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In this work the invariant imbedding method has been used to develop an algorithm to study the torsional vibration
of non-uniform systems. The algorithm is based on the propagation, reflection, and transmission of waves in a
stepped waveguide and is part of a procedure to transform two-point boundary value problems in initial value
problems. Based on this approach, a continuous model has been developed and a simple, versatile, and robust
algorithm has been constructed to solve torsional vibration problems of non-uniform shafts with circular cross-
sections. The proposed solution algorithm was extensively evaluated through comparisons with analytical solutions
and the finite element method. The results show that the proposed method can provide the exact solution for
uniform shafts with concentrated elements and accurate results for a wide variety of torsional vibration problems.
Systems with continuously varying geometry may be approximated by stepped shafts. The proposed method can
also be used to study the dynamic behaviour of others stepped systems.

1. INTRODUCTION

In the present paper, an approach usually applied to investi-
gate the wave propagation in layered media is used to develop
a continuous model to study the torsional vibration of non-
uniform systems.1 The formulation of the proposed method
considers that partial torsional waves propagate in opposite di-
rections in a system with stepped changes in its properties as
shown in Fig. 1. In the frequency domain, the governing equa-
tions are written in a state space form where the state variables
are the angular displacement and twisting moment. The state
matrix varies in a piece-wise constant fashion according to the
properties of each segment of the rod. The part of the rod with
continuously varying geometry (e.g., a conical part) is approx-
imated by thin uniform segments. The solution of the state
space equation is obtained by employing a discrete version of
the Riccati transformation, which is a key ingredient in the in-
variant imbedding approach.2 This technique is used to trans-
form two-point boundary value problems in initial value prob-
lems, and is also known as the method of sweeps, the Riccati
method, or the factorization method.3, 4 Based on this transfor-
mation, a recursive algorithm has been constructed for the so-
lution, providing a simple and powerful computational method
capable of solving problems of torsional vibration in circular
non-uniform rods.5, 6 Comparisons to analytical solutions and
finite element results show that the proposed method can pro-
vide the exact solution for the torsional vibration of uniform
shafts with concentrated elements and an approximated solu-
tion for shafts with a continuously varying geometry.

It must be pointed out that previous works have consid-
ered the propagation, reflection, and transmission of waves to
solve vibration problems in finite inhomogeneous systems.7, 8

It must also be mentioned that other methods to obtain the solu-

Figure 1. Stepped shaft with a conical part approximated by cylindrical
segments.

tion for the torsional vibration of non-uniform rods have been
presented in the literature. An analytical solution was pro-
vided by Pouyet and Lataillade9 for specific profiles of non-
uniform rods, and the exact solution for more general cases
has been obtained by Qiao et al.10 and Li.11 A continuous
model for stepped shafts was proposed by Mioduchowski,12

and a general approach for stepped systems governed by the
one-dimensional wave equation was presented by Bapat and
Bhutani.13 A new exact approach for the analysis of torsional
vibration of a non-uniform shaft carrying an arbitrary number
of rigid disks has been proposed by Chen.14 Xiang et al.15

used the modified Riccati torsional transfer matrix method to
calculate the torsional natural frequencies of a shaft system
modelled as a chain consisting of an elastic spring with con-
centrated mass points.

As described in the foregoing sections, the main contribu-
tion of the present work is to provide a simple and concise
algorithm that is able to solve a great variety of vibration prob-
lems. The algorithm can be easily implemented and used to
solve the forced torsional vibration of non-uniform systems
with classical or non-classical boundary conditions. Although
the proposed method has been developed to study the vibra-
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tion of systems governed by the one-dimensional wave equa-
tion, the algorithm presented here can also be applied to study
the dynamic behaviour of other stepped systems. In fact, this
method has been used by the author to investigate the high fre-
quency response of stepped layered composite beams, where
the discrete form of the Riccati transformation has been used
to solve a stiff system of ordinary differential equations.6

2. THE STATE SPACE EQUATION

The algorithm presented in this work to study the vibration
of stepped systems will be used for solving the torsional vibra-
tion of non-uniform rods. In the proposed method, the rod is
treated as one formed by a series of cylindrical segments. The
state space equation is formulated assuming that each cylin-
drical part is elastic, homogeneous, and isotropic. It is also
considered that the angular motion occurs as a rotation of the
cross-sectional area as a whole; i.e., all the points of a cross-
section present the same angular displacement.

