updating parameters and {ε} is the vector of dif-
ferences between the known and predicted modal parameters.
By solving for {∆}, the updated support parameters in itera-
tion ith are obtained as,

kiw = ki−1
w + δkw; (12)

kiθ = ki−1
θ + δkθ; (13)

ηi = ηi−1 + δη. (14)

Parameter updating based on equations (12)-(14) is termi-
nated when ||ε|| reaches a small value, i.e. ||ε|| << 1. [S] is
a matrix compose of the sensitivity of different modal param-
eters to the support parameters. Since the sensitivity matrix
is not known for the problem considered in this paper, identi-
fication is performed by using gradient based methods in the
optimization toolbox of MATLAB, e.g fmincon, fminsearch,
. . . . In the following section a numerical example is presented
to show the accuracy of the proposed method.
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Table 1. Mechanical properties of the square plate

v E(Gpa) ρ ( kg
m3 )

0.33 200 7800

Table 2. Simulated natural frequencies and damping ratios.

Mode number ω(Hz) ζ (%)
1 115.41 2.04
2 135.43 1.97
3 166.77 1.92
4 217.41 1.71
5 219.97 1.60

4. NUMERICAL EXAMPLE

A square plate of dimensions a = b =2 m and h = 0.0025 m
is considered which is supported by an elastic boundary condi-
tion. The parameters of the boundary condition are considered
as kw = 1000 N

m , kθ = 100 Nm
rad and η = 0.0005. The material

properties of the plate are given in Table 1,

Having the plate dimensions, its material properties, and
the boundary support parameters, the natural frequencies and
damping ratios can be calculated by using Eq. (6). Table 2
shows five natural frequencies of the plate and their corre-
sponding damping ratios:

Next, the modal properties presented in Table 2 are consid-
ered as experimental results, and the parameters of the bound-
ary condition are identified by minimizing the objective func-
tion defined in Eq. (11). Minimization is done by using the Op-
timization Toolbox of MATLAB. Since the objective function
is a nonlinear and complex function, the employed optimiza-
tion algorithm strongly affects the identified results. The effi-
ciency of different optimization algorithms was studied, and fi-
nally it was concluded that the fmincon function is the most ap-
propriate function for the minimization of the objective func-
tion defined in this paper. In Table 3 the elapsed time and the
final value of the objective function for different unconstraint
(i.e. fminsearch and fminunc) and constraint (i.e. fmincon and
patternsearch) optimization algorithms are compared. In ob-
taining the results presented in Table 3 the initial values shown
in Table 4 for support parameters were used. Also, in con-
straint optimization algorithms, it was considered that the sup-
port parameters are positive, i.e. kw > 0, kθ > 0 and η > 0.

Results presented in Table 3 indicate that the fmincon algo-
rithm is more effective in obtaining the plate support param-
eters. In Fig. 2 the change in the objective function and, in
Table 4, the initial and final support parameters are presented
for the fmincon algorithm.

Figure 2 shows that the identification algorithm succeeds
in finding the optimum support parameters after 40 iterations.
The results presented in Fig. 2 and Table 4 indicates that the
proposed method identifies the support parameters with an ac-
ceptable accuracy. The next section considers two experimen-
tal case studies.

Figure 2. Change in objective function.

Table 4. Initial and identified support parameters.

kw ( N
m ) kθ ( Nm

rad ) η

Initial 0.1 0.0001 0
Numerical example

Identified 1000.18945 97.0673 0.00049925
Aluminum plate

Identified 65.104 0.126 0.00028
Steel plate

Identified 3194.161 850.725 0.01849

5. EXPERIMENTAL VALIDATION

In this section, the proposed method is applied to two ex-
perimental case studies, and the parameters of their boundary
conditions are identified.

5.1. Aluminium rectangular plate

In this section the experimental results of a rectangular alu-
minium plate considered by Amabili is used, and its boundary
support parameters are identified.7 The material properties and
geometrical dimensions of the aluminium plate are presented
in Table 5.