From mechanics of solids, the relationship between the an-
gular displacement θ(x, t) and the twisting moment M(x, t) is
given by:

∂θ(x, t)

∂x
=
M(x, t)

GJ(x)
; (1)

where G is the shear modulus of elasticity and J is the polar
area moment of inertia of the shaft cross-section. The equation
of motion for the free torsional vibration is written as

∂M(x, t)

∂x
= I(x)

∂2θ(x, t)

∂t2
; (2)

where I(x) is the polar mass moment of inertia per unit length.
If the time dependence of θ(x, t) and M(x, t) is harmonic and
represented by functions of the form θ(x, t) = θ(x)e−iωt and
M(x, t) = M(x)e−iωt, Eqs. (1) and (2) reduce to:

dθ(x)

dx
=

M(x)

GJ(x)
; (3a)

dM(x)

dx
= −ω2I(x)θ(x). (3b)

Using Eqs. (3a) and (3b), a state space equation is written in a
matrix form as

dζ

dx
= Tζ; (4)

where ζ is the state vector and T is the state matrix given by:

ζ =

{
θ(x)
M(x)

}
; (5a)

T =

[
0 1

GJ
−ω2I 0

]
. (5b)

3. SOLUTION OF THE STATE SPACE
EQUATION

The solution of the state space equation is based on the in-
variant imbedding method where a two-point boundary value
problem is transformed in an initial value problem.1–4 The pur-
pose of the following procedure is to find a solution for Eq. (4)
in the form

M(x) = K(x)θ(x); (6)

where K(x) is called here the global torsional stiffness. Of
course, in general K(x) depends on the material and geometry
of the rod, as well as frequency.

The solution of Eq. (4) may be written as

ζ(x) = N(x)ζ(0); (7)

where N is the transfer matrix that relates the state vector in a
position x to its value in the initial position x = 0, and has the
form

N(x) = eTx. (8)

Writing the matrix T in function of their eigenvalues and
eigenvectors, one can rewrite Eq. (8) as

N(x) = V
{

diag[ek1x, ek2x]
}
V−1; (9)

where V is the matrix whose columns are the eigenvectors, and
kα, α = 1, 2, are the eigenvalues of the state matrix T. The
eigenvalues of T are the wave numbers of partial waves that
propagate in the positive and negative direction of the x-axis
and are related as k2 = −k1. Separating the eigenvalues and
eigenvectors according to waves that propagate in the positive
and negative direction of the x-axis, the matrix v is decom-
posed as

V =

[
A1 A2

L1 L2

]
; (10)

where Aα and Lα, α = 1, 2, are components of the eigenvec-
tors of T. The subscripts 1 and 2 are associated to the waves
that propagate in the positive and negative direction of the x-
axis, respectively.

The state vector in the initial position x = 0 may be ex-
pressed as a linear combination of the eigenvectors of matrix
T as

ζ(0) = Vc =

[
A1 A2

L1 L2

]{
c1
c2

}
; (11)

where c is a constant vector. Substituting Eqs. (9) and (11) into
Eq. (7) yields

ζ(x) =

[
A1 A2

L1 L2

] [
W1(x) 0

0 W2(x)

]{
c1
c2

}
; (12)

where W1(x) = W−1
2 (x) = ek1x are called here the propaga-

tor functions. At this point, the state variables θ(x) and M(x)
will be separated in two parts, corresponding to the contribu-
tions to the total fields of the partial waves that propagate in op-
posite directions. This is a common practice in the description
of wave motion in layered media and is an important feature
of the method of solution presented in this work.5 As men-
tioned before, the subscripts 1 and 2 are related respectively to
the waves that propagate in the positive and negative direction
of the x-axis. The angular displacement θ(x) and the twisting
moment M(x) are now represented as a result of waves that
propagate in the positive and negative direction of the x-axis
as

θ(x) = θ1(x) + θ2(x) (13a)

and
M(x) = M1(x) +M2(x). (13b)

According to Eq. (12), each component of the variables θ(x)
and M(x) in Eqs. (13a) and (13b) are given by

θα(x) = AαWα(x)cα (14a)
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Figure 2. Partial waves propagating in a rod.

and
Mα(x) = LαWα(x)cα; (14b)

where α = 1, 2. The constants cα = θα(0)/Aα are determined
from Eq. (14a) at x = 0; therefore, Eqs. (14a) and (14b) are
rewritten as

θα(x) = Wα(x)θα(0) (15a)

and

Mα(x) = LαWα(x)
θα(0)

Aα
. (15b)

The propagator functions Wα(x) relate the positive (α = 1)
and negative (α = 2) partial waves with its value at x = 0.
From Eq. (15a), θα(0) is obtained and substituted in Eq. (15b)
as

Mα(x) = Sαθα(x); (16)

where Sα = Lα
Aα

is called here the local torsional stiffness of
the rod. It must be pointed out that both Wα(x) and Sα are
functions of the geometry and material properties of each uni-
form part of the rod and of the pair (k, ω). Substitution of
Eq. (16) in Eq. (13b) results in

M(x) = S1θ1(x) + S2θ2(x). (17)

Consider now a torsional wave θ2(x) propagating in the neg-
ative direction of the x-axis, next impinging on the left end of
the rod (x = 0), and being reflected as a wave θ1(x) propagat-
ing in the positive direction of the x-axis, as shown in Fig. 2.
At x = 0, these waves are related by the reflection coefficient
R1 (Fig. 2):

θ1(0) = R1θ2(0). (18)

From the relationship between the partial waves given by
Eq. (15a) and Eq. (18), Eq. (13a) may be written as

θ(x) = [H(x) + 1]θ2(x); (19)

where

H(x) =
W1(x)R1

W2(x)
. (20)

Using Eqs. (19) and (20), Eq. (17) becomes

M(x) = S1H(x)θ2(x) + S2θ2(x). (21)

Finally, obtaining θ2(x) from Eq. (19) and substituting in
Eq. (21) one has the expression relating the twisting moment
and the angular displacement in the desired form of Eq. (6) as

M(x) =
S1H(x) + S2

H(x) + 1
θ(x) = K(x)θ(x). (22)

Figure 3. Rod composed of two uniform segments.

Therefore, the global torsional stiffness K(x) of Eq. (6) is

K(x) =
S1H(x) + S2

H(x) + 1
. (23)

Observe that Eq. (22) provides a relationship between the to-
tal twisting moment M(x) and the total angular displacement
θ(x), whereas the local torsional stiffness Sα in Eq. (16) re-
lates the partial twisting moment Mα(x) with the partial tor-
sional waves θα(x). The local torsional stiffness Sα is a func-
tion of the material property only, while the global torsional
stiffness K(x) depends on the reflection coefficient R1, and
consequently on the boundary conditions.

4. NON-UNIFORM ROD SUBJECTED TO
EXCITATION TORQUE

The torsional waves propagating in a non-uniform rod
formed by uniform segments will be reflected and transmitted
at the interfaces between the segments. Therefore, it is neces-
sary to determine the expression for the reflection coefficient
R of the interfaces.

Consider first the case of a rod composed of two parts, and
subjected to a torque m at the interface (x = L1) between
the two segments, as shown in Fig. 3. It should be emphasized
that if the torque is applied within a uniform segment, one must
divide this segment to create an interface at the section where
the torque is applied. From Eqs. (13a) and (22), one has for
x = L−

1

θ(L−
1 ) = θ1(L−

1 ) + θ2(L−
1 ) (24a)

and
M(L−

1 ) = K(L−
1 )θ(L−

1 ) −m. (24b)

Now, writing Eqs. (17) and (18) for x = L+
1 yields

M(L+
1 ) = S1θ1(L+

1 ) + S2θ2(L+
1 ) (25a)

and
θ1(L+

1 ) = R2θ2(L+
1 ) +Qm. (25b)

In Eqs. (25a) and (25b), R2 is the coefficient of reflection at
x = L1 and Q is the term that transmits the effect of the exter-
nal torque applied at x = L1 to the other sections of the rod.
Note that Sα, α = 1, 2, in Eq. (25a), are the local torsional
stiffness of segment 2. Substituting Eq. (25b) into Eqs. (13a)
and (25a) yields:

θ(L+
1 ) = (1 +R2)θ2(L+

1 ) +Qm. (26a)

and

M(L+
1 ) = (S1R2 + S2)θ2(L+

1 ) + S1Qm. (26b)
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The condition of continuity of angular displacement and twist-
ing moment at x = L1, θ(L−

1 ) = θ(L+
1 ), and M(L−

1 ) =
M(L+

1 ), and substitution of Eq. (26a) into Eq. (24b) leads to

K(L−
1 )(I +R2)θ2(L+

1 ) +K(L−
1 )Qm−m =

(S1R2 + S2)θ2(L+
1 ) + S1Qm. (27)

Therefore, from Eq. (27), one can conclude that the expres-
sions for R2 and Q are

R2 =
K(L−

1 ) − S2

S1 −K(L−
1 )

(28a)

and
Q =

1

K(L−
1 ) − S1

. (28b)

Repeating the same procedure presented in the preceding sec-
tion to obtain Eq. (22), but now also employing Eqs. (25b) to
(26b), that take into account the external torque applied to the
rod, one can finally find

M(x) = K(x)θ(x) + h(x)m; (29)

where
h(x) = [S1 −K(x)]W1(x)Q (30)

is the function that transfers to the other sections of the rod the
effect of the moment m applied at x = L1. The procedure
described in this section will be used in the next section in a
solution algorithm to obtain the torsional natural frequencies
and distribution of angular displacement of stepped rods.