The plate was placed between rectangular frames made of
thick steel. The frame prevents the edges of the plate to move
in a perpendicular direction, but they can rotate. Therefore
the boundary condition was very similar to the simply sup-
ported boundary condition. It should be noted that the iden-
tified lateral stiffness coefficient should be much larger than
the identified torsional stiffness coefficient. Modal testing was
performed on the plate, and its natural frequencies and damp-
ing ratios were extracted. The plate was excited by means of
an electromagnetic shaker, model LDS V406. The transmit-

Table 5. Dimensions and mechanical properties of the aluminum plate.7

v E (Gpa) ρ ( kg
m3 ) h (m) b (m) a (m)

0.33 69.10 2700 0.0003 0.184 0.515
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Table 3. The efficiency of different optimization algorithms.

fminsearch fminunc fmincon patternsearch
elapsed time (s) 12423.50 736.33 450.73 18663.19

final objective function 2.08 ×10−9 27.304 2.93 ×10−18 1.53 ×10−8

Table 6. Comparison of experimental and predicted modal properties (aluminum plate).

Mode Natural frequency ω (Hz) Damping ratio ζ (%)
number Exp. Predicted Error (%) Exp. Predicted Error (%)

1 26.87 26.99 -0.47 2.06 2.06 0.0
2 39.37 38.97 1.01 1.51 1.50 0.54
3 55.20 55.60 -0.74 1.88 1.90 -1.13
4 75.72 74.32 1.84 1.34 1.31 2.04
5 93.56 95.10 -1.65 1.12 1.13 -1.72

Figure 3. Variation of the objective function (aluminium plate).

ted value was measured by using a piezoelectric force trans-
ducer, model PCB M209C11, placed between the stinger and
the plate. An accelerometer, model Endevco 22, was glued to
the centre of the plate in order to measure the plate response.
A low level burst-random excitation force was employed, and
the plate frequency response functions (FRFs) were measured.
The plate modal characteristics were extracted by analysing
the experimental FRFs. The experimental results are presented
in Table 6:

The measured modal properties presented in Table (6) are
used, and the parameters of the plate boundary support are
identified. Identification is done by following the procedure
presented in previous sections. It is worth mentioning that only
three first natural frequencies are used in the identification pro-
cedure. The remaining two natural frequencies are used for the
verification of the identified parameters. The variation of the
objective function in the identification procedure is shown in
Fig. 3. The initial and identified support parameters are tabu-
lated in Table 4. In Table 6 experimental and identified modal
properties are compared. The results presented in Table 6 show
the accuracy of the proposed method.

Figure 4. The steel plate supported by rubber seal.

5.2. Steel plate supported by rubber seal

In this section, the boundary condition of the steel plate con-
sidered by Ahmadian et. al. is identified.3 The plate, having
the dimensions of 0.5 m × 0.8 m × 0.0025 m, is attached to
the ground by the rubber seal. A schematic of the elastic sup-
ported plate is depicted in Fig. 4. The plate has the following
material properties: v = 0.33 as Poisson’s ratio, E = 207 GPa
as Young’s modulus, and ρ = 7800 kg

m3 as mass density.

Modal testing was performed on the plate in order to mea-
sure its dynamic properties, i.e. natural frequencies and damp-
ing ratios. The plate was excited by using a modal hammer,
and its response was measured by means of accelerometers.
By transfering the recorded force and response signals into a
digital analyser, the frequency response functions (FRFs) were
calculated. FRFs were then curve fitted, and the modal pa-
rameters of the steel plate were extracted. The experimental
natural frequencies and damping ratios are given in Table 7.
As in the aluminium plate case, the elastic support parameters
are identified by employing the method presented in this paper
and by using the first three measured natural frequencies and
damping ratios. The variation of the objective function in the
identification procedure is shown in Fig. 5. Table 4 reports the
identified support parameters for the steel plate.

The experimental and predicted modal properties are com-
pared in Table 7. It is worth mentioning that the last two sets of
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Table 7. Comparison of the experimental and predicted modal properties.