5. SOLUTION ALGORITHM FOR THE
TORSIONAL VIBRATION OF STEPPED
SHAFTS

The concepts presented in the preceding sections are now
generalized to the case of non-uniform rods with arbitrary ge-
ometry, as illustrated in Fig. 4. Each uniform segment of the
rod is labelled by an index j = 1 . . . N . The interfaces between
segments are also labelled by j, running from 1 to N + 1. It is
assumed that the rod is connected at its left end to an element
of known stiffness K1. The stiffness of this element represents
the boundary condition of the rod at x = 0. For example, if the
rod is free one takes K1 = 0; whereas, if its end is clamped
one lets 1/K1 = 0. Non-classical boundary conditions can
be implemented by using an appropriated value of K1. Con-
centrated moments and concentrated elements such as rotary
inertias and torsional springs applied along the rod can also be
taken into account. For instance, consider a twisting moment
m1 at x = 0. The algorithm is composed of two parts, the first
to determine the frequency response function and the second
to obtain the distribution of angular displacement.

5.1. Frequency Response Function of the
Rod

In the first part of the algorithm, the frequency response
function of the rod is obtained as detailed below. Start from
the left end of the rod, where the stiffness K1 is known, then
evaluate the stiffness K2 at the second interface between seg-
ments 1 and 2 and so on until finally evaluating the stiffness

Figure 4. Shaft divided in N uniform segments.

KN+1 at the right end of the rod. The procedure is summa-
rized in the following algorithm:

GIVEN ω, K1 AND m1 REPEAT FROM j = 1 TO N

Rj =
(
Kj − S

(j)
2

)
/
(
S
(j)−Kj
1

)
;

Qj = 1/
(
Kj − S

(j)
1

)
;

Hj = W
(j)
1 (Lj)Rj/

(
W

(j)
2 (Lj)

)
;

hj =
(
S
(j)
1 −Kj

)
W

(j)
1 (Lj)Qj ;

Kj+1 =
(
S
(j)
1 Hj + S

(j)
2

)
/ (Hj + 1) ;

mj+1 = hjmj ;

END.

Note that the superscripts (j) of Sα andWα, α = 1, 2, corre-
spond to the segments of the rod, while the subscript j is used
to designate the interfaces between the segments. To obtain,
for example, the frequency response function of the angular
displacement of the rod at x = L, one evaluates θN+1 for each
frequency ω using the algorithm and the following expression:

MN+1 = KN+1θN+1 +mN+1; (31)

where MN+1 is the twisting moment at x = L. Also observe
that mN+1 can also represent the contribution of the concen-
trated twisting moments applied along the rod to the angular
displacement of the rod at x = L. The natural frequencies of
the rod can be obtained from its frequency response or from
the variation of the global torsional stiffness KN+1 in function
of frequency.

5.2. Distribution of Angular Displacement
To evaluate the angular displacement along the rod, one has

to march backwards using the following recursive algorithm:

REPEAT FROM j = N TO 1

θj2 = (1 +Hj)
−1
θj+1 − (1 +Hj)

−1
W1jQjmj ;

θj = (I +Rj)W
−1
2j θ

j
2 +Qjmj ;

END.

Note that the determination of the angular displacement dis-
tribution begins at x = L, where the angular displacement
θN+1 (j = N ), determined using the first part of the al-
gorithm and Eq. (31), is used to calculate the angular dis-
placement θN at x = L − LN . Then, proceed to θN−1 at
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x = L− (LN−1 +LN ), and so on, until determining the angu-
lar displacement θ1 at x = 0. It should be pointed out that each
uniform segment of the rod can be arbitrarily subdivided into
smaller segments to obtain a detailed description of a vibration
mode. Note that one should record the values of Hj , Qj , Wαj ,
andmj when performing the first part of the algorithm in order
to use the recursive algorithm to determine the distribution of
angular displacement.

6. EXAMPLE RESULTS

In this section the proposed method is demonstrated and the
results are compared with the results obtained with other meth-
ods in the existing literature. Simulations using the commer-
cial finite element (FEM) software COSMOSTM/SolidWorks
were also employed to verify the proposed method.

6.1. Uniform Rod with Concentrated
Elements

The case of a uniform rod with concentrated elements was
chosen to perform the first demonstration and verification of
the proposed method. Natural frequencies obtained by Chen
for a clamped free shaft with five rotary inertia using a nu-
merical method that provides the exact solution for uniform
circular shafts carrying multiple concentrated elements was
used for comparison.14 The problem is described as follows,
using the nomenclature and units used by Chen14 shown be-
tween parentheses: a circular shaft with length L = 1016 mm
(40 in), diameter d = 25.4 mm (1.0 in), shear modulus of
shaft material G = 82.74 × 109 Pa (1.2 × 107 psi), mass
density of shaft material ρ = 7, 839 kg/m3 (0.283 lbm/in3),
with five non-dimensional concentrated rotary inertias given
by I∗0v = JpL/I0v , where Jp is the mass moment of inertia
about the rotational axis (x) per unit length and I0v represents
the vth attached rotary inertia. The locations of the rotary iner-
tias are: ξ1 = 0.1, ξ2 = 0.3, ξ3 = 0.5, ξ4 = 0.7, and ξ5 = 0.9,
where ξj = xj/L, j = 1 to 5. To determine the natural fre-
quencies using the method proposed here, one should use the
algorithm presented in subsection 5.1.

Starting from the clamped end, a large value to the stiff-
ness K1 should be taken to represent this boundary condition.
If one is interested only in the natural frequencies, a unique
segment is necessary for each uniform part of the shaft; oth-
erwise, if the distribution of angular displacement must also
be known, the uniform parts of the shaft should be subdivided
arbitrarily in smaller segments. In this problem the concen-
trated rotary inertia was represented by a thin large diameter
disc. The diameters are determined according to the values of
the rotary inertias. A comparison between the results obtained
by Chen14 and the corresponding ones obtained using the pro-
posed algorithm is presented in Table 1 for the lowest five nat-
ural torsional frequencies. As the length of the rotary inertia is
reduced, the values of the natural frequencies converge to the
results obtained by Chen.14 An almost perfect agreement of
results is observed in Table 1 using disks with 0.005 in length
with large diameters as concentrated rotary inertias. Neverthe-
less, it should be emphasized that the method does not account
for the Poisson’s effect or for any cross-section deformation,
and therefore cannot model accurately the high frequency vi-
bration.

Table 1. Comparison with the results obtained by Chen14 for the lowest five
natural torsional frequencies of the clamped-free shaft carrying five rotary
inertia.

Method Torsional Natural Frequencies (rad/s)
ω1 ω2 ω3 ω4 ω5

Chen14 104.09671 304.98929 482.88004 619.40419 694.81096
Proposed 104.10 305.09 483.06 619.65 695.16Method

Table 2. Comparison between the lowest five torsional natural frequencies
obtained with the proposed method and the FEM for a stepped shaft with five
segments.

B.C. Method Torsional Natural Frequencies (rad/s)
ω1 ω2 ω3 ω4 ω5

Proposed 9432 54823 74995 111400 140890Method
C-F FEM 9356 53956 73739 110070 139630

Difference 0.81 1.61 1.70 1.21 0.90(%)
Proposed 41023 65849 90354 123760 152650Method

F-F FEM 40188 64610 88530 122500 150320
Difference 2.08 1.92 2.06 1.03 1.55(%)

6.2. Stepped Shaft
The proposed method will now be evaluated through com-

parisons with the FEM results. First, to check the finite ele-
ment model and analysis, the exact values of natural frequen-
cies of a uniform shaft were calculated and compared to FEM
results. In the following FEM analysis, we have adopted tetra-
hedral mesh model. The mesh was refined around geometrical
details. Convergence tests have been performed to ensure the
calculated natural frequencies.

FEM results obtained for the torsional vibration of an ar-
bitrary stepped shaft composed of five segments with lengths
equal to L1 = 60, L2 = L3 = 50, L4 = 80, and L5 = 70 mm
and diameters D1 = 30, D2 = 35, D3 = 40, D4 = 50, and
D5 = 40 mm, shear modulus G = 77 GPa, and mass den-
sity ρ = 7900 kg/m3, are compared to the results obtained
with the proposed method. The lowest five natural frequencies
for the free-free (F-F) and clamped-free (C-F) boundary condi-
tions (B.C.) are presented in Table 2. The natural frequencies
were obtained using the algorithm presented in subsection 5.1.
The FEM analysis was implemented using solid elements and
a modal shape analysis.