Mode Natural frequency ω (Hz) Damping ratio ζ (%)
number Exp. Predicted Error (%) Exp. Predicted Error (%)

1 29.60 29.89 -1.00 1.58 1.57 0.32
2 60.40 59.93 0.77 0.84 0.85 -1.23
3 98.90 97.80 1.11 0.91 0.92 -1.56
4 106.20 104.50 1.53 0.87 0.85 1.43
5 120.10 122.90 -2.41 1.36 1.39 -2.72

Figure 5. Variation of the objective function in identification procedure (steel
plate).

modal characteristics are used for verification of the identified
model. The results presented in Table 7 show the accuracy of
the identified support model for the steel plate.

6. CONCLUSION

Identification of the boundary condition parameters of a
rectangular plate restrained in edges by an elastic support was
considered. The boundary support was considered to contain
structural damping. In order to identify the support parameters,
first a numerical solution developed in6 was presented for free
vibration of elastic supported plate. The solution permitted the
calculation of the plate’s natural frequencies and damping ra-
tios. The support parameters were identified by minimizing the
differences between experimental and predicted modal proper-
ties by employing the MATLAB optimization toolbox. The
identification procedure was verified by using simulated and
experimental results presented by Amabili7 and Ahmadian et.
al.3
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The authors of this volume are

well known for their work on non-

linear acoustics, and those who

have read their earlier books will

find that they have maintained

similar standards of quality over

an evolving range of topics.

As the subtitle “General The-

ory and Applications to Nonlinear

Acoustics” indicates, the book is

divided into two parts: theory and

application. Part one concerns the

general theory of nonlinear waves. This part not only illus-

trates hydrodynamic problems, but it also illustrates other ap-

plications that lead to similar or related equations such as the

advances of a flame front in a forest fire and the gravitational

collapse of an expanding universe. Part two applies similar

methods to a number of problems in nonlinear acoustics.

A common feature of both parts one and two is the frequent

reference to the Lagrangian coordinates co-moving with a par-

ticle or flow in addition to the Eulerian coordinates relative to a

fixed reference frame. The use of Lagrangian-to-Eulerian co-

ordinate transformations starts at the beginning of chapter one.

This chapter deals with simple waves described by Riemann’s

equation. Chapter two continues with a detailed analysis of the

solutions to the nonlinear first-order wave equation of the Rie-

mann type before proceeding to the second-order wave equa-

tions of Burgers and the related types in chapters three through

five.

The Burgers’ equation is solved directly by applying the

Cole-Hopf transformation to the heat equation in chapters

three and four. These chapters include a variety of cases

from N-waves to fractal signals. Burgers initially envisaged

the equation named after him as the one-dimensional Navier-

Stokes equation without the pressure gradient term as a model

of turbulence. It has been used mostly to describe the coupling

of inertial nonlinearity with diffusion, and it has been applied

to nonlinear waves with linear damping. In chapter five, the

Burgers’ equation is used as a model of turbulence by assum-

ing a random initial velocity field and following its statistical

evolution. Chapter six extends the theory to the multidimen-

sional Burgers’ equation, completing part one on wave theory.

Part two focuses on the applications to nonlinear acous-

tics and consists of chapters seven to eleven. Chapter seven

starts with general equations and their solutions, including both

the Burgers’ equation and several extensions of this equation.

Chapter eight concerns acoustic nonlinearities that are relevant

to the ultrasonic methods of the inspection of materials. Chap-

ter nine deals with N-waves that are best known for their role

in the sonic booms of supersonic aircrafts. Chapter ten con-

cerns the self-action of nonlinear waves, including the focusing

and self-refraction of nonlinear beams, and acoustic streaming

(the flow field induced by nonlinear waves). The final chapter,

chapter eleven, addresses nonlinear resonant standing waves,

including several classes of nonlinear media.

The book includes an appendix with some of the properties

of the generalized functions (Heaviside unit step and Dirac unit

impulse) that are used in the text. This volume is a useful addi-

tion to the literature on nonlinear waves and nonlinear acous-

tics as it provides a cohesive and clear account of some of the

recent progress in the research of these areas.
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