Table 2 also shows the difference between the values of the
torsional natural frequencies obtained by the proposed method
and the FEM. One can note that the results are in good agree-
ment, with a maximum difference of approximately 2%.

6.3. Rod with a Continuously Varying
Geometry

In this section, the proposed method is evaluated, as well as
an approximated solution for the torsional vibration of rods
with continuously varying geometry. Consider a rod with
continuously-varying diameter, as for example a conical rod.
To address this problem, a stepped cone, i.e., a cone composed
of uniform segments with different diameters, is used as an ap-
proximation to the conical rod. In order to verify the accuracy
of the method for determining the torsional natural frequen-
cies of continuously varying systems, the natural frequencies
of truncated cones (Fig. 5) with different angles, shear modulus
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Figure 5. Truncated cone.

G = 77 GPa, and mass density ρ = 7900 kg/m3 were deter-
mined and compared to the corresponding ones obtained using
the FEM. The diameter D1 = 60 mm and the cone length
L = 30 mm were kept constant while the angle α was in-
creased from α = 5◦ to α = 30◦ in order to obtain different
values of ∆ = 1 −D2/D1.

The lowest two torsional natural frequencies for a clamped-
free boundary condition were determined for each cone using
an increasing number of segments until the value of each natu-
ral frequency converged. The segments of the stepped rod had
the same length (L/N ) and the diameter of each segment was
equal to the diameter of the mid-segment. Table 3 presents a
comparison between the results obtained using commercial fi-
nite element software and the method proposed in this paper.
Solid elements were employed to model the cone. A modal
shape analysis was performed and the values of torsional nat-
ural frequencies were identified among the results provided by
the FEM. As expected, a good agreement between the results
was observed for small values of ∆; i.e., the accuracy of the
proposed method decreases if the rod geometry becomes very
different from a cylindrical rod. Even if the number of seg-
ments are increased, the proposed method cannot provide a
good accuracy for large values of ∆.

6.4. Shaft with Uniform Parts and a Conical
Segment

A shaft with a geometry composed of two uniform parts and
a conical section, as depicted in Fig. 6, with shear modulus
G = 77 GPa and mass density ρ = 7900 kg/m3, was also
analysed using the proposed method. A comparison between
the lowest two torsional natural frequencies for a free-free and
clamped-free boundary condition obtained with the FEM and
the proposed method are shown in Table 4. Figure 7 presents a
comparison between the angular displacements along the shaft
determined using the method presented in this work and the
FEM. According to Table 4 and Figs. 7(a) to 7(d), the results
obtained by the proposed method and the FEM are in good
agreement. To determine the distribution of angular displace-
ment, the uniform parts of the rod can be subdivided into any
number of smaller segments. The distribution of angular dis-
placement is obtained using the second part of the solution al-
gorithm described in section 5. The rod should be subdivided
into smaller segments, as short as necessary, to obtain the com-
plete description of a vibration mode. A stepped cone was used
as an approximation to the conical part of the shaft. In this ex-
ample, the uniform parts and the conical part were subdivided
into segments of 1.0 mm length (N = 500).

Table 4. Lowest two torsional natural frequencies (rad/s) for the shaft shown
in Fig. 6.

Boundary Condition Method ω1 ω2

FEM 25445 38184
Free-free Proposed Method 25950 37910

Difference (%) 1.9 0.7
FEM 15093 26178

Clamped-free Proposed Method 14990 27010
Difference (%) 0.7 3.1

Figure 6. Shaft with a conical part and uniform segments (dimensions in
millimetres).

7. CONCLUSIONS

A new method to study the torsional vibration of non-
uniform rods has been developed using a theory usually ap-
plied to investigate the wave propagation in layered media. A
simple and efficient algorithm based on the discrete form of
the Riccati transformation has been proposed to determine the
torsional natural frequencies and angular displacement distri-
bution of stepped shafts. The algorithm is computationally ef-
ficient and very easy to implement. The proposed method was
evaluated through comparisons with analytical and finite el-
ement method. The results show that the proposed solution
algorithm may provide exact results for uniform shafts with
concentrated elements and accurate results for stepped shafts.
Systems with continuously varying geometry can be properly
represented by stepped geometries; however, the accuracy of
the method decreases if the continuous system becomes very
different from a uniform rod.
